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Abstract

State-of-the-art applications of Stackelberg secu-
rity games — including wildlife protection — of-
fer a wealth of data, which can be used to learn
the behavior of the adversary. But existing ap-
proaches either make strong assumptions about the
structure of the data, or gather new data through
online algorithms that are likely to play severely
suboptimal strategies. We develop a new approach
to learning the parameters of the behavioral model
of a bounded rational attacker (thereby pinpointing
a near optimal strategy), by observing how the at-
tacker responds to only three defender strategies.
We also validate our approach using experiments
on real and synthetic data.

1 Introduction

The Stackelberg security game (SSG) model [Tambe, 2012],
a well-established model for deployment of limited secu-
rity resources, has recently been applied to assist agencies
protecting wildlife, fisheries and forests. This green se-
curity game (GSG) research [Fang et al., 2015; Nguyen
et al., 2015] differs from earlier work in SSGs applied to
counter-terrorism [Pita et al., 2009], as GSGs are accompa-
nied with significant historical data (e.g., wildlife crime, ar-
rests of poachers) from repeated defender-adversary interac-
tions. Given this data, machine learning has now begun to
play a critical role in improving defender resource allocation
in GSGs, taking the place of domain experts as the leading
method for estimating adversary utilities and preferences.

Indeed, inspired by GSGs, researchers have focused on
learning adversary bounded rationality models and designing
optimal defender strategies against such adversaries [Yang et
al., 2014; Sinha et al., 2016]. While existing results are en-
couraging, as we explain in detail below (and as discussed by
Sinha et al. [2016]), a shortcoming of the state-of-the-art ap-
proach is that its effectiveness implicitly relies on the proper-
ties of the underlying distribution from which data is obtained
— if near-optimal strategies have not already been played, a
near-optimal strategy cannot be learned.

1.1 Our Results
We take the next step in developing the theory and practice
of learning adversary behavior. Our first contribution is a
theoretical analysis of the learnability of (a generalization
of) the most well-studied bounded rationality adversary be-
havior model in SSGs: Subjective Utility Quantal Response
(SUQR) [Nguyen et al., 2013], which is a parametric spec-
ification of the adversary’s behavior. We find, perhaps sur-
prisingly, that if the data contains a polynomial number of
adversary responses to each of only three defender strategies
that are sufficiently different from each other (precise state-
ment is given in Theorem 3.1), then we can learn the model
parameters with high accuracy. Qualitatively, this means that
we can expect to learn an excellent strategy from real-world
historical data, as typically each defender strategy is played
repeatedly over a period of time. It also means that, even if
we collect additional data in the future by playing whatever
strategy seems good based on existing data, the new data will
quickly lead to an optimal strategy, under the very mild as-
sumption that the new strategies that are played are somewhat
different from the previous ones.

Building on our analysis of the generalized SUQR model,
as part of our second contribution, we analyze the learnabil-
ity of the more general class of adversary behavior models
specified by (non-parametric) Lipschitz functions. This is an
extremely expressive class, and therefore, naturally, learning
an appropriate model requires more data. Even for this class
we can learn the adversary response function with high ac-
curacy with a polynomial number of defender strategies —
but we make more stringent assumptions regarding how these
strategies are selected. Our analysis works by approximating
Lipschitz functions using polynomial functions.

Finally, we conduct experiments to validate our approach.
We show, via experiments on synthetic data, that a realistic
number of samples for each of three strategies suffices to ac-
curately learn the adversary model under generalized SUQR.
We also show, using experiments on human subject data, that
our main theoretical result provides guidance on selecting
strategies to use for learning.

1.2 Related Work
Our work is most closely related to the recent paper of Sinha
et al. [2016]. They learn to predict adversary responses in
the PAC model of learning. Crucially, following the PAC



model, the dataset is assumed to be constructed by draw-
ing defender strategies (and adversary responses) from a fixed
but unknown distribution — and the accuracy of the outcome
of the learning process is then measured with respect to that
same distribution. In particular, if the training data is concen-
trated in suboptimal regions of the defender strategy space,
the PAC model approach allows accurate prediction of adver-
sary responses in those regions, but may not help pinpoint a
globally optimal strategy (as discussed at length by Sinha et
al. [2016]). In contrast, our approach leads to uniformly accu-
rate prediction, in the sense that we can accurately predict the
adversary responses to any defender strategy, even if we only
observe suboptimal strategies. As we show, this provides suf-
ficient information to identify a near-optimal strategy.

