
Solving Online Threat Screening Games using Constrained
Action Space Reinforcement Learning

Sanket Shah,1 Arunesh Sinha,1 Pradeep Varakantham,1 Andrew Perrault,2 Milind Tambe2

1School of Information Systems, Singapore Management University, {sankets, aruneshs, pradeepv}@smu.edu.sg
2Center for Research on Computation and Society, Harvard University, {aperrault@g., milind tambe@}harvard.edu

Abstract

Large-scale screening for potential threats with limited re-
sources and capacity for screening is a problem of interest
at airports, seaports, and other ports of entry. Adversaries
can observe screening procedures and arrive at a time when
there will be gaps in screening due to limited resource ca-
pacities. To capture this game between ports and adversaries,
this problem has been previously represented as a Stackelberg
game, referred to as a Threat Screening Game (TSG). Given
the significant complexity associated with solving TSGs and
uncertainty in arrivals of customers, existing work has as-
sumed that screenees arrive and are allocated security re-
sources at the beginning of the time-window. In practice,
screenees such as airport passengers arrive in bursts cor-
related with flight time and are not bound by fixed time-
windows. To address this, we propose an online threat screen-
ing model in which the screening strategy is determined adap-
tively as a passenger arrives while satisfying a hard bound on
acceptable risk of not screening a threat. To solve the online
problem, we first reformulate it as a Markov Decision Process
(MDP) in which the hard bound on risk translates to a con-
straint on the action space and then solve the resultant MDP
using Deep Reinforcement Learning (DRL). To this end, we
provide a novel way to efficiently enforce linear inequality
constraints on the action output in DRL. We show that our
solution allows us to significantly reduce screenee wait time
without compromising on the risk.

Introduction
Screening for potential threats entering large safety-sensitive
establishments (e.g., airports, seaports, museums) using the
right subset of available screening methods (e.g., metal de-
tectors, advanced imaging technology, pat-down) is an im-
portant defensive activity undertaken by various agencies
around the world. However, the sheer scale of the problem
at these large establishments with a large number of scree-
nees and various screening methods makes screening in a
timely fashion with limited resources quite challenging. For
example, average delays for air passengers in Chicago, USA
jumped to 2 hours due to higher passenger volume in the

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

summer of 2016 (Dastin 2016). Additionally, intelligent ad-
versaries can exploit any gaps in screening and cause catas-
trophic damage to these critical establishments. Screening
gaps can arise due to the use of a less effective, but faster,
screening method for high-risk passengers, which can hap-
pen as the combination of more passengers and limited re-
sources can result in the unavailability of the “right” screen-
ing method.

Online resource allocation is a problem of interest in
many domains including transportation (Simao et al. 2009) –
allocating taxis to customers, emergency response (Maxwell
et al. 2010) – allocating ambulances to emergencies, and air-
ports – allocating terminals to arriving aeroplanes. Threat
screening is also an online resource allocation problem, but
in the presence of an observing adversary. Given that adver-
saries can monitor resource allocation strategies and exploit
any gaps in them, game-theoretic models and approaches
have been used to consider robust or risk-averse objectives
rather than traditional expected objectives (e.g., expected
revenue, expected delay).

One such model is the Threat Screening Game (TSG)
model introduced in Brown et al. (2016). Here, a strategic at-
tacker attempts to enter a secure area while the defender uses
teams of limited-capacity screening resources (with vary-
ing efficacies) to thwart them. However, despite enhance-
ments made in subsequent work (McCarthy, Vayanos, and
Tambe 2017), this model suffers from a lack of adaptability
as screening strategies are fixed for every hour. Further, all
versions of the model assume a favourable rate of passen-
ger arrival within each time-window such that no screening
resource is idle within the hour. We address these shortcom-
ings with a novel online allocation model and a completely
new solution approach.

Our first contribution is an online version of the threat
screening problem, in which the screening strategy is de-
cided adaptively, based on the current queue lengths, as the
screenees arrive. We show experimentally that this leads to
a much better characterization and optimization of the av-
erage delay time faced by screenees at no loss to security
risk (measured as attacker utility) compared to past work.
Further, while past models have used a weight to balance
the risk of missing an attacker and average delay time, we

impose a hard bound on risk while simultaneously mini-
mizing delay. We show that, given uncertain and unknown
passenger arrivals, the online model can be solved as a Re-
inforcement Learning (RL) problem with continuous action
space where the hard bound on risk translates to hard con-
straints on the action space. We show mathematically that
the choice of hard bound on risk is not different from the
one where a weighted defender objective is maximized and
we can switch back and forth between these two seemingly
different optimization goals. Our mathematical analysis also
reveals the game-theoretic nature of this formulation.

Our second contribution is a novel method to efficiently
impose hard constraints on actions in Deep RL by using
what we call α-projection. In contrast to prior approaches
(see Section), our approach guarantees that the constraint is
never violated (even during training) while also being much
more scalable in training as well as execution. The main
component of our method is an extremely efficient mapping
of infeasible actions to the feasible space specified by the
constraints.

