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Abstract

An effective way of preventing attacks in secure areas
is to screen for threats (people, objects) before entry,
e.g., screening of airport passengers. However, screen-
ing every entity at the same level may be both ineffec-
tive and undesirable. The challenge then is to find a
dynamic approach for randomized screening, allowing
for more effective use of limited screening resources,
leading to improved security. We address this challenge
with the following contributions: (1) a threat screen-
ing game (TSG) model for general screening domains;
(2) an NP-hardness proof for computing the optimal
strategy of TSGs; (3) a scheme for decomposing TSGs
into subgames to improve scalability; (4) a novel algo-
rithm that exploits a compact game representation to ef-
ficiently solve TSGs, providing the optimal solution un-
der certain conditions; and (5) an empirical comparison
of our proposed algorithm against the current state-of-
the-art optimal approach for large-scale game-theoretic
resource allocation problems.

Introduction
Screening people before allowing entry into a secure area is
a standard practice throughout the world, e.g., screening re-
sources are used to secure border crossings, sports stadiums,
government buildings, etc. Of course, a majority of people
will be familiar with airport passenger screening, where each
passenger must pass through physical screening consisting
of a combination of multiple types of resources (e.g. x-
ray and walk-through metal detector) before boarding their
flight. Given the significant projected future growth in avia-
tion, agencies such as the Transportation Security Adminis-
tration (TSA) in the United States are developing dynamic,
risk-based screening approaches which optimize the use of
resources so as to maintain a high level of security while
handling increased passenger volume (AAAE 2014).

This paper considers domains where a screener inspects
a set of screenees with the goal of preventing a potential
adversary from taking an attack method through screen-
ing to attack within a secure area. For example, terrorists
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with non-metallic explosives may attempt to pass through
airport screening undetected in order to attack a particular
flight. The screener utilizes different types of screening re-
sources that have: (i) different levels of effectiveness for de-
tecting different attack methods; and (ii) different capaci-
ties in terms of the number of screenees that can be pro-
cessed within a given time window. Effective screening may
require assigning multiple screening resource types to in-
spect a screenee, but the screener may not be able to use
the most effective screening resource type combination for
every screenee. Hence, the screener may utilize available
information to categorize screenees to help determine the
appropriate level of scrutiny to apply during screening.

To address the challenge of how to optimally utilize lim-
ited screening resources so as to minimize the expected con-
sequences of an attack, we introduce a formal threat screen-
ing game (TSG) model. TSGs are played between a screener
and an adversary, where the screener commits to a screen-
ing strategy, assigning a randomized combination of screen-
ing resource types to each screenee category. The adversary
is able to observe the screening strategy and best responds
by selecting an attack method and a screenee category to
pose as during screening. The objective of the screener is to
minimize the worst-case expected consequences of an attack
across all screenee categories and all attack methods.

The TSG model is inspired by research on security
games (Jain et al. 2010a; An et al. 2011; Korzhyk, Conitzer,
and Parr 2010; Pita et al. 2011; Shieh et al. 2014) and related
variants, e.g. audit games (Blocki et al. 2013; 2015), adver-
sarial patrolling games (Basilico, Gatti, and Amigoni 2009;
Vorobeychik et al. 2014). Research on security games has
provided models and algorithms for generating randomized
allocations of limited security resources to protect against an
adaptive adversary. However, there exist fundamental dif-
ferences between threat screening domains and standard se-
curity game domains: (i) large numbers of non-adversarial
screenees that must be processed and thus affect the screen-
ing of the adversary, and (ii) multiple screening resource
types with varying efficacies and efficiencies which can
combine to work in teams. The result is that such domains
not only require a new game model (TSG), but also funda-
mentally new algorithms to handle scalability for TSGs.

Our approach to handle scalability in TSGs involves com-
pactly representing the game, in the process advancing the



state of the art in randomized allocation (Budish et al. 2013).
In particular, TSGs do not satisfy the conditions identified
in (Budish et al. 2013) that are required for a lossless com-
pact allocation representation. We provide an efficiently
computable compact representation for TSGs which is loss-
less under certain conditions, thereby providing a generaliz-
able approach for handling scenarios in randomized alloca-
tion beyond those identified in the current state of the art.