Other prior work on learning adversary models using
SUQR (or variants) using field data in GSGs has yielded prac-
tical guidance for generating defender strategies [Haskell et
al., 2014; Fang et al., 2015], but has not provided any prov-
able guarantees, nor an analysis of what types of defender
strategies could yield improved learning results.

Another line of work [Letchford et al., 2009; Marecki et
al., 2012; Blum et al., 2014; Balcan et al., 2015] explores
an online learning approach, where an optimal strategy is
learned by adaptively playing defender strategies and observ-
ing the adversary responses. This approach cannot make
use of historical data. Moreover, in the most relevant pa-
pers [Letchford et al., 2009; Blum et al., 2014], in order to
most efficiently pinpoint the optimal strategy, the algorithm
may play severely suboptimal strategies, leading to poten-
tially catastrophic losses. In contrast, in the online inter-
pretation of our setting, we can learn an optimal strategy by
playing any three (sufficiently different) strategies, including
ones that seem optimal based on existing evidence. Interest-
ingly, the reason why we are able to do so much better is that
we assume a bounded rational adversary that responds proba-
bilistically to defender strategies, while the foregoing papers
assume a perfectly rational adversary. It would seem that in
our more realistic setting, the learning task should only be
harder. But by repeatedly playing a strategy, we gain infor-
mation about the adversary’s utility for all targets, whereas in
the perfectly rational case, to gain information about new tar-
gets, the learning algorithm has to discover the “best response
regions” of those targets.

2 Preliminaries
A Stackelberg security game is a two-player general-sum
game between a defender and an attacker, where the defender
commits to a randomized allocation of security resources to
defend a set of targets. The attacker, in turn, observes this
randomized allocation and responds to it by attacking a target.
The defender and the attacker both receive payoffs depending
on the target that was attacked and the probability that it was
defended.

Formally, we consider a set T = {1, . . . , n} of n targets.
The defender’s action space is defined by a set of vectors
P ⊆ [0, 1]n, called the coverage probability space, where
for each p ∈ P , pt represents the probability with which
the defender protects target t. Traditionally, this set is de-

termined by defender’s security resources and the subsets of
targets that each resource can defend simultaneously. A pure
deployment of the defender is then an assignment of resources
to targets, and a mixed deployment of the defender is a distri-
bution over pure deployments. In this context, the coverage
probability vector induced by a mixed deployment is defined
as the probability with which each target is defended under
this mixed deployment. As we shall see, the behavior and
utility of the attacker only depend on the defender’s choice of
coverage probabilities, and therefore we choose to represent
the defender’s action space by the set of coverage probabili-
ties P .

We denote the utility function of the attacker for target
t ∈ T by ut : [0, 1] → R. Given a coverage probabil-
ity vector p ∈ P , the utility of the attacker under strat-
egy p is defined as ut(pt). Previous work on learning in
security games has mainly focused on utilities that are lin-
ear functions of the coverage probability [Blum et al., 2014;
Marecki et al., 2012], or linear functions with the additional
constraint that ut(pt) = wpt + ct in the generalized SUQR
model of Sinha et al. [2016]. Our main result pertains to (un-
restricted) linear utility functions, but later we also deal with
higher degree polynomials.

Upon observing the defender’s strategy p, the attacker
computes the utility on each target t, ut(pt), and based on
these utilities responds to the defender’s strategy. In this pa-
per, we consider a non-adaptive attacker who attacks target t
with probability

Dp(t) =
eut(pi)∑
i∈T e

ui(pi)
. (1)

This model corresponds to the Luce model from quantal
choice theory [Luce, 2005; McFadden, 1976], and is a spe-
cial case of the logit quantal response model. Together with
our choice of utility functions, our model is a generaliza-
tion of bounded rationality models considered in previous
work, such as SUQR [Nguyen et al., 2013] and generalized
SUQR [Sinha et al., 2016].

Suppose the same mixed strategy p is played for multiple
time steps. We denote the empirical distribution of attacks on
target t under p by D̂p(·). Furthermore, we assume that for
the strategies considered in our work, and for all t,Dp(t) ≥ ρ
for some ρ = 1/poly(n). This assumption is required to
estimate the value ofDp(t) with polynomially many samples.

Our goal is to learn the utility functions, ut(·) for all t ∈ T ,
by observing attacker’s responses to a choice of coverage
probability vectors p ∈ P . This allows us to find an approx-
imately optimal defender strategy — the strategy that leads
to the best defender utility. We say that ût : [0, 1] → R
uniformly approximates or uniformly learns ut(·) within an
error of ε, if ∀x ∈ [0, 1], |ût(x)− ut(x)| ≤ ε. Note that
the attacker’s mixed strategy remains the same when the util-
ity functions corresponding to all targets are increased by the
same value. Therefore, we can only hope to learn a “normal-
ized” representation of the utility functions, ût, such that for
all t and all x, |ût(x) + c − ut(x)| ≤ ε for some c. Techni-
cally, this is exactly what we need to predict the behavior of
the attacker. We use this fact in the proof of our main theo-



rem and choose an appropriate normalization that simplifies
the presentation of the technical details.

