
Sensitivity analysis for distributed optimization with
resource constraints

Emma Bowring
University of the Pacific

3601 Pacific Ave
Stockton, CA, 95211, USA
ebowring@pacific.edu

Zhengyu Yin, Rob Zinkov, Milind Tambe
University of Southern California

3737 Watt Way
Los Angeles, CA, 90275, USA

{zhengyuy,zinkov,tambe}@usc.edu

ABSTRACT
Previous work in multiagent coordination has addressed the chal-
lenge of planning in domains where agents must optimize a global
goal, while satisfying local resource constraints. However, the im-
position of resource constraints naturally raises the question of whet-
her the agents could significantly improve their team performance
if a few more resources were made available. Sensitivity analy-
sis aims to answer that question. This paper focuses on sensitivity
analysis in the context of the distributed coordination framework,
Multiply-Constrained DCOP (MC-DCOP). There are three main
challenges in performing sensitivity analysis: (i) to perform it in a
distributed fashion, (ii) to avoid re-solving an NP-hard MC-DCOP
optimization from scratch, and (iii) to avoid considering unproduc-
tive uses for extra resources. To meet these challenges, this paper
presents three types of locally optimal algorithms: link analysis,
local reoptimization and local constraint propagation. These algo-
rithms are distributed and avoid redundant computation by ascer-
taining just the effects of local perturbations on the original prob-
lem. Deploying our algorithms on a large number of MC-DCOP
problems revealed several results. While our cheapest algorithm
successfully identified quality improvements for a few problems,
our more complex techniques were necessary to identify the best
uses for additional resources. Furthermore, we identified two heuris-
tics that can help identify a priori which agents might benefit most
from additional resources: density rank, which works well when
nodes received identical resources and remaining resource rank,
which works well when nodes received resources based on the
number of neighbors they had.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence;
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Design

Keywords
Distributed constraint reasoning, DCOP, multiagent systems

Cite as: Sensitivity analysis for distributed optimization with resource
constraints, #880, Proc. of 8th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2009), Decker, Sichman, Sierra and
Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-
XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Previous work in multiagent coordination has focused on the

challenge of multiagent planning and coordination with resource
constraints [12, 9, 4, 3, 13]. Multiply-Constrained DCOP (MC-
DCOP)[12, 4, 3] is a framework for performing cooperative mul-
tiagent coordination in domains where there is a group goal to be
optimized as well as a set of local resource constraints to be satis-
fied. It has been applied to domains such as meeting scheduling,
distributed software development and sensor networks.

Performing sensitivity analysis, i.e. determining whether the
agents could significantly improve performance with the addition
of a few more resources is especially useful on MC-DCOP prob-
lems because these domains feature resource constraints that are
treated as hard constraints. In real world engineering domains, con-
straints may not be as strict as the MC-DCOP formalism assumes.
In some domains, additional resources could be acquired if the ben-
efits to the team sufficiently outweighed the costs [2, 1, 8]. For ex-
ample, in the distributed meeting scheduling domain, group leaders
might be willing to reallocate a small amount of money to supple-
ment their travel budget, if it would allow the overall schedule to be
significantly improved. However, before taking money away from
another budget item, group leaders would want to know what effect
their reallocation would have and whether they are the best agent
to make that reallocation. Given the resource constrained nature
of the problems, sensitivity analysis provides a tool to answer such
questions.

A simple approach to sensitivity analysis would be to run a com-
plete MC-DCOP algorithm on all of the possible problem vari-
ants that result from introducing additional resources and compare
the solutions. However, MC-DCOP is known to be an NP-hard
problem, so running the complete algorithm combinatorially many
times, would be very computationally expensive. Furthermore, the
introduction of additional resources at a set of agents causes only
a local perturbation to the problem. Thus, re-running from scratch
on each problem variant would require performing many duplicate
computations. Therefore, the main challenge is to identify bottle-
neck resource constraints efficiently while taking advantage of cal-
culations that have already been performed. The other main chal-
lenge is to do this identification in a distributed manner.

We developed three distributed algorithms to perform sensitivity
analysis on MC-DCOP problems: link analysis, local reoptimiza-
tion and local constraint propagation. Link Analysis examines in-
dividual links to see if there is a significant gain to be made on a
single link by inserting additional resources. Local Reoptimization
takes existing solution and uses locally optimal MC-DCOP algo-
rithms to reoptimize after additional resources have been inserted.
It benefits from the fact that the old optimal is a new satisfying so-
lutions and the extra resources produce only a local perturbation,



allowing a locally optimal algorithm to perform fairly well. In Lo-
cal Constraint Propagation each node collects information about
its neighboring nodes and their constraints and finds the optimal
way to distribute the resources among itself and its neighbors.

We experimentally compared the quality of solutions found by
each of the three types of algorithms on randomly generated exam-
ples as well as problems from the sensor networks domain. We fur-
ther analyzed the results to identify which nodes most commonly
were identified as requiring further resources and then developed
heuristics to help speedily predict nodes that could benefit from ad-
ditional resources.