While airport passenger screening is our motivating do-
main, the purpose of this paper is to introduce models, algo-
rithms, and insights that are generally applicable to screen-
ing for a variety of both physical and non-physical threats.
Our contributions include: (1) the general TSG model; (2)
an NP-hardness proof for computing the optimal strategy of
TSGs; (3) a scheme for decomposing TSGs into subgames
to improve scalability; (4) a novel algorithm that exploits a
compact game representation to efficiently solve TSGs, pro-
viding the optimal solution under certain conditions; and (5)
an empirical comparison of the proposed algorithm against
the current state-of-the-art approach for large-scale game-
theoretic allocation problems. Finally, we evaluate the po-
tential benefit of using a screening strategy obtained by solv-
ing a TSG over less dynamic screening strategies.1

Motivating Domain
While the TSG model has broad applicability, in this sec-
tion we focus on one concrete domain. In the United States,
the Transportation Security Administration (TSA) screens
around 800 million airport passengers annually. The TSA
utilizes a number of resources for screening passengers, e.g.,
x-ray machines, walk-through metal detectors, advanced
imaging technology machines. Each passenger is required
to go through a combination of screening resources before
boarding their flight in order to minimize the threat of a ter-
rorist passing through screening and attacking a flight.

The TSA’s new DARMS (Dynamic Aviation Risk Man-
agement Solution) initiative fundamentally re-envisions avi-
ation security at all airports nationwide (AAAE 2014). In
our joint work with the TSA, we focus solely on the passen-
ger screening component of DARMS. Whereas the TSA pre-
viously screened all passengers equally, recently they have
implemented risk-based screening through programs such as
TSA PreX R© in which passengers can choose to submit to
background checks in order to receive expedited screening.
The idea being that fewer resources should be dedicated to
screening lower risk passengers and more resources dedi-
cated to screening higher risk passengers, improving both
overall screening efficiency and efficacy simultaneously.

In DARMS, the TSA assigns each passenger a risk level
based on available information such as flight history, fre-
quent flyer membership, TSA PreX R© status, etc. The TSA
also assigns a value to each flight that measures its attrac-
tiveness as a target for terrorists based on gathered intelli-
gence. The innovation in DARMS is that the screening for
each passenger is conditioned on both the passenger’s risk

1All proofs in this paper can be found in the online Appendix at
http://teamcore.usc.edu/papers/2016/DARMS.Appendix.pdf

level and flight. Our goal is to exploit this additional flexibil-
ity by using the TSG model to compute the optimal dynamic
screening strategy, given the available screening resources.

Threat Screening Game Model
A threat screening game (TSG) is a Stackelberg game
played between the screener (leader) and an adversary (fol-
lower) in the presence of a set of non-player screenees pass-
ing through a screening checkpoint operated by the screener.
As a Stackelberg game, the screener commits to a random-
ized screening strategy, while the adversary is able to ob-
serve the screening strategy and select a best response. The
complete specification of a TSG includes the following:

• Time windows: Screening problems feature a temporal di-
mension, as screenees do not arrive all at once, but rather
over a period of time. We model this by slicing the game
into a set of time windows W . We use superscript w for
relevant variables to indicate the time window.

• Screenee categories: Screenees may have defining char-
acteristics upon which their screening can be conditioned,
e.g., risk level and flight in DARMS. Screenees with
identical defining characteristics can be aggregated into a
screenee category c ∈ C as they are functionally indistin-
guishable within the context of the game. The total num-
ber of screenees in each category c is Nc and the number
of screenees in c that arrive at the screening checkpoint
during time window w is Nw

c . We assume a constant ar-
rival rate for screenees within each screenee category and
time window. All screenees in a category arriving in the
same time window are screened equally in expectation ac-
cording to the randomized screening strategy.

• Adversary actions: The actions for the adversary consist
of selecting a time window w ∈ W to go through screen-
ing, a screenee category c ∈ C to pose as during screen-
ing, and an attack methodm ∈M . An example adversary
action is w = 8:00AM-9:00AM, c = {HighRisk, Flight1},
and m = on-body non-metallic explosives.

• Adversary types: There may be defining characteristics
that an adversary cannot control, e.g., TSA-assigned risk
level. Thus, there may be restrictions placed on the ac-
tions an adversary can select based on their defining char-
acteristics. Therefore, we refer to an adversary type
θ ∈ Θ, which restricts the adversary to select from scree-
nee categories Cθ ⊂ C. The adversary knows their own
type, but the screener does not. The screener only knows
a prior distribution z over the adversary types.