3 Theoretical Results
In this section, we present our theoretical results for learning
attacker utility functions. We first state our results in terms
of linear utility functions and show that it is possible to uni-
formly learn the utilities up to error ε using only 3 random-
ized strategies, with poly(n, 1ε ) samples for each, under mild
conditions. We view these results as practically significant.

In Section 3.2, we extend the results to polynomials of de-
gree d to represent a larger class of utility functions. We show
(in Section 3.3) that this allows us to learn the even more ex-
pressive class of Lipschitz utility functions. The extension to
high-degree polynomials and Lipschitz utilities requires more
restrictive conditions, and hence it is of greater theoretical
than practical interest.

Finally, in Section 3.4, we show that accurately learning the
attacker’s utility function allows us to predict the distribution
of attacker responses to any defender strategy, and, therefore,
to pinpoint a near-optimal strategy.

3.1 Linear Utility Functions
Assume that the utility functions are linear and denoted by
ut(x) = wtx + ct. As discussed in Section 2, we can nor-
malize the utilities; That is, without loss of generality cn = 0.
Our main result is the following theorem.

Theorem 3.1. Suppose the functions u1(·), . . . , un(·) are lin-
ear. Consider any 3 strategies, p,q, r ∈ P , such that for any
t < n, |(pt − qt)(pn − rn) − (pn − qn)(pt − rt)| ≥ λ,
and for any two different strategies x,y ∈ {p,q, r}, we have
|xt − yt| ≥ ν. If we have access to m = Ω( 1

ρ ( 1
ενλ )2 log(nδ ))

samples of each of these strategies, then with probability 1−δ,
we can uniformly learn each ut(·) within error ε.

We view the assumptions as being very mild. Indeed, in-
tuitively ν depends on how different the strategies are from
each other — a very small value means that they are al-
most identical on some coordinates. The lower bound of λ
is less intuitive, but again, it would not be very small unless
there is a very specific relation between the strategies. As
a sanity check, if the three strategies were chosen uniformly
at random from the simplex, both values would be at least
1/poly(n).

To gain some intuition before proceeding with the proof,
note that in the quantal best-response model, for each strategy
p, the ratio between the attack probabilities of two targets t
and n follows the relation

ut(pt) = ln

(
Dp(t)

Dp(n)

)
+ un(pn). (2)

Therefore, each strategy induces n − 1 linear equations
that can be used to solve for the coefficients of ut. How-
ever, we can only obtain an estimate D̂p(t) of the proba-
bility that target t is attacked under a strategy p, based on
the given samples. So, the inaccuracy in our estimates of
ln(D̂p(t)/D̂p(n)) leads to inaccuracy in the estimated poly-
nomial ût. For sufficiently accurate estimates D̂p(t), we

show that the value of ut differs from the true value by at
most ε.

Let us first analyze the rate of convergence of D̂p(t) to
Dp(t) as the number of observations of strategy p increases.

Lemma 3.2. Given p ∈ P , let D̂p(t) be the empirical distri-
bution of attacks based onm = Ω( 1

ρε2 log(nδ )) samples. With

probability 1−δ, for all t ∈ T , 1
1+ε ≤ D̂

p(t)/Dp(t) ≤ 1+ε.

Proof. Given p ∈ P and t ∈ T , letX1, . . . , Xm be Bernoulli
random variables, whose value is 1 if and only if target t is at-
tacked in sample i, under strategy p. These are i.i.d. random
variables with expectation Dp(t). Furthermore, D̂p(t) =
1
m

∑
iXi. Therefore, using the Chernoff bound, we have

Pr

[
1

1 + ε
≤ D̂p(t)

Dp(t)
≤ 1 + ε

]
≥ 1− 2e−mD

p(t)ε2/4.

Since Dp(t) > ρ, when m = Ω( 1
ρε2 log(nδ )), with probabil-

ity 1 − δ
n , 1

1+ε ≤ D̂p(t)/Dp(t) ≤ 1 + ε. Taking the union
bound over all t ∈ T , with probability 1 − δ, for all t ∈ T ,
1

1+ε ≤ D̂
p(t)/Dp(t) ≤ 1 + ε.