2. PROBLEM DEFINITION

2.1 MC-DCOP
A Multiply-Constrained DCOP (MC-DCOP)[4, 3] consists of n

agents, {x1, x2, . . . , xn}, which can take on any value from the
discrete finite domain Di. The goal is to choose values such that
the sum over the set of constraint reward functions (fij) is max-
imized. Agents xi and xj are considered neighbors if they share
a constraint. In addition there are a set of n-ary hard constraints
with a cost function gij on a subset of our agent xi’s links and a g-
budgetGi which the accumulated g-cost must not exceed. Together
this g-function and g-budget constitute a g-constraint. Since g-cost
functions cannot be merged with f-reward functions, each value
must be selected based on both f and g, and hence the problem
is multiply-constrained. Figure 1 shows an example MC-DCOP.
There are three agents, each with two values, 0 and 1. There is a g-
budget of 3 on agent 1. Each link has both a f-reward and a g-cost.
When agents x1, x2 and x3 take values 0,0 and 1 respectively, the
assignment yields an optimal f-reward 5, but the g-cost is 4 which
violates the g-budget of agent x1; instead, if each agent takes the
value of 0, the total f-reward of 4 is maximized without violation
of agent 1’s g-budget.

x1x2 x3

g-budget = 3

0 0 3 2

0 1 1 1

x1 x2 f g

0 0 1 1

0 1 2 2

x1 x3 f g

 

Figure 1: Multiply-Constrained constraint graph

The objective of an MC-DCOP is to find an assignment A of val-
ues to agents s.t. F(A) is maximized: F (A) =

P
xi,xj∈V fij(di, dj),

where xi ← di, xj ← dj ∈ A
and ∀xi ∈ VP

gij(di, {dj |xj ∈ neighbors(xi)}) ≤ Gi

There are two types of algorithms available for solving MC-
DCOP algorithms: complete algorithms, e.g. MCA [4] and ADOPT-
N [14], that find the globally optimal solution and incomplete al-
gorithms, e.g. MC-MGM-1 is an 1-optimal or 1-coordinated al-
gorithm, whereas MC-MGM-2 [3] is a 2-optimal or 2-coordinated
algorithm, that rapidly find a locally optimal solution.

2.2 Sensitivity Analysis
Sensitivity analysis asks whether a significantly better team so-

lution (higher f-quality) could be obtained by inserting a few addi-
tional resources (g) at one or more nodes. In many cases, adding
additional units of g will yield only a proportional change in f or no

change at all. The goal of sensitivity analysis is to identify dispro-
portionate gains. The notion of disproportionate gain is captured in
the concept of gain/unit, which is defined as:

• gain / unit = (F ∗new − F ∗orig)/R, where

• F ∗orig is the f-reward of the globally optimal solution to the
original MC-DCOP problem

• F ∗new is the f-reward of the globally optimal solution to the
new MC-DCOP problem, which is identical to the original
MC-DCOP problem except that R additional units of g have
been distributed to some subset of the g-budgets

The goal of sensitivity analysis is to identify new MC-DCOPs which
introduce no more than Rmax additional units of g and which have
a gain/unit greater than α; α is a proportional factor, which speci-
fies the change in f that would typically accompany the insertion of
1 extra unit of g. If no MC-DCOPs yielding a gain/unit greater than
α can be found, then there is no use investing in further resources.
If more than one such MC-DCOP can be found then there are two
ways to select which one to use: highest gain/unit or highest abso-
lute gain. Highest gain/unit makes sense when the cost of adding
more resources is proportional to the quantity of resources added,
for example, when reallocating money from a different project.
Thus, although up to Rmax resources could be added, the user
would prefer to add only as many resources as necessary to get
the highest rate of return. The highest absolute gain makes sense
when the cost of acquiring Rmax or fewer additional resources is
flat, for example, investing in the next largest size battery.

There are two slightly different sensitivity analysis problems: in-
divisible and divisible resources. In the indivisible resources prob-
lem, extra resources are given to a single agent and can only be used
by that agent. In contrast, in the divisible resources problem, an
agent can redistribute its extra resources to its neighbors. The po-
tential solutions to the indivisible resources problem is a subset of
the possible solutions to the divisible resources problem. In some
circumstances, the ability to transfer resources is critical to improv-
ing the solution quality. Consider the example shown in Figure 2.
In this example, the optimal solution to the original problem is (0,
0, 0). If we have 2 units of additional resources, then an algorithm
that cannot divide the resources will settle on the solution (0, 1, 1)
and give x3 the extra resources. The globally optimal solution (1,
1, 1) can be reached only if we allow these additional 2 units of
resources to be redistributed from x3 to x1 — assuming we allow
x3 to keep 1 unit of the resource and transfer the remaining 1 unit
to x1.

x2

g-budget = 3
0 0 0 0

0 1 1 0

1 0 0 ∞

1 1 2 2

x1

x3

x1 x2 f g

g-budget = 3 g-budget = 2

0 0 0 0

0 1 1 3

1 0 0 ∞

1 1 2 2

x1 x3 f g

0 0 0 2

0 1 0 1

1 0 0 ∞

1 1 1 1

x2 x3 f g

 

Figure 2: Indivisible Resources



The naive approach to sensitivity analysis is to re-run a com-
plete algorithm on all of the possible problem variants and com-
pare the solutions. However, this approach would involve running
an exponential algorithm combinatorially many times (assuming
resources could be divided among all n agents). The cost of per-
forming the analysis would outweigh the benefits of performing it.
Furthermore, the introduction of additional resources causes only
a local perturbation to the problem. Thus, re-running from scratch
on each variant would require performing many duplicate compu-
tations. Therefore, the main challenge in sensitivity analysis is to
reduce both the time taken to solve each problem variant by using
incomplete algorithms and to target high probability variants us-
ing heuristics derived from experimental analysis. We look at the
former problem in Section 3 and the latter in Section 4.