• Resource types: The set of screening resource types is R
and all resources of type r ∈ R, e.g., all walk-through
metal detectors, can be used to screen a combined total of
at most Lwr screenees during time window w.

• Team types: Screenees must be screened by one or more
resources types, e.g., walk through metal detector and x-
ray machine. Each unique combination of resources types
constitutes a screening team type t. The set of all valid
team types, denoted by T , is given a priori.



(a) Pure Strategy (b) Marginal Strategy

Figure 1: TSG Strategies

• Team type effectiveness: Team types vary in their ability
to detect different attack methods. For team type t, Etm is
the probability of detection against attack method m.

Pure strategy A pure strategy P for the screener can
be represented by |W | non-negative integer-valued matrices
Pw of size |C| × |T |. The c, t entry in Pw is the number of
screenees in c assigned to be screened by team type t during
time window w, which we denote as Pwc,t. Pure strategy P
must assign every screenee to be screened by a team type
while satisfying the resource type capacity constraints for
each time window. The set of all valid pure strategies P̂ is
given by the assignments that satisfy the constraints:∑

t∈T I
t
r

∑
c∈C P

w
c,t ≤ Lwr ∀w,∀r (1)∑

t∈T P
w
c,t = Nw

c ∀w,∀c (2)

where Itr is an indicator function returning 1 if team type t
contains resource type r and 0 otherwise. We assume P̂ 6= ∅,
i.e., it is possible to assign every screenee to a team type.

Example TSG A pure strategy is shown in Figure 1(a) for
an example TSG consisting of one time windowW = {w1},
three screenee categories C = {c1, c2, c3}, two screening
resource types R = {r1, r2}, and three screening team
types T = {t1, t2, t3} with t1 = {r1}, t2 = {r1, r2}, and
t3 ={r2}. Each screenee category contains three screenees,
i.e., Nw1

c1 = Nw1
c2 = Nw1

c3 = 3 and thus by Equation 2 each
row in the matrix must sum to three. Each resource type
can screen at most six screenees, i.e., Lw1

r1 = Lw1
r2 = 6, and

thus by Equation 1 the total assignments corresponding to r1

(solid line box) and the total assignments corresponding to
r2 (dashed line box) must each be less than or equal to six.

Mixed Strategy Given a mixed strategy q over all valid
pure strategies P̂ (i.e.,

∑
P∈P̂ qP = 1, 0 ≤ qP ≤ 1), we

can compute the expected (marginal) number of screenees
in c assigned to be screened by team type t during time win-
dow w as nwc,t =

∑
P qPP

w
c,t. The values of nwc,t form the

marginal strategy n, with an example shown in Figure 1(b).
Utilities Since all screenees in category c are screened

equally in expectation, we can interpret nwc,t/N
w
c as the

probability that a screenee in category c arriving during
time window w will be screened by team type t. Then,
the probability of detecting an adversary type in category
c during time window w using attack method m is given by
xwc,m =

∑
tE

t
mn

w
c,t/N

w
c . The payoffs for the screener are

given in terms of whether adversary type θ chooses scree-
nee category c and is either detected during screening, de-
noted as Uds,c, or is undetected during screening, denoted as
Uus,c. Similarly, the payoffs for adversary type θ are given in

terms of whether θ chooses screenee category c and is either
detected during screening, denoted as Udθ,c, or is undetected
during screening, denoted as Uuθ,c. As the nature of our mo-
tivating domain is zero-sum, we assume a zero-sum game
such that Udθ,c=−Uds,c and Uuθ,c=−Uus,c.

Given adversary type θ’s choice of time window w, scree-
nee category c, and attack method m, the screener’s ex-
pected utility is given by Us = xwc,mU

d
s,c + (1 − xwc,m)Uus,c

and the expected utility for adversary type θ is Uθ=−Us.