Proof of Theorem 3.1. By Equation 2 and using our assump-
tion that cn = 0, for all t ∈ T , wtpt+ct = ln Dp(t)

Dp(n) +wnpn.

Using the same equation for q and eliminating ct, we have

wt(pt − qt) = ln
Dp(t)

Dp(n)
− ln

Dq(t)

Dq(n)
+ wn(pn − qn).

Repeating the above for p and r and solving for wn, we have

wn =
(pt − rt) ln Dp(t)Dq(n)

Dq(t)Dp(n) − (pt − qt) ln Dp(t)Dr(n)
Dr(t)Dp(n)

(pt − qt)(pn − rn)− (pn − qn)(pt − rt)
.

(3)
Furthermore, for all t < n,

wt =
ln Dp(t)

Dp(n)
− ln Dq(t)

Dq(n)
+ wn(pn − qn)

pt − qt
(4)

and
ct = ln

Dp(t)

Dp(n)
+ wnpn − wtpt (5)

Let ŵt and ĉt be defined similarly to wt and ct but in terms
of the estimates D̂p(t). By Lemma 3.2, for strategy p (and
similarly q and r) and any t, we have 1

1+ε′ ≤
Dp(t)

D̂p(t)
≤ 1 + ε′

for ε′ = ελν/128. Therefore, we have
|wn − ŵn| =∣∣∣(pt−rt)lnDp(t)Dq(n)D̂q(t)D̂p(n)

D̂p(t)D̂q(n)Dq(t)Dp(n)
−(pt−qt)lnD

p(t)Dr(n)D̂r(t)D̂p(n)

D̂p(t)D̂r(n)Dr(t)Dp(n)

∣∣∣
|(pt − qt)(pn − rn)− (pn − qn)(pt − rt)|

≤ |pt − rt| ln(1 + ε′)4 + |pt − qt| ln(1 + ε′)4

|(pt − qt)(pn − rn)− (pn − qn)(pt − rt)|
≤ 8

ε′

λ
≤ ε/16,

where the third transition follows from the well-known fact
that ln(1 + x) ≤ x for all x ∈ R. Similarly, for t < n, we
have

|wt−ŵt|=

∣∣∣lnDp(t)D̂p(n)

D̂p(t)Dp(n)
−lnD

q(t)D̂q(n)

D̂q(t)Dq(n)
+(wn−ŵn)(pn−qn)

∣∣∣
|pt − qt|



≤ 1

ν
(4ε′ + ε/16) ≤ ε/8.

And,

|ct − ct| =

∣∣∣∣∣ln Dp(t)D̂p(n)

D̂p(t)Dp(n)
+ (wn − ŵn)pn − (wt − ŵt)pt

∣∣∣∣∣
≤ 2ε′ + ε/4 ≤ ε/2.

Therefore, for any t and any x ∈ [0, 1], |ut(x) − ût(x)| ≤
ε.

3.2 Polynomial Utility Functions
On the way to learning Lipschitz utilities, we next assume
that the utility function is a polynomial of degree at most d
(linear functions are the special case of d = 1). We show that
it is possible to learn these the utility functions using O(d)
strategies.

Theorem 3.3. Suppose the functions u1(·), . . . , un(·) are
polynomials of degree at most d. Consider any 2d+ 1 strate-
gies, q(1), . . . ,q(d), q(d+1) = p(1), . . . ,p(d+1), such that for
all k, k′, k 6= k′, q(k)1 = q

(k′)
1 , p(k)n = p

(k′)
n , |q(k)n −q(k

′)
n | ≥ ν,

and for all t < n, |p(k)t − p(k
′)

t | ≥ ν. If we have access to
m = Ω( 1

ρ ( d
ενd

)2 log(nδ )) samples of each of these strategies,
then with probability 1−δ, we can uniformly learn each ut(·)
within error ε.

It is important to emphasize that, unlike Theorem 3.1, one
would not expect historical data to satisfy the conditions of
Theorem 3.3, because it requires different strategies to cover
some targets with the exact same probability. It is therefore
mostly useful in a setting where we have control over which
strategies are played. Strictly speaking, these more stringent
conditions are not necessary for learning polynomials, but we
enforce them to obtain a solution that is stable against inac-
curate observations. Also note that the d = 1 case of The-
orem 3.3 is weaker and less practicable than Theorem 3.1,
because the latter theorem uses tailor-made arguments that
explicitly leverage the structure of linear functions.