2.3 Motivating Domains
In the experimental section of this paper we apply our algorithms

to the wireless mobile sensor network domain1. Each sensor can
receive and transmit signals from its neighbors and they must es-
tablish a communication network on the fly. The radio commu-
nication between these sensors suffers from reflection, scattering
and diffraction. The actual signal strength encountered in two sen-
sor locations is sampled from a probability distribution such as a
normal distribution. The result is that small-scale movements of
these sensor nodes in a fixed network topology can create signifi-
cant improvements in communication strength. Furthermore, each
sensor has a finite battery power, which directly controls its signal
strength. Sensors in two locations require a certain battery power to
ensure that the mean signal strength reaches a minimum threshold.
If the sensors are farther apart, more battery power must be con-
sumed by each sensor to maintain the same minimum threshold.

This domain can be mapped onto a MC-DCOP where the sensors
are agents and the domain values are possible locations for the sen-
sor. The signal strength between two sensors is the f-reward and the
battery power consumed and the total power available map onto g-
cost and g-budget respectively. Thus, given an agent x1 at location
l1 and x2 at location l2, their signal strength is one sampled from
a normal distribution. The amount of battery power required is a
function of the Euclidean distance between the agents and gaus-
sian noise to account for error in the battery and communication
channel.

Sensitivity analysis is particularly relevant in this domain, be-
cause the noise in the domain means that small adjustments in the
position and power consumption of the sensors could dramatically
affect the strength of the communication links in the network.

3. ALGORITHMS

3.1 Link Analysis
One way that a fixed amount of extra g inserted at a single node

could yield a disproportionate improvement in f could occur is
when the g vs. f function on an individual link has a slope greater
than α. If one plots the local g vs. f for a link and eliminates
all dominated value-pairs (those with both high g-cost and low f-
reward), the slope can be: less than α, equal to α, or greater than
α. The local slope is the slope in the interval which is within a
small distance (Rmax) of the current g-budget. Link analysis ex-
amines the g vs. f function at every single link by constructing a g
vs. f map and seeing whether the local slope is greater than α. It
can only consider changes in assignment that will not create new

1This domain is motivated by DARPA’s “LANDroids” project:
http://www.darpa.mil/ipto/programs/ld/ld.asp

g-constraint violations for any of the neighboring nodes. It can thus
identify single link gains.

Link analysis (Algorithm 1) is a fully distributed algorithm. Nodes
are given a top to bottom priority ordering as often done in DCOP
algorithms. Each agent then checks gain due to additional g-budget
and passes the max gain to the next agent in a round-robin fashion;
max gain is reported.

Algorithm 1 Link Analysis
1: maxgain = α
2: for All nodes xi from top to bottom priority do
3: maxgain = ReceiveMaxGain()
4: for All neighbors xj do
5: ComputeGFmap(xi, xj)
6: for i = gcur . . . gcur +Rmax do
7: s = FindSlope(gcur , i)
8: if s > maxgain and NoViolations() then
9: maxgain = s

10: PassMaxGain(maxgain)
11: ReportMaxGain()

3.2 Local Reoptimization
Since the additional resources have been inserted at a localized

set of nodes, their effects percolate out from a single area through
many local interactions. Incomplete algorithms like MC-MGM-1
and MC-MGM-2 are a natural choice for getting an estimate of
the ripple effects because their optimization mechanism revolves
around optimizing and re-optimizing the local value assignments.
One reason for using incomplete algorithms rather than complete
ones is that complete algorithms may find an optimal rapidly, but
must still expend time systematically proving that the optimal has
been reached [10].

The local reoptimization approach to sensitivity analysis involves
running MC-MGM on variants of the original MC-DCOP problem.
Here nodes are again organized into top to bottom priority ordering.
The pseudo-code for the local reoptimization algorithm is shown in
Figure 11. One thing to note is that this approach starts by insert-
ing Rmax units of extra resource and then decrements from there.
If the gain for inserting R units of additional resource into a par-
ticular node is 0, then the algorithm abandons the attempt to insert
R − 1, R − 2, . . . , 1 units of g into that particular node because
they will also yield a gain of 0 (line 5). Additionally, while we
have gain/unit as the criterion here, absolute gain could used as
well. Each node obtains gain from line 6 and 7 by initiating MC-
MGM algorithms. Control is then passed from node to node in a
round-robin fashion. The entire process is fully distributed (how-
ever, please see footnote 2).

Algorithm 2 Local Reoptimization (LR)
1: maxgain = α
2: for all nodes in top to bottom priority order do
3: R = Rmax

4: maxgain = ReceiveMaxGain()
5: while R ≥ 1 and gain > 0 do
6: run MC-MGM on new problem
7: gain = computeGain()
8: if gain > maxgain then
9: PassMaxGain(gain)

10: decrement R
11: ReportMaxGain()



In order to speed up computation and find an answer close to the
global optimal, the MC-MGM algorithms take the old optimal so-
lution (which is a satisfying solution in the new problem) as their
initial assignment. The reason for using the old global optimal is
two-fold: speed and quality. In terms of speed, using the old global
optimal instead of starting from scratch yields a significant savings
in runtime. In terms of quality, the old global optimal is the n-
optimal solution to the original problem, so it is very high quality.
There is no guarantee that the 1- and 2-optimal MC-MGM algo-
rithms would find their way to such a high quality solution with-
out being seeded. However, since they are seeded with an assign-
ment of this quality, they will try no assignments of lower quality
when performing sensitivity analysis. MC-MGM can start from the
old optimal and opportunistically use the extra resources to explore
only those assignments that yield an improvement over the existing
assignment.