Computing TSG Equilibria
The optimal mixed strategy for a zero-sum TSG can be ob-
tained by solving the linear program MixedStrategyLP

max
n,q,s,x

∑
θ∈Θ zθsθ (3)

sθ ≤ xwc,mUds,c+(1−xwc,m)Uus,c ∀w,∀θ,∀c,∀m (4)

xwc,m =
∑
t∈T E

t
m
nw
c,t

Nw
c

∀w,∀c,∀m (5)

nwc,t =
∑
P∈P̂ qPP

w
c,t ∀w,∀c,∀t (6)∑

P∈P̂ qP = 1, qP ≥ 0 ∀P (7)

Equation 3 is the objective function which maximizes the
summation of the screener’s worst case expected utility
against adversary type θ, sθ, multiplied by the probability
of encountering θ, zθ, over all adversary types θ ∈ Θ. Equa-
tion 4 constrains sθ to be worst case screener utility over all
c ∈ Cθ, w ∈ W , and m ∈ M that adversary type θ could
choose. Equation 5 calculates the detection probabilities
x from the marginal strategy n. Equation 6 calculates the
marginal strategy n from the mixed strategy q. Equations 7
ensures q is a valid probability distribution over P̂ .

Decomposition A potential way to improve computa-
tional efficiency when solving for the screener strategy is to
decompose the TSG into sub-games Gw for each time win-
dow. Since the TSG is sliced into |W | time windows, the
overall screener mixed strategy can be computed by solv-
ing Gw (assuming adversary types conduct one attack in
each time window) separately and then combining the mixed
strategies from each sub-game. The optimization problem
MixedStrategyLP (w) is similar to MixedStrategyLP ,
except with only the constraints for time window w. This
decomposition scheme produces the optimal solution for the
type of zero-sum TSGs we consider in this paper.
Theorem 1. Decomposition produces the optimal mixed
strategy for a TSG when there exists a real number j such
that j > 0 and all sub-games satisfy Uus,c = −jUuθ,c and
Uds,c=−jUdθ,c, ∀c∈C. 2

However, decomposition is not guaranteed to produce the
optimal screening strategy for general-sum TSGs. A coun-
terexample showing the potential suboptimality of decom-
position for general-sum TSGs is located in the Appendix.

2This result only holds in case of a single adversary type. As
a result, solving for each time window arises by assuming inde-
pendent time windows rather than a mathematical property of the
presented model.



Complexity Despite decomposing a TSG into sub-games,
solving Gw can be computationally difficult as the TSG in-
puts, and in particular the sets C and T , increase in size.
Theorem 2. MixedStrategyLP (w) is NP-Hard to solve.

The challenge is that the number of valid pure strate-
gies |P̂ | is exponential in the inputs to the TSG. Thus, for
any realistically-sized TSG, it would be impossible to even
properly formulate MixedStrategyLP (w) in practice as
P̂ would not fit into memory. Previous work for handling
large pure strategy spaces in Stackelberg games can be cate-
gorized into two broad approaches: (1) marginal-based ap-
proaches (Kiekintveld et al. 2009; Letchford and Conitzer
2013) which exploit compact game representations, and (2)
column generation (Jain et al. 2010b; Yang et al. 2013)
which exploits small support set size in the mixed strategy.
Our empirical results show that our novel marginal-based
approach significantly outperforms column generation with
respect to both runtime and solution quality. Hence, we
adopt marginal-based approaches for solving TSGs.

Marginals MixedStrategyLP (w) explicitly enumer-
ates the pure strategies in P̂ to compute the marginal strategy
in Equation 6. An alternative approach is to bypass the enu-
meration of pure strategies and the modeling of the mixed
strategy q entirely, instead directly optimizing the marginal
assignments in n. The optimal screener marginal strategy
for a zero-sum TSG can be computed by solving the linear
program MarginalStrategyLP (w) which is obtained by
Equations 3-5 from MixedStrategyLP (w) and then:∑

t∈T I
t
r

∑
c∈C n

w
c,t ≤ Lwr ∀r (8)∑

t∈T n
w
c,t = Nw

c , nwc,t ≥ 0 ∀c, t (9)

Previously, the constraints from Equations 1 and 2 were im-
plicitly encoded in MixedStrategyLP (w) by considering
an explicit enumeration of only valid pure strategies. Thus,
any mixed strategy would respect Equations 1 and 2 by def-
inition. MarginalStrategyLP (w) does not reason over
pure strategies and thus needs Equations 8 and 9 to explicitly
enforce the resource type capacity constraints and screenee
category assignment constraints in the marginal strategy.

Algorithmic Approach
Despite satisfying Equations 8 and 9, the optimal marginal
strategy n∗ from MarginalStrategyLP (w) may not cor-
respond to any valid mixed strategy q due to the integral
screenee category assignments in pure strategies. Such
marginal strategies are said to be non-implementable. We
present an example of a non-implementable marginal strat-
egy in the Appendix. Our goal is to compute the optimal
implementable marginal strategy for a given TSG.