In a nutshell, the theorem’s proof relies on polynomial in-
terpolation. Specifically, consider the relationship between
the utility functions of different targets shown in Equation (2).
We assume that all the strategies p(i) have the same coverage
probability pn on target n; since subtracting a fixed constant
from all utility functions leaves the distribution of attacks un-
changed, we can subtract un(pn) and assume without loss of
generality that

∀t < n, ut(pt) = ln

(
Dp(t)

Dp(n)

)
. (6)

Because ut is a polynomial of degree d, it can be found
by solving for the unique degree d polynomial that matches
the values of ut at d + 1 points. To learn un, we can then
use the same approach with the exception of using the utility
function for targets 1, . . . , n − 1 in Equation (2) to get the
value of un(·) on d + 1 points. As before, we do not have
access to the exact values of Dp(t), so we use the estimated
values D̂p(t) in these equations.

The next well-known lemma states the necessary and suf-
ficient conditions for existence of a unique degree d polyno-
mial that fits a collection of d+ 1 points [Gautschi, 1962].
Lemma 3.4. For any values y1, . . . , yd and x1, . . . , xd such
that xi 6= xj for all i 6= j, there is a unique polynomial
f : R → R of degree d, such that for all i, f(xi) = yi.
Furthermore, this polynomial can be expressed as

f(x) =

d+1∑
k=1

yk
∏

k′:k′ 6=k

x− xk′
xk − xk′

. (7)

Proof of Theorem 3.3. Let ŷ(k)t = ln(D̂p(k)

(t)/D̂p(k)

(n))

for all t < n. We have assumed that p(k)t 6= p
(k′)
t for any

k 6= k′, so the conditions of Lemma 3.4 hold with respect
to the pairs

(
p
(k)
t , ŷ

(k)
t

)
. Let ût be the unique polynomial

described by Equation (7), i.e.,

ût(x) =

d+1∑
k=1

ŷ
(k)
t

∏
k′:k′ 6=k

x− p(k
′)

t

p
(k)
t − p

(k′)
t

.

Similarly, for the values y(k)t = ln(Dp(k)

(t)/Dp(k)

(n)), by
Lemma 3.4 and Equation (6), ut(x) can be expressed by

ut(x) =

d+1∑
k=1

y
(k)
t

∏
k′:k′ 6=k

x− p(k
′)

t

p
(k)
t − p

(k′)
t

.

Let ε′ be such that ε = 4ε′(d + 1)/νd. By Lemma 3.2 for

strategy p(k) and any t, we have 1
1+ε′ ≤

Dp(k)
(t)

D̂p(k)
(t)
≤ 1 +

ε′. Using the fact that ln(1 + x) ≤ x for all x ∈ R, with
probability 1− δ,

|ŷ(k)t − y
(k)
t | =

∣∣∣∣∣ln D̂p(k)

(t)

Dp(k)(t)
− ln

D̂p(1)(n)

Dp(1)(n)

∣∣∣∣∣ ≤ 2ε′.

Therefore, for all x and all t < n,

|ût(x)− ut(x)| =

∣∣∣∣∣∣
d+1∑
k=1

(ŷ
(k)
t − y

(k)
t )

∏
k′ 6=k

x− p(k
′)

t

p
(k)
t − p

(k′)
t

∣∣∣∣∣∣
≤ 2ε′

d+ 1

νd
≤ ε/2.

Similarly, by Equation (2) for target n and q(k), we have,

un(q
(k)
n ) = ln

(
Dq(k)

(n)

Dq(k)(1)

)
+ u1(q

(k)
1 )

Since for all k, q(k)1 = q1, using Lemma 3.4, un can be
described by the unique polynomial passing through points(
q
(k)
n , ln Dq(k)

(n)

Dq(k)
(1)

)
translated by the value u(1)(q1). Simi-

larly, let û(1) be defined by the unique polynomial passing

through points
(
q
(k)
n , ln D̂q(k)

(n)

D̂q(k)
(1)

)
translated by the value

û1(q1), then
|ûn(x)− un(x)| ≤ |û1(q1)− u1(q1)|

+

∣∣∣∣∣∣
d+1∑
k=1

(
ln
D̂q(k)

(n)

D̂q(k)(1)
− ln

Dq(k)

(n)

Dq(k)(1)

) ∏
k′:k′ 6=k

x− q(k
′)

n

q
(k)
n − q(k

′)
n

∣∣∣∣∣∣
≤ ε

2
+
ε

2
= ε

This completes our proof.



3.3 Lipschitz Utilities
We now leverage the results of Section 3.2 to learn any utility
function that is continuous and L-Lipschitz, i.e., for all t and
values x and y, |ut(x) − ut(y)| ≤ L|x − y|. We argue that
such utility functions can be uniformly learned up to error ε,
using O(Lε ) strategies.