3.3 Local Constraint Propagation (LCP)
The local constraint propagation algorithm is based on the idea

that an agent can reimburse its neighbors for any additional g-cost
they incur due to the agent changing values. It was inspired by
the optimization mechanisms used in the DCOP algorithms Op-
tAPO [11] and DPOP [15].

The agents are organized into a DFS tree — similar to MCA[4]
— so that there are links between agents and their ancestors /de-
scendants, but not between separate sub-trees. Like in Local Reop-
timization, agents initially take on the optimal solution to the origi-
nal problem to reduce redundant computation. Execution then pro-
ceeds in rounds. In each round, each agent xi sends a table to each
of its neighbors xj indicating by how much xi’s g-budget would
be exceeded if xj took on each of the values in its domain (line 4).
Each agent xi then considers all of the possible valid moves it could
make and picks out the best one (line 6). A move is valid if the to-
tal additional g required for the move by xi and all its neighbors is
less than or equal to the additional units of g being inserted. After
that, a bottom to top synchronous communication of messages is
used to identify the agent who can gain the maximum reward by
taking its best move. In this phase, each agent collects the gains
reported from its children, compares them to its own gain (line 9),
and reports the maximum gain in the subtree to its parent (line 10).
Finally, the root will decide which agent is allowed to take its move
and a top to bottom communication is used to inform all agents
whether they should move or not (line 11 to line 23). At the same
time, all the agents are informed how many shared resources have
been consumed so that they know how many available units they
can use for the next round (line 14). Notice here the unit consump-
tion can be negative which means some units can be put back to the
shared budget if after the move the total g required goes down. The
algorithm terminates when no valid moves remain that can yield
a positive gain. Pseudo-code using pre-defined tree hierarchy and
message passing is shown below.

In LCP-1, only one agent can change its value in a single round.
In LCP-2, by contrast, agents can consider both unilateral moves
and coordinated moves by pairs of agents. To coordinate their ac-
tions, agents must share more elaborate GExceed tables that show
how both a neighbor’s potential value changes and all potential
joint moves would affect the resource requirements of a particu-
lar agent. In particular, sharing GExceed tables proceeds in two
phases – request phase and response phase. In the request phase,
every agent sends a request table with all its possible joint moves
to all neighbors to inquire about their g-budget excess if a certain
joint move happens. In the response phase, each agent computes
and fills in its g-budget excess for each joint move in the request

Algorithm 3 Local Constraint Propagation-1 (LCP-1)
1: Pre-Processing: Build DFS tree
2: repeat
3: Phase 1: Message Broadcasting
4: Send_Message(Neighbors, GExceed)
5: ExceedTable = Receive_Message(Neighbors)
6: [myValue, myGain, myUnits] = Max_Gain(ExceedTable, AvailabeUnits)
7: Phase 2: Bottom to Top
8: if isLeaf() or receiveFromAllChildren() then
9: [ID, Gain, Units] = Compare_Gain(myGain, max(ChildrenGain))
10: Send_Message(Parent, Gain, Units)
11: Phase 3: Top to Bottom
12: if isRoot() or receiveFromParent() then
13: [canMove, UnitsUsed] = Receive_Message(Parent)
14: AvailableUnits = AvailableUnits - UnitsUsed
15: if canMove then
16: if ID = Self then
17: Take_Move(myValue)
18: Send_Message(Children, False, UnitsUsed)
19: else
20: Send_Message(ID, True, UnitsUsed)
21: Send_Message(OtherChildren, False, UnitsUsed)
22: else
23: Send_Message(Children, False, UnitsUsed)
24: until Cannot find valid move with gain>0

table and sends the table back. (Notice if an agent is the neighbor
of two agents that propose a joint move, it will report its g-budget
excess regarding this move to only one of them.) It also requires
additional cycles of communication to coordinate the joint moves
at the end of each round.

4. EXPERIMENTAL RESULTS
We conducted experiments on two domains: random graphs and

sensor networks, to attempt to answer several questions: (i) whether
the ability to redistribute divisible resources makes a significant dif-
ference in the quality of the solution found by sensitivity analy-
sis, (ii) how the different sensitivity analysis algorithms perform in
comparison with each other in terms of quality and runtime, (iii)
what heuristics could be used to target high probability nodes for
sensitivity analysis in the future.

4.1 Random Graphs
The experiments in this section were run on four sets of ran-

dom graph problems, with 80 problems in each set. The first set
consisted of random graphs where all nodes were provided a fixed
g-budget and their g-costs per link were sampled from a uniform
random distribution ranging from 1 to 10. The second set also had
10-node graphs, but their g-budgets varied from node to node based
on the link density of the node. The third and fourth sets were sim-
ilar except that they were 15-node graphs. The size of the graphs
was limited by the run-time for obtaining an optimal solution.

The MC-DCOP instances of most interest to us for sensitivity
analysis turned out to be particularly difficult. More specifically,
Bowring et al [4] illustrate that when agents’ g-budgets are too low
or too high relative to the overall g-cost on their individual links,
MC-DCOPs are solved quickly; in contrast, mid-range g-budgets
create hard MC-DCOP problems. We created MC-DCOP prob-
lem instances with such mid-range g-budgets — it is when we have
mid-range g-budgets that sensitivity analysis is most useful. If bud-
gets are too low or too high, adding in some extra resources would
likely provide little additional benefit.