While previous work in security games has explored the
non-implementability of marginals (Kiekintveld et al. 2009;
Letchford and Conitzer 2013), the identified conditions
focus specifically on spatio-temporal resource constraints,
e.g., constraints on the scheduling and routing of resources.
In contrast, the non-implementability issues in TSGs arise
out of conflicting demands on resource types — from differ-
ent team types — potentially resulting in constraint viola-

tions. Outside of the scope of security games, work on gen-
eral randomized resource allocation, specifically (Budish et
al. 2013), has explored such issues and provides guarantees
for the implementability of marginal strategies if the prob-
lem constraints form a structure called a bihierarchy, which
we define below. Unfortunately, only the most trivial TSGs
form a bihierarchy as initially specified and an algorithm that
handles non-bihierarchies is not provided in (Budish et al.
2013). Therefore, we have developed a novel approach for
manipulating the constraints in TSGs to obtain a bihierarchy
and ensure implementability of the marginal strategy.

Notation and Definitions In this section, we focus on a
single time window, and thus drop the superscript w. The
marginal assignments n form a |C| × |T | matrix. Each
assignment constraint in MarginalStrategyLP (w), no-
tably Equations 8 and 9, is a summation of nc,t over a set
S ⊂ C × T with an integral upper bound. For example,
based on Equation 9, {{c1, t1}, {c1, t2}, {c1, t3}} form one
constraint subset S for the example TSG from Figure 1. The
set of all such S form a constraint structure H . To sim-
plify our presentation, we introduce some shorthand. We use
n[S] in place of

∑
(c,t)∈S nc,t and n(H) to denote the set

{n|n satisfies constraints given by constraint structure H}.
We say n is implementable with respect to H if n ∈

n(H) and there exists a mixed strategy q such that n =∑
P∈P̂ qPP . H is universally implementable if all n ∈

n(H) are implementable. We sayH is a hierarchy if, for ev-
ery pair of elements S1, S2 ∈ H , we have S1⊂S2, S2⊂S1,
or S1∩ S2 = ∅. Thus, H is a hierarchy if, for any two con-
straint sets, one is a subset of the other or they share no com-
mon elements. We say H is a bihierarchy if there exists hi-
erarchiesH1 andH2 such thatH=H1∪H2 andH1∩H2 =∅.
Utilizing these definitions, we show the following:

Theorem 3. For TSGs, a bihierarchical constraint structure
is necessary and sufficient for universal implementability.

Theorem 3 implies that we can guarantee the solution
toMarginalStrategyLP (w) is the optimal implementable
marginal strategy if and only if the constraints for the TSG
form a bihierarchy. TSGs have one constraint hierarchy H1

containing the row constraints for each screenee category c:∑
t∈T nc,t = Nc. However, the set of column constraints

H2, one for each resource type r, may not form a hierarchy:∑
t∈T I

t
r

∑
c∈C nc,t ≤ Lr. To capture the overlap between

resource type constraints, we denote the constraint subset
for every resource type r as Sr = C × {t | t ∈ T, r ∈ t},
and the intersection Sr ∩ Sr′ as Sr,r′ . An intersection is re-
solved if we have Sr′ ⊂ Sr or Sr ⊂ Sr′ or Sr,r′ = ∅. If all
intersections Sr,r′ are resolved then H2 forms a hierarchy
by definition. Since H2 does not form a hierarchy for most
TSGs, we concentrate on converting H2 into a hierarchy in
order to achieve universal implementability for a given TSG.

Marginal Guided Algorithm (MGA) Our approach fo-
cuses on resolving intersections between the resource type
constraints in H2 to produce a hierarchy, which results in
the TSG constraint structure forming a bihierarchy.

Figure 2 shows a possible way of resolving overlapping
constraints in H2 for the example TSG. Note that the con-
straints (on the left) do not form a hierarchy as Sr1,r2 =



Figure 2: Resolving Overlaps to Form a Bihierarchy

C × {t2} and Sr1 * Sr2 and Sr2 * Sr1 . Thus, a possi-
ble way of resolving the intersection between r1 and r2 is
to split r2 into r2,1 and r2,2, with new capacity constraints
n[Sr2,1 ]≤Lr2,1 and n[Sr2,2 ]≤Lr2,2 respectively to replace
the original capacity constraint n[Sr2 ] ≤ Lr2 on resource
type r2. Resolving this intersection results in H2 forming a
hierarchy, as Sr2,1 ⊂ Sr1 and Sr2,1,r2,2 =∅ and Sr1,r2,2 =∅.
H1 and H2 now combine to form a bihierarchy.