To see this, we first state a result that shows that all L-
Lipschitz functions can be uniformly approximated within er-
ror ε using polynomials of degreeO(Lε ) [French et al., 2003].

Lemma 3.5. Let Fm be a family of degree m polynomials
defined over [−1, 1], and let F be the set of all L-Lipschitz
continuous functions over [−1, 1]. Then, for all f ∈ F ,

inf
g∈Fm

sup
x
|f(x)− g(x)| ≤ 6L

m
.

Therefore, for any L-Lipschitz function ut(x), there is a
polynomial of degree m = 12L/ε that uniformly approxi-
mates ut(x) within error of ε/2. By applying Theorem 3.3
to learn polynomials of degree 12L/ε, we can learn all the
utility functions using O(L/ε) strategies.

Corollary 3.6. Suppose the functions u1(·), . . . , un(·) are L-
Lipschitz. For d = 12L/ε, consider any 2d + 1 strategies,
q(1), . . . ,q(d), q(d+1) = p(1), . . . ,p(d+1), such that for all
k, k′, k 6= k′, q(k)1 = q

(k′)
1 , p(k)n = p

(k′)
n , |q(k)n − q(k

′)
n | ≥ ν,

and for all t < n, |p(k)t − p(k
′)

t | ≥ ν. If we have access to
m = Ω( L2

ρε4ν24L/ε log(nδ )) samples of each of these strategies,
then with probability 1−δ, we can uniformly learn each ut(·)
within error ε.

3.4 Learning the Optimal Strategy
So far, we have focused on the problem of uniformly learn-
ing the utility function of the attacker. We now show that an
accurate estimate of this utility function allows us to pinpoint
an almost optimal strategy for the defender.

Let the utility function of the defender on target t ∈ T be
denoted by vt : [0, 1] → [−1, 1]. Given a coverage proba-
bility vector p ∈ P , the utility the defender receives when
target t is attacked is vt(pt). The overall expected utility of
the defender is

V(p) =
∑
t∈T

Dp(t)vt(pt).

Let ût be the learned attacker utility functions, and D̄p(t) be
the predicted attack probability on target t under strategy p,
according to the utilities ût, i.e.,

D̄p(t) =
eût(pi)∑
i∈T e

ûi(pi)
.

Let V̄(p) be the predicted expected utility of the defender
based on the learned attacker utilities D̄p(t), that is, V̄(p) =∑
t∈T D̄

p(t)vt(pt). We claim that when the attacker utili-
ties are uniformly learned within error ε, then V̄ estimates
V with error at most 8ε. At a high level, this is established
by showing that one can predict the attack distribution using

the learned attacker utilities. Furthermore, optimizing the de-
fender’s strategy against the approximate attack distributions
leads to an approximately optimal strategy for the defender.1

Theorem 3.7. Assume for all p and any t ∈ T , |ût(pt) −
ut(pt)| ≤ ε ≤ 1/4. Then, for all p, |V̄(p) − V(p)| ≤ 4ε.
Furthermore, let p′ = arg maxp V̄(p) be the predicted opti-
mal strategy, then maxp V(p)− V(p′) ≤ 8ε.

4 Experimental Results
We conducted extensive experiments based on both synthetic
data and real data collected through human subject experi-
ments. The results not only support our theoretical analysis,
but also verify the practical implications of our theorems for
guiding the learning process. In the experiments, we focus
on linear utility functions of the form ut(x) = wtx+ ct, and
learn ut(·) using closed-form equations (3)–(5) as stated in
the proof of Theorem 3.1. We refer to this learning approach
as Closed-Form Estimation (CFE).

Theorem 3.1 asserts that one can learn ut(·) using three
strategies with a polynomial number of attack samples. In
the first set of experiments, we aim to verify empirically how
many attack samples are needed to learn ut(·) and predict
the attack distribution with high accuracy using CFE. To test
the performance with a wide range of sample sizes, we use
synthetic data. More specifically, we randomly generated 50
different sets of true values of the utility function’s param-
eters (wt, ct) from a uniform distribution on [−3,−1] and
[1, 3], respectively. For each set of true parameter values, we
generated 20 different sets of three defender strategies, each
with a total coverage probability of 3 (i.e., there are three de-
fender resources). The three defender strategies in each set
are chosen to be sufficiently different such that the minimum
difference in coverage probability between the strategies is at
least 0.12. The attack samples are drawn from corresponding
attack probability distributions with the number of samples
ranging from 500 to 10000. For each set of defender strate-
gies and corresponding attack samples, we learned the func-
tions ût(·) using CFE. We generated a test set that consists of
1000 uniformly-distributed random defender strategies, and
computed the error ε as the maximum difference between
ût(·) and ut(·) on the test set. We also report the error in
predicting the attack distribution, measured by the ∞-norm
distance between the predicted and the true attack distribu-
tion. All of our results are statistically significant (bootstrap-t
method with p < 0.05) unless otherwise specified.