For each set of graphs we used MCA to obtain the globally op-
timal solution to the original problem and then we performed sen-
sitivity analysis to see how adding 5 extra units of g would affect
the solution. We ran each of the following five algorithms on the
problem: Link Analysis, Local Reoptimization with MC-MGM-



1 (LR-1), Local Reoptimization with MC-MGM-2 (LR-2), Local
Constraint Propagation 1 (LCP-1) and Local Constraint Propaga-
tion 2 (LCP-2). We then compared the quality of the solutions they
each found. Since all of these algorithms reoptimize rather than
starting from scratch we wanted to see how their results compared
to the optimal solution, so we used a centralized brute force algo-
rithm to calculate the globally optimal solution. This gave us an
indication of how well the algorithms were reoptimizing. In the
following section, we first compare the quality of the solutions ob-
tained by the different algorithms and their runtimes. We next look
at the effects of changing a problem from one of indivisible to di-
visible resources and finally analyze the globally optimal solutions
to see what features of individual agents make them more likely to
benefit from additional resources.

Quality Gains: Tables 1 and 2 show the results of our anal-
ysis on the 10- and 15-node indivisible resource problems respec-
tively. In the 10-node case, with fixed g-budget, 53 out of 80 graphs
showed a significant improvement due to sensitivity analysis; the
proportion was higher, 72/80, for graphs with variable g-budgets.
For 15-node problems, sensitivity analysis identified more situa-
tions where extra resources could be used. This is because larger
graphs have more constraints to potentially act as bottlenecks. In
each table, the first column shows the algorithm used and the sec-
ond column shows the average total gain in solution quality. The
third column shows the percentage of times the algorithm was able
to identify the maximum gain, e.g. LR-2 for 10-node fixed g-budget
graphs was able to identify the maximum gain achievable in 56.6%
of the cases (out of 53), whereas LCP-2 was able to do so in 62.3%
of the cases. The fourth column shows the percentage of cases
where the algorithms found significant gains, i.e. gains higher than
the proportionality factor α. As can be seen in the optimal row, it
was not always possible to find a significant gain by inserting re-
sources: for only 43.4% of the fixed budget case and 50% of the
variable budget cases would it be worthwhile to add additional re-
sources. The remaining columns repeat the information, but for
graphs where nodes were given g-budgets based on link density.

Table 1: Absolute Gain: 10-node graphs

Algorithm 10 Fixed 10 Variable
Improved Ratio 53/80 72/80

Avg %W %U Avg %W %U
Link Analysis 0.43 7.5 1.9 2.49 33.3 23.6

LCP-1 3.25 45.3 28.3 3.54 51.4 36.1
LCP-2 3.81 62.3 30.2 4.25 73.6 44.4
LR-1 2.85 43.4 26.4 3.58 51.4 36.1
LR-2 3.23 56.6 28.3 3.86 58.3 40.3

Optimal 4.92 100.0 43.4 5.06 100.0 50.0

Table 2: Absolute Gain: 15-node graphs

Algorithm 15 Fixed 15 Variable
Improved Ratio 64/80 78/80

Avg %W %U Avg %W %U
Link Analysis 0.56 1.6 6.3 2.41 26.9 21.8

LCP-1 3.08 39.1 25.0 3.51 48.7 33.3
LCP-2 3.84 51.6 32.8 4.44 69.2 42.3
LR-1 3.08 39.1 25.0 3.50 47.4 33.3
LR-2 3.78 54.7 34.4 3.59 51.3 34.6

Optimal 5.72 100.0 51.6 5.53 100.0 60.3

We can draw the following conclusions from the results:

• Link analysis, the cheapest of our algorithms performs poorly
on graphs of fixed g-budgets, rarely obtaining the maximum

gain and obtaining an average of 0.43 or 0.56 in reward gain.
However, link analysis performs better in the variable-g case,
obtaining a higher reward gain on average. The reason for
this is that in the fixed budget cases, the nodes identified as
requiring further resources were generally the most highly
connected nodes. For highly connected nodes link analy-
sis was too constrained by its requirement to not change the
values of any neighbors to effectively use the additional re-
sources. By contrast, the nodes that received extra resources
in the variable budget cases were sometimes highly connected
and sometimes not highly connected, so link analysis was
able to perform better.

• The performance of the LCP-1 and LR-1 algorithms are al-
most identical. In these cases, it appears that the inability to
break out of local maxima had more of an effect on their per-
formance than the algorithm applied to the problem. LCP-2
performs moderately better than LR-2 at identifying uses of
additional resources. The LR-2 and LCP-2 algorithms out-
perform the LR-1 and LCP-1 algorithms because they were
able to use joint moves to break out of some of the local op-
tima.

• In comparing the results of the incomplete algorithms to the
global optimal (in particular by examining the %W column)
we can see that the incomplete algorithms performed well.
The 2-coordinated algorithms found the globally optimal so-
lution in 51 - 74% of the cases where gains could be achieved
and the unilateral algorithms found the globally optimal so-
lution in 39 - 51% of the cases.

We performed a similar analysis on problems where we maxi-
mized the gain per unit of resource inserted rather than total abso-
lute gain for all 320 cases. The results here are similar to the ones
seen in the absolute gain case. Link analysis was still ineffective
on the fixed g-budget problems and LCP-2 performed moderately
better than LR-2.