However, it must hold that Lr2,1 +Lr2,2 = Lr2 = 6, yet
notice that there are no satisfying, integral values of Lr2,1
and Lr2,2 (e.g., {2, 4},{3, 3},{4, 2}) that still capture the
example marginal strategy, specifically n[Sr2,1 ] = 2.8 and
n[Sr2,2 ] = 3.2. That is, manipulating the constraints in this
way would cut out the marginal strategy from the solution
space. Therefore, if the marginal strategy was in fact opti-
mal, then breaking down r2 would remove an important part
of the feasible space, resulting in a loss of solution quality.
Instead, it would have better to break down r1 into r1,1 and
r1,2 with Lr1,1 =Lr1,2 =3, as resolving the intersection that
way produces a bihierarchy that still captures the marginal
strategy, specifically n[Sr1,1 ] = 3 and n[Sr1,2 ] = 2.8.

The example above clearly highlights the importance of
resolving intersections intelligently. Therefore, we present
the Marginal Guided Algorithm (MGA) that uses the opti-
mal marginal strategy n∗ from MarginalStrategyLP to
search for the optimal implementable marginal strategy, the
intuition being that it exists either at, or near, n∗.

The first step in MGA (shown in Algorithm 1) is to solve
MarginalStrategyLP to obtain n∗ (Line 1), which may
be non-implementable. MGA then builds a tree by starting
with a root node that contains the original constraint struc-
ture (Line 2), and repeats the resolution steps, described be-
low, until there are no unresolved intersections. We resolve
the intersections guided by n∗ using three types of resolu-
tion to replace the original resource type constraint for r:

• Integral resolution: If n∗[Sr,r′ ] is integral then add the
pair of constraints n[Sr,r′ ] ≤ n∗[Sr,r′ ], n[Sr\Sr,r′ ] ≤
Lr − n∗[Sr,r′ ]. n∗ still satisfies the resulting constraints.

• Slack resolution: If Lr − n∗[Sr] ≥ 1 then add the pair
of constraints n[Sr,r′ ] ≤ dn∗[Sr,r′ ]e , n[Sr\Sr,r′ ] ≤
dn∗[Sr\Sr,r′ ]e. n∗ still satisfies the resulting constraints.

• Tight resolution: If Lr − n∗[Sr] < 1 then pro-
duce two sets, each containing a pair of constraints:
n[Sr,r′ ] ≤ dn∗[Sr,r′ ]e, n[Sr\Sr,r′ ] ≤ Lr − dn∗[Sr,r′ ]e
and n[Sr,r′ ] ≤ bn∗[Sr,r′ ]c, n[Sr\Sr,r′ ] ≤ Lr −
bn∗[Sr,r′ ]c, respectively. n∗ may not satisfy either of the
two new resulting sets of constraints.

A single leaf node is added for integral and slack resolutions,

Algorithm 1: MGA(H)
1 n∗ ←MarginalStrategyLP (H)
2 Tree.Root← H
3 I ← Calc&OrderIntersections(H)
4 while (I 6= {∅}) do
5 C ← ResolveIntersection(I,n∗)
6 Tree← UpdateTree(Tree, C)
7 I ← Calc&OrderIntersections(Tree.Leaf)

8 Hull← ConvexHull(Tree.Leaf)
9 return n′, λ, {ni} ←MarginalStrategyLP (Hull)

while two leaf nodes are added for tight resolutions. Thus,
we order the intersections so that integral and slack resolu-
tions happen first (Line 3 and 7), to avoid tight resolution and
thus preserve n∗. After every resolution, leaves are added to
the tree (Line 6) that contain all constraints of the parent
node except with the constraint for r removed and the new
pair of constraints added, then the intersections are recom-
puted (Line 7). At the end of the loop, each leaf i contains
a bihierarchy Hi, as all intersections have been resolved. A
convex hull of the sets of points n(Hi) ∀i is computed, and
MarginalStrategyLP is solved using the convex hull in-
stead of Equations 8 and 9 to get the marginal strategy n′.