Figure 1(a) and 1(b) show the experimental results with
different number of targets: n = 8, 12, 16. The x-axis indi-
cates the number of attack samples, and the y-axis is the aver-
age error in predicting ut(·) and the attack distribution. The
error significantly decreases when the number of attack sam-
ples increases. Moreover, when more than 2000 samples are
provided for each of the three defender strategies, the error
in predicting the attack distribution is low (|| · ||∞ ≤ 0.02).
In the wildlife protection domain, more than one thousand
snares can be found in a year in some areas [Hashimoto et

1The proof of this theorem appears in the full version of the
paper, available at http://www.cs.cmu.edu/˜nhaghtal/
pubs/3strategies.pdf.



0	  

0.4	  

0.8	  

1.2	  

1.6	  

5	   15	  25	  35	  45	  55	  65	  75	  85	  95	  

U
.l
ity

	  E
rr
or
	  

#A8acks	  (hundred)	  

8	  Target	  
12	  Target	  
16	  Target	  

(a) Error in ut(·)

0	  

0.01	  

0.02	  

0.03	  

0.04	  

0.05	  

5	   15	  25	  35	  45	  55	  65	  75	  85	  95	  

A.
ac
k	  
Pr
ob

	  E
rr
or
	  

#A.acks	  (hundred)	  

8	  Target	  
12	  Target	  
16	  Target	  

(b) Error in predicted attack dis-
tribution

0	  
0.05	  
0.1	  
0.15	  
0.2	  
0.25	  
0.3	  

5	   15	  25	  35	  45	  55	  65	  75	  85	  95	  

A.
ac
k	  
Pr
ob

	  E
rr
or
	  

#A.acks	  (hundred)	  

8	  Target	  
12	  Target	  
8	  Target-‐Uniform	  
12	  Target-‐Uniform	  

(c) Impact of λν on error of pre-
dicted attack distribution

-‐10	  

-‐8	  

-‐6	  

-‐4	  

-‐2	  

0	  
1	   3	   5	   7	   9	   11	  13	  15	  17	  19	  21	  

Lo
g	  
Li
ke
lih
oo

d	  
Payoff	  structure	  

MaxDiff	   MinDiff	  

(d) Human subject data set 1

-‐14	  
-‐12	  
-‐10	  
-‐8	  
-‐6	  
-‐4	  
-‐2	  
0	  

1	   2	   3	   4	   5	   6	   7	   8	  

Lo
g	  
Li
ke
lih
oo

d	  

Payoff	  structure	  

MaxDiff	   MinDiff	  

(e) Human subject data set 2

-‐25	  

-‐20	  

-‐15	  

-‐10	  

-‐5	  

0	  
10	   20	   30	   40	   50	   60	  

Lo
g	  
Li
ke
lih
oo

d	  

#Samples	  

Data	  Set	  2	  
Data	  Set	  1	  

(f) Increasing # of Samples on
human subject data

Figure 1: Experimental results.

al., 2007], where each snare is an attack sample. Therefore,
these results empirically show that it is possible to predict
the attack distribution with high accuracy, based on histori-
cal data in domains such as wildlife protection, as long as the
deployed defender strategies are sufficiently different.

To understand how the difference between strategies can
impact the prediction error, we compare the error of learning
from strategies that are sufficiently different to that of learn-
ing from uniformly-distributed randomly chosen strategies.
The prediction accuracy is shown in Figure 1(c), which is av-
eraged over 50 different samples of the three strategies. The
error decreases at a much slower rate when randomly chosen
strategies are used. This conclusion is consistent with The-
orem 3.1, which states that the number of samples needed
depends on the value of λν, where λν can be seen as an indi-
cator of how different the strategies are. In this set of experi-
ments, by using randomly chosen strategies instead of strate-
gies that are sufficiently different, the average value of λν
decreases from 0.498 to 0.045 for 8 targets and from 0.147 to
0.017 for 16 targets. These results also imply that if we care-
fully choose the defender strategies to learn from, far fewer
samples would be needed to achieve high prediction accuracy.