Table 3: Gain per Unit: 10-node graphs

Algorithm 10 Fixed 10 Variable
Improved Ratio 53/80 72/80

Avg %W %U Avg %W %U
Link Analysis 0.19 5.7 11.3 1.36 33.3 52.8

LCP-1 1.76 37.7 50.9 2.03 50.0 66.7
LCP-2 2.07 56.6 64.2 2.52 70.8 73.6
LR-1 1.75 37.7 50.9 2.03 50.0 66.7
LR-2 1.93 49.1 56.6 2.13 55.6 68.1

Optimal 2.96 100.0 79.2 3.06 100.0 83.3

Table 4: Gain per Unit: 15-node graphs

Algorithm 15 Fixed 15 Variable
Improved Ratio 64/80 78/80

Avg %W %U Avg %W %U
Link Analysis 0.38 1.6 9.4 1.28 24.4 53.8

LCP-1 1.64 39.1 54.7 2.22 47.4 71.8
LCP-2 2.08 53.1 68.8 3.10 67.9 89.7
LR-1 1.63 39.1 53.1 2.17 44.9 71.8
LR-2 2.01 53.1 67.2 2.26 48.7 74.4

Optimal 2.98 100.0 87.5 3.84 100.0 96.2

Indivisible vs. Divisible Resources: In the previous experi-
ment, resources were considered indivisible. Tables 5 and 6 shows
the results of running the LCP-1, LCP-2 and optimal algorithms



on the 320 example problems in our testsuite under one of two as-
sumptions: either (i) resources are indivisible and must be used by
the agent they are given to, or (ii) resources are divisible and can
be redistributed by agents to their neighbors and beyond. In all
cases, allowing the agents to redistribute resources yields a much
better final solution quality: in some cases a 2-fold improvement
in the quality gain. This is because agents who aren’t using all of
their available resources can donate them to another agent, allowing
the network to make more efficient use of the resources available.
Thus, in problems where resources are transferable from agent to
agent, it is well worth using an algorithm that will consider sharing
resources between agents.

Table 5: Indivisible vs. Divisible Resources: 10-node graphs

Algorithm 10 Fixed 10 Variable
Improved Ratio 59/80 74/80

Avg %W %U Avg %W %U
LCP-1 indivisible 2.92 20.3 18.8 3.45 24.3 32.5
LCP-1 divisible 4.31 40.7 31.3 4.85 44.6 45.0

LCP-2 indivisible 3.42 30.5 20.0 4.14 33.8 40.0
LCP-2 divisible 5.03 64.4 36.3 6.00 73.0 53.8

Optimal indivisible 4.42 44.1 28.8 4.92 43.2 45.0
Optimal divisible 6.71 100.0 42.5 6.86 100.0 60.0

Table 6: Indivisible vs. Divisible Resources: 15-node graphs

Algorithm 15 Fixed 15 Variable
Improved Ratio 66/80 78/80

Avg %W %U Avg %W %U
LCP-1 indivisible 2.98 22.7 20.0 3.51 11.5 32.5
LCP-1 divisible 3.91 34.8 25.0 5.65 42.3 56.3

LCP-2 indivisible 3.73 34.8 26.3 4.44 12.8 41.3
LCP-2 divisible 4.76 48.5 36.3 7.31 64.1 73.8

Optimal indivisible 5.55 54.5 41.3 5.53 16.7 58.8
Optimal divisible 6.83 100.0 52.5 8.65 100.0 82.5

Run-time Results: Figure 3 provides run-time results for our
algorithms from the gain per unit experiments. To find the maxi-
mum gain per unit, one must look at potentially inserting Rmax,
Rmax − 1, . . ., 1 additional units of resources, so the runtime is
greater than for problems seeking just to maximize the absolute
gain. The local reoptimization algorithms ran more quickly than
the local constraint propagation algorithms. For example, for LR-
1, for 10-node fixed-g problems, the average run-time was 14.11
cycles, but it was 108.39 for LCP-1, which constitutes a 7.68-fold
slowdown. The slowdown in LCP-1 occurs because messages must
be passed up and down the DFS tree. Thus, every value change
in LCP-1 requires 2 ∗ depth message communication cycles, and
since it iterates over Rmax units, it has a minimum cost of Rmax ∗
2 ∗ depth. Thus, the improved quality of the solutions that LCP-1
identified came at a cost of an 8-fold slowdown in cycles.2 The al-
gorithms running on problems with divisible resources ran slightly
slower than those running on equivalent problems with indivisible
resources. However, the 8 - 21% increase in runtime for running
on divisible resource problems, is more than offset by the improved
quality of the solution.

Heuristic Analysis: We analyzed the globally optimal solutions
to the random graph problems to identify which nodes most ben-
efited from additional resources. We then looked at what features
of these nodes might lead to their being bottlenecks in the hopes

2However LR currently does not include termination detection and
hence LCP’s slowdown, reported here, may be an overestimate.

10 Variable 10 Fixed 15 Fixed 15 Variable
0.00

50.00

100.00

150.00

200.00

250.00

300.00

LCP-1 indivisible LCP-2 indivisible LCP-1 divisible
LCP-2 divisible LR-1 LR-2

MC-DCOP problem types

A
ve

ra
ge

 G
ai

n 
pe

r 
U

ni
t

Figure 3: Cycle Comparison Chart

that we could identify heuristics that would allow us to target our
analysis a priori to high probability nodes in the future. We iden-
tified two key heuristics: degree rank and remaining resource rank
and analyzed how well they selected the bottleneck node(s). The
degree rank of a node xi is n, if there are n− 1 nodes in the graph
that have a degree greater than xi. Thus the node with degree rank
1 is the most highly connected node. The remaining resource rank
of a node xi is n, if there are n − 1 nodes in the graph that have
a remaining g-budget after solving the original MC-DCOP smaller
than xi’s remaining g-budget. Thus any nodes that used their entire
g-budget to solve the original MC-DCOP would have a remaining
resource rank of 1.