Convex Hull As each bihierarchy is a set of linear con-
straints, let bihierarchy Hi be written as Ain ≤ bi for
matrix Ai and vector bi. Thus, by definition n(Hi) =
{n|Ain ≤ bi}. The natural way to represent the convex hull
is conv(n(H1), . . . ,n(Hk)) = {n|n =

∑
i λini, Aini ≤

bi, λi ≥ 0,
∑
i λi = 1}. We use a result from (Balas 1985)

that represents the convex hull using linear constraints:
conv(n(H1), . . . ,n(Hk)) = {n|n =

∑
i ni, Aini ≤

λibi, λi ≥ 0,
∑
i λi = 1}. MGA outputs the values of λi

and ni that form the returned solution n′ (Line 10).
The intuition behind taking the convex hull is that the bi-

hierarchies capture many pure strategies near n∗. Coupled
with the fact that the optimal implementable strategy is a
convex combination of pure strategies possibly near n∗, the
convex hull of the bihierarchies should at least be close to the
optimal implementable strategy. This assumption is justified
by the empirical results from tests on MGA. Importantly, we
show n′ is always implementable and give conditions under
which n′ is the optimal implementable marginal strategy:
Lemma 1. Given any set of constraints H for a TSG, if
n(Hi) ⊆ n(H) for bihierarchy Hi (i ∈ 1, 2, . . .), then all
n ∈ conv(n(H1),n(H2), . . .) are implementable.
Theorem 4. MGA provides the optimal implementable
marginal strategy if tight resolution is never used.

If tight resolution is never used, then n′ = n∗. In our eval-
uation, we show that even when tight resolution is used and
n′ 6= n∗, n′ is empirically equal to n∗ in terms of screener
utility. While not guaranteed, empirically it would thus ap-
pear MGA is capable of providing an utility-equivalent opti-
mal implementable marginal strategy n′ in place of the pos-
sibly non-implementable marginal strategy n∗.

Sampling Viewing λi as a probability, we sample a bi-
hierarchy Hi (and ni) with probability λi. We know that



ni/λi ∈ n(Hi), thus, we use the sampling algorithm for a
bihierarchy from (Budish et al. 2013) to efficiently sample a
pure strategy from the implementable strategy ni/λi ∈ Hi.

Full Resolution Algorithm (FRA) This alternative to
MGA uses a different way of resolving intersections which
we call full resolution: given an unresolved intersection
Sr,r′ , split the constraint for resource type r into Lr + 1
possible pairs n[Sr,r′ ] ≤ Lr − i, n[Sr\Sr,r′ ] ≤ i for
i ∈ {0, 1, . . . , Lr}. FRA works similarly to MGA, except
it always uses full resolution. While we prove the following
about FRA, it is computationally infeasible in practice.

Theorem 5. FRA always provides the optimal imple-
mentable marginal strategy.

Evaluation
We evaluate the TSG model using experiments inspired by
the TSA DARMS passenger screening domain. The game
payoffs are zero-sum and randomly generated with Uuθ,c uni-
formly distributed in [1,10] and Uus,c =−Uuθ,c. The remain-
ing game payoffs Uds,c and Udθ,c are fixed to 0. The default
settings for each experiment are 5 screenee risk levels, 5
screening resource types, 10 screening team types, 3 attack
methods, and 1 time window. All results are averaged over
30 randomly generated game instances.

Algorithmic Approach Figure 3 shows a runtime and so-
lution quality comparison of three approaches for solving
TSGs: MarginalStrategyLP (MSLP), Marginal-Guided
Algorithm (MGA), and MixedStrategyLP using column
generation (CG) with a cutoff after 1000 iterations.

In Figure 3(a), the x-axis denotes the number of flights,
and the y-axis the runtime needed to solve the TSG (or reach
the iteration cutoff in the case of CG). CG consistently pro-
duces the slowest runtimes, as the TSG pure strategy rep-
resentation results in large support sets within the mixed
strategy causing the CG approach to often terminate from
reaching the iteration cutoff rather than converging to the
optimal solution. In contrast, by exploiting a compact game
representation and avoiding pure strategy enumeration, both
MSLP and MGA have runtimes which are multiple orders
of magnitude lower than CG. Furthermore, MGA is able
to guarantee the implementability of the generated marginal
strategy with minimal runtime overhead compared to MSLP.