In addition to testing on synthetic data, we tested on human
subject data collected by Nguyen et al. [2013] (data set 1) and

Kar et al. [2015] (data set 2). We did not run statistical tests in
this experiment since the data is limited. We aim to examine
the impact of λν on the prediction accuracy with human sub-
ject data. We tested on 22 different payoff structures in data
set 1 and 8 different payoff structures in data set 2. There are
five different strategies of the defender associated with each
payoff structure. In both data sets, the number of attack sam-
ples is small (30-50 samples for each game) relative to the
number of targets (8 targets for data set 1 and around 25 tar-
gets for data set 2). For each payoff structure, we selected
two sets of three strategies such that λν is maximized and
minimized, respectively. We consider these two sets as the
two different training sets for learning the utility parameters,
wt and ct. Since the true values of the utility parameters are
unknown and the true attack distribution is also unknown due
to the lack of attack samples, we report the log likelihood of
the observed attack samples averaged over all five strategies.

The results are plotted in Figure 1(d) and 1(e), in which
the x-axis indicates different payoff structures, and the y-axis
is the average log likelihood value. In data set 1, the set of
strategies with maximum λν difference obtains higher aver-
age log-likelihood values in 19 out of 22 payoff structures. In
data set 2, the set of strategies with maximum λν difference
obtains higher average log likelihood values in 7 out of 8 pay-
off structures. These results indicate that a larger difference
between the three chosen strategies typically leads to a higher
prediction accuracy. As an implication of Theorem 3.1 that
is verified by experimental results, this conclusion again pro-
vides guidance on selecting the defender’s strategies during
the learning phase.

With the set of strategies that maximize λν, we tested how
the number of samples affects learning. Figure 1(f) reports
the log likelihood value averaged over 1000 sets of randomly
selected samples. Not surprisingly, the log likelihood value
increases as the sample size grows and the increase from 10
to 30 samples is significant. Note that in some games we
have less than 40 samples in total, so the increase from 40 to
60 samples is not significant.

5 Discussion

The human subject data we used in our experiments is conve-
nient, because we know which randomized defender strategy
the subjects are responding to. In contrast, in the wildlife
protection domain, the relevant historical data is not as neat:
we can only observe the rangers’ actual patrols (pure deploy-
ments), and the corresponding attacks. Therefore, in order to
apply SSG-based learning techniques, the patrols must be ar-
tificially associated with different randomized strategies. For
example, patrols in a single winter can be seen as instantia-
tions of a single randomized strategy.

Despite this difficulty, our results can give guidance for
learning. They suggest that partitioning the historical data
into only a few strategies, with many samples for each, might
be best. And in the future, when new data is collected from
deploying randomized strategies, our results will be even
more useful, as they impose extremely mild conditions on
deployed strategies, which allow learning optimal strategies.
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Appendix
Proof of Theorem 3.7. First, we show that the predicted at-
tack distribution is close to the real attack distribution for any
strategy p. We have,∣∣∣∣ln(D̄p(t)

Dp(t)

)∣∣∣∣ =

∣∣∣∣∣ln
(
eût(pi)

eut(pi)

)
− ln

(∑
i∈T e

ûi(pi)∑
i∈T e

ui(pi)

)∣∣∣∣∣
=

∣∣∣∣∣ûi(pi)− ui(pi)− ln

(∑
i∈T e

ûi(pi)∑
i∈T e

ui(pi)

)∣∣∣∣∣
≤ ε+

∣∣∣∣∣ln
(∑

i∈T e
ui(pi) eûi(pi)−ui(pi)∑
i∈T e

ui(pi)

)∣∣∣∣∣
≤ ε+ max

i

∣∣∣ln(eûi(pi)−ui(pi))
∣∣∣ ≤ 2ε.

Using the well-known inequalities 1 − x ≤ e−x, ex−x
2/2 <

1 + x, and 2ε ≤ 4ε− 8ε2 for ε ≤ 1/4, we have

(1− 2ε) ≤ e−2ε ≤ D̄p(t)

Dp(t)
≤ e2ε ≤ e4ε−8ε

2

≤ (1 + 4ε).

Then,

|V̄(p)− V(p)| ≤
∑
t∈T

vt(pt) |D̄p(t)−Dp(t)|

=
∑
t∈T

vt(pt)

∣∣∣∣D̄p(t)

Dp(t)
− 1

∣∣∣∣Dp(t) ≤ 4ε
∑
t∈T

vt(pt)D
p(t)

≤ 4ε max
t
vt(pt)

(∑
t∈T

Dp(t)

)
≤ 4ε.

Let p∗ = arg maxp V(p) be the true defender’s optimal strat-
egy. Then, V(p∗) ≤ V̄(p∗)+4ε ≤ V̄(p′)+4ε ≤ V(p′)+8ε.
This completes the proof.