Table 7 shows the performance of the Degree Rank heuristic
as applied to ten and fifteen node problems. For problems where
each node was given the same g-budget, Degree Rank identifies
the nodes most likely to require additional resources with high fre-
quency. For example, it identified in the 10-node fixed g-budget
cases, that in 55 out of 115 cases it is the node with the highest de-
gree rank appeared to be the most critical. It is successful because
the g-budget each node receives is generally sufficient to meet the
needs of nodes with only a few links on which to expend resources,
but not sufficient for those agents with many neighbors. In prob-
lems where the g-budget assigned to each node was proportional to
its link density, the Degree Rank heuristic was largely unsuccess-
ful at identifying the bottleneck node. This was because the agents
had already been given resources based on their link density and
so highly connected nodes were no more likely to need additional
resources than any other node.

Table 7: Degree Rank Frequency Pattern

Rank 10 Fixed 10 Variable 15 Fixed 15 Variable

1 55 22 64 12
2 21 17 21 13
3 23 23 13 18
4 8 13 4 16
5 5 12 5 17
6 2 18 5 16
7 1 15 1 19
8 0 12 0 12
9 0 14 0 8
10 0 9 0 24
11 - - 0 7
12 - - 0 13
13 - - 0 8
14 - - 0 10
15 - - 0 4



Table 8 shows the performance of the Remaining Resource Rank
Heuristic. The heuristic is fairly effective in problems with identi-
cal g-budgets for each agent and variable g-budgets assigned based
on link density. While not performing as well as Degree Rank
on the fixed g-budget problems, Remaining Resource Rank made
much better predictions on problems where the g-budgets varied.
The heuristic relies on the idea that an agent that has already used
up all of its resources is more likely to have a need for more than an
agent that still has some unused resources remaining after solving
the initial problem.

Table 8: Remaining Resource Rank Frequency Pattern

Rank 10 Fixed 10 Variable 15 Fixed 15 Variable

1 47 39 50 46
2 14 17 16 5
3 16 9 17 16
4 15 13 12 18
5 11 21 8 11
6 5 20 4 14
7 2 10 5 7
8 0 11 1 12
9 1 11 0 10

10 4 4 0 13
11 - - 0 11
12 - - 0 12
13 - - 0 8
14 - - 0 8
15 - - 0 6

4.2 Sensor Networks
In the sensor network domain, networks were created by uni-

formly generating a location of a single node and then proceeding
to generate each subsequent node such that it was within signal
range of an existing node. This reflects the fact that the network
must be connected. Two nodes were considered to be within sig-
nal range when the distance between them was below a particular
threshold.

Ten networks, each with ten nodes, were created and density was
varied by altering how close together agents had to be to communi-
cate. F-rewards and g-costs were generated for each possible con-
figuration the two neighboring agents could take. A g-budget was
determined that was sufficiently tight that tradeoffs had to be made
between signal strength and power consumption. This was done to
see if our algorithms could capitalize on opportunities to improve
the solution.

Quality Gains: Figures 4 and 5 show the results of perform-
ing sensitivity analysis on 10 and 15-node problems from the mo-
bile sensor network domain. In these problems, agents were ini-
tially given 1000 units of battery capacity and the problem given
to the sensitivity analysis algorithms was to see whether any of the
agents should have their battery upgraded to the next largest ca-
pacity, which was 100 units larger. In these problems, α has the
value 5 because inserting 1000 additional units of battery capacity
usually yields an improvement of 5000 in the solution quality. Sen-
sitivity analysis identified 8 out of 20 problems where additional
resources could significantly improve the team solution. For the
15-node problems, the algorithms were able to more dramatically
improve the quality of the team solution than for the 10-node prob-
lems. This pattern is even more pronounced than it was for the
random graph problems.

Heuristic Analysis: We analyzed the globally optimal solu-
tions to the sensor network problems to identify which heuristics
best classified the features of the nodes most likely to be identified
as bottlenecks in the sensor network domain. As can be seen in

test1 test2 test3 test4 test5 test6 test7 test8 test9 test10
0

2000

4000

6000

8000

10000

12000

LCP-1 LCP-2

Test problem instances

A
ve

ra
ge

 G
ai

n 
pe

r 
U

ni
t

Figure 4: 10-Node Sensor Network Problems

test1 test2 test3 test4 test5 test6 test7 test8 test9 test10
0

5000

10000

15000

20000

25000

30000

LCP-1 LCP-2

Test problem instances

A
ve

ra
ge

 G
ai

n 
pe

r 
U

ni
t

Figure 5: 15-Node Sensor Network Problems

Table 9, the Remaining Resource Rank heuristic performed well
in this domain. This agrees with our expectations in mobile sen-
sor networks, since more battery power allows the agent to connect
to more nodes i.e. the problem is similar to the variable g-budget
problem previously. It can be seen that this heuristic works well in
both problems that resources are indivisible and divisible.