In Figure 3(b), the x-axis again indicates the number of
flights, but now the y-axis is the screener utility of the so-
lution returned by solving the TSG (or reaching the itera-
tion cutoff with CG). The solution quality of MSLP (whose
marginal strategy may or may not be implementable) rep-
resents the theoretical upper bound against which we com-
pare the other two approaches. Despite being an optimal ap-
proach, CG provides the worst solution quality of the three
approaches again because the iteration cutoff prevents con-
vergence to the optimal solution. Combined with the run-
time results, it is clear that CG is not suitable for solving
large-scale TSGs. In contrast, MGA, while not guaranteed
to be optimal in all cases, matches the optimal solution qual-
ity of MSLP empirically for the randomly generated games
tested. Thus, in practice, MGA is both an efficient and ef-
fective algorithm for real-world threat screening domains.

(a) Runtime (b) Screener Utility

Figure 3: Comparison of TSG Solution Approaches

(a) Screener Utility (b) Example Game Instance

Figure 5: Comparison of Screening Approaches

MGA Analysis To further emphasize the ability of MGA
to perform well even for TSGs which require increasingly
complex intersection resolutions, we provide a more de-
tailed analysis in Figure 4. The x-axis remains the num-
ber of flights, while the left y-axis (bar graph) is the num-
ber of leaf nodes generated by MGA, i.e., the number of
bihierarchies in the convex hull, and the right y-axis (line
graph) is the percentage of the games tested for which MGA
generates only a single leaf node. For small numbers of
flights, MGA generates a single leaf node in a majority
of games resulting in a low average number of leaf nodes.

Figure 4: MGA Analysis

A single leaf node im-
plies that all intersec-
tion resolutions were ei-
ther integral or slack
and the optimal solution
from MSLP is main-
tained. As the number
of flights increases, the
average number of leaf
nodes increases, while
the percentage of games with a single leaf node decreases.
This makes sense as with more screenees it becomes more
difficult to eliminate all intersections while avoiding tight
resolutions which create multiple leaf nodes. However, even
as the number of generated leaf nodes increases, MGA still
manages to provide an optimal implementable solution.

Screening Approach The TSA DARMS passenger
screening domain utilizes screenee categories defined as
〈risk level, flight〉. To show the benefit of using this screenee
categorization, we compare the resulting screening strategy
(TSG-RF) against two baselines: (1) TSG-U, where scree-
nees are placed in a single uniform category, and (2) TSG-
R, where screenees are categorized by 〈risk level〉. Figure
5(a) shows the solution quality comparison of the three ap-
proaches, where the x-axis is the number of flights and the
y-axis is screener utility. As expected, TSG-RF achieves the
highest screener utility for all numbers of flights. Figure
5(b) shows a comparison for a specific game instance with 5



flights and provides intuition as to why TSG-RF performs
so well. The inability to adjust screening flight by flight
results in both TSG-U and TSG-R protecting some flights
adequately (Flight 5), while leaving other flights vulnerable
(Flight 3), leading to lower solution quality than TSG-RF.

Summary and Related Work
Beyond the (1) TSG model, our contributions are (2) an NP-
hardness proof for optimally solving TSGs; (3) a decompo-
sition scheme for TSGs to improve scalability; (4) MGA,
a novel approach for efficiently solving TSGs; and (5) an
empirical comparison of MGA against column generation,
the previous state-of-the-art approach for large-scale game-
theoretic resource allocation problems. While we used our
joint work with the TSA on airport passenger screening
to motivate our work, TSGs are applicable to many other
screening domains (e.g., borders, stadiums).

We have dealt with key related work for security games
throughout the paper. In addition, the topic of threat screen-
ing has been explored extensively, e.g., for shipping contain-
ers (Anand et al. 2006), stadium patrons (Ricks et al. 2014),
and airport passengers (Nie et al. 2009; McLay, Lee, and Ja-
cobson 2010). However, these approaches do not model the
game-theoretic aspect of screening problems and thus does
not consider an adversary that exploits screening vulnerabil-
ities. (Wang, Song, and Zhuang 2015) incorporate a game-
theoretic approach, but do not consider multiple screening
resources types, screenee categories, and attack methods.
Therefore, the TSG model provides the most general and
extensible framework for game-theoretic threat screening.
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