Finally, our third contribution is a set of experiments that
reveal why and how prior TSG models fail to handle realistic
continuous arrival of passengers in bursts. The experiments
also show that our approach achieves the same risk as prior
models but improves upon the average delay by 100% in the
best case and 25% on average.

Overall, the realism of our model coupled with a novel
scalable RL solution method makes our approach appealing
for practical large scale threat screening problems.

Related Work
TSG and Security Games
There have been quite a few papers published on various as-
pects of threat screening games. The early papers (Brown
et al. 2016; Schlenker et al. 2017) make two stringent as-
sumptions – first, they assume perfect prior knowledge of
passenger arrivals (for one hour time-windows) and second,
they implicitly handle delay by assuming that all passen-
gers are screened within the same window in which they
arrive (thus, delay is not an explicit consideration in this
work). Both these assumptions are unrealistic in practice as,
clearly, there is uncertainty in the number of passengers ar-
riving in any time-window and passengers arrive in bursts
that are correlated with the flight timings, which can cause
large average delay. For example, if a screening resource can
screen one passenger every 6 minutes, prior work assumed
that 10 passengers can be screened with this resource in an
hour irrespective of when they arrived. Clearly, if all the pas-
sengers arrive in the last 15 min of the hour, they can’t all
be screened, or if passengers arrive in a burst together, the
average waiting time will be higher than when they arrive
equally spaced apart every 6 minutes. We show in our ex-
periments how these assumptions result in sub-optimal out-
comes in practice.

Later papers (McCarthy, Vayanos, and Tambe 2017; Mc-
Carthy et al. 2018) attempt to account for uncertainty in ar-
rivals across time-windows and relax the second assump-
tion by allowing for an overflow of passengers from one

time-window to the next. However, their approach is un-
scalable and, hence, impractical for real-world application.
They show solutions for only up to 15 flights for a full day.
Additionally, because the solution goal chosen is inspired
from robust optimization, the method tries to find a solution
that minimizes risk and delay across any realizable sample,
which results in a pessimistic solution. Further, the solution
approach also makes the approximation of calculating the
worst case from a sample of arrivals and, as a result, cannot
guarantee that the solution will bound the true worst-case
security risk. Finally, this work continues to handle delay
implicitly by assigning the same overall delay for passen-
gers that are to be screened in one time-window irrespective
of when they arrive. Thus, a long delay for many passengers,
when all of them arrive at the start of the hour, is considered
same as when passengers arrive spaced equally apart in time
with no delay for each passenger. Such a coarse measure of
delay results in sub-optimal outcomes in terms of delay, as
we show in experiments.

In this paper, we propose a scalable online model with-
out the restrictive assumptions of past work: we guarantee a
bound on the worst-case risk and simultaneously minimize
the average delay. Our online model allows for fine-grained
adaptivity at the level of individual passenger arrivals as op-
posed to the hourly time-window adaptations in past work
and also scales up to a large number of flights.

In other applications of security games played over mul-
tiple time steps, there has been work in which the de-
fender strategy is a policy for an MDP or a sequence of ac-
tions (Delle Fave et al. 2014; Bosansky et al. 2015). This
work assumes that the MDP or game parameters are known
beforehand and is hence a planning problem rather than a
learning problem. Additionally, there has been work in this
space where the double oracle approach has been used in
tandem with Deep RL to compute the equilibrium (Wang
et al. 2019; Wright, Wang, and Wellman 2019) or ficti-
tious play based policy gradient Deep RL has been used to
compute equilibrium (Kamra et al. 2018; 2019). In these
prior work, however, there is either no constraints on the
action or only a single constraint on actions (actions sum
to one), which is readily enforced using a softmax layer.
In this paper, our main contribution to Deep RL is in en-
forcing multiple arbitrary linear inequality constraints effi-
ciently. There is also theoretical work on solving security
games in an extensive form (Letchford and Conitzer 2010;
Kroer, Farina, and Sandholm 2018; Černỳ, Boỳanskỳ, and
Kiekintveld 2018; Basilico, Gatti, and Amigoni 2009) or
stochastic game (Letchford et al. 2012) setting. Again, these
assume complete knowledge of the game structure includ-
ing transition functions whereas we focus on learning as-
pects. Also, whereas learning in the context of security
games has appeared in the literature (Balcan et al. 2015;
Letchford, Conitzer, and Munagala 2009), these methods do
not directly apply to our RL problem formulation.

Constrained Action-Space RL
Historically, dealing with constraints on the action space in
Deep RL has been a challenging task. This is exacerbated
by the fact that our action space is continuous. The most

Figure 1: An overview of the screening process. First, a screenee of a given category (differentiated by colour) arrives for
screening. On arrival, they are immediately assigned to one of the security teams according to a stochastic policy. The proba-
bilities of being assigned to each team is denoted by the numbers in blue. Once assigned, they wait in line to get screened. If
they pass the screening, they are let into the protected area. The