Table 9: Remaining Resource Rank Frequency Pattern

Rank Divisible Indivisible

1 8 6
2 3 1
3 3 1
4 3 0
5 1 1
6 0 0
7 2 0
8 0 0
9 0 0
10 0 0

5. CONCLUSION AND RELATED WORK
While significant recent research has focused on multiagent plan-

ning with resources constraints [12, 9, 4, 3, 13], little attention has
been focused on the challenge of sensitivity analysis. This paper in
MC-DCOPS, i.e. focused on the problem of sensitivity analysis or
whether the solution to a resource constrained optimization prob-
lem might be significantly improved if more resources were made



available. The three primary challenges were (i) to perform sensi-
tivity analysis in a distributed fashion, (ii) to minimize the redun-
dant computation when reoptimizing, and (iii) to find heuristics that
would allow the search for bottleneck agents to be targeted a priori.
This paper presented three new algorithms for performing sensitiv-
ity analysis: link analysis, local reoptimization and local constraint
propagation. These algorithms start from the globally optimal so-
lution to the original MC-DCOP problem and try to ascertain just
the effects of the local perturbation caused by inserting additional
resources. This helps to minimize the redundant computation.

Our experimental analysis led to the following observations. (i)
The local constraint propagation algorithms found slightly better
uses for additional resources than the local reoptimization algo-
rithms. However, local reoptimization ran significantly more rapidly
than local constraint propagation. (ii) Link analysis proved largely
ineffectual on problems where the bottleneck nodes were those of
high link density because it was too constrained to make much use
of the additional resources available. (iii) Allowing agents to di-
vide up their resources to other agents caused teams to perform
significantly better, with only a small increase in the runtime re-
quired to solve the problem. Experimentally we also identified two
heuristics that can help identify high probability nodes for giving
extra resources to: density rank, which works well when nodes re-
ceived roughly the same initial g-budget and remaining resource
rank, which works well when nodes received resources based on
link density.

The problem of sensitivity analysis, while new in the distributed
constraint reasoning field, has been extensively studied in linear
and integer programming (LP/IP) and centralized constraint sat-
isfaction (CSP). In linear and integer programming the problem
solved is effectively a multiply-constrained non-distributed con-
straint optimization problem, and there are several algorithms for
using the dual of a linear problem to perform sensitivity analy-
sis [2, 6, 5, 7, 18, 16]. This allows for rapid reoptimization of
the relaxed problem, but, taking the dual of the problem is not pos-
sible in integer programs, when constraint and variable information
is distributed, or when multiple constraints are being altered simul-
taneously. Related work in CSP looks at the problem of reopti-
mizing after removing constraints entirely rather than making them
easier to satisfy [1, 17]. This is a different problem to the one con-
sidered in this paper and since the techniques don’t consider soft
constraints, they would not work for the problem defined in this
paper.

ACKNOWLEDGEMENTS
This research was supported by a subcontract from Perceptronics
Inc.

6. REFERENCES
[1] R. Bakker, F. Dikker, F. Tempelman, and P. Wognum.

Diagnosing and solving over-determined constraint
satisfaction problems. In IJCAI, 1993.

[2] D. Bertsimas and J. Tsitsiklis. Introduction to Linear
Optimization. Athena Scientific, 1997.

[3] E. Bowring, J. Pearce, C. Portway, M. Jain, and M. Tambe.
On k-optimal distributed constraint optimization algorithms:
New bounds and algorithms. In AAMAS, 2008.

[4] E. Bowring, M. Tambe, and M. Yokoo. Multiply-constrained
dcop for distributed planning and scheduling. In AAMAS,
2006.

[5] M. Dawande and J. N. Hooker. Inference-based sensitivity
analysis for mixed integer/linear programming. Operations

Research, 48:623–634, 2000.
[6] C. Gomes. Artificial intelligence and operations research:

Challenges and opportunities in planning and scheduling.
Knowledge Engineering Review, 15:1–10, 2000.

[7] N. Hall. Sensitivity analysis for scheduling problems.
Journal of Scheduling, 7:49–83, 2004.

[8] G. Kharmanda, N. Olhoff, A. Mohamed, and M. Lemaire.
Reliability-based topology optimization. Journal of
Structural and Multidisciplinary Optimization, 26:295–307,
2004.

[9] H. Li, H. Durfee, and K. G. Shin. Multiagent planning for
agents with internal execution resource constraints. In
AAMAS ’03, pages 560–567, New York, NY, USA, 2003.

[10] R. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and
P. Varakantham. Taking DCOP to the real world : Efficient
complete solutions for distributed event scheduling. In
AAMAS, 2004.

[11] R. Mailler and V. Lesser. Solving distributed constraint
optimization problems using cooperative mediation. In
AAMAS ’04: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems,
pages 438–445, Washington, DC, USA, 2004. IEEE
Computer Society.

[12] T. Matsui, H. Matsuo, M. Silaghi, K. Hirayama, and
M. Yokoo. Resource constrained distributed constraint
optimization with virtual variables. In AAAI, pages 120–125,
2008.

[13] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Towards a
formalization of teamwork with resource constraints. In
AAMAS, 2004.

[14] F. Pecora, P. Modi, and P. Scerri. Reasoning About and
Dynamically Posting n-ary Constraints in ADOPT. In
Proceedings of 7th Int. Workshop on Distributed Constraint
Reasoning, at AAMAS, 2006.

[15] A. Petcu, B. Faltings, and R. Mailler. PC-DPOP: A new
partial centralization algorithm for distributed optimization.
Proceedings of the 20th International Joint Conference on
Artificial Intelligence, IJCAI, 7:167–172, 2007.

[16] L. Schrage and L. Wolsey. Sensitivity analysis for branch and
bound integer programming. Operations Research,
33:1008–1023, 1984.

[17] K. Stergiou and T. Walsh. Encoding non-binary constraint
satisfaction problems. In AAAI, 1999.

[18] L. Wolsey. Integer programming duality: Price functions and
sensitivity analysis. Mathematical Programming,
20:173–195, 1981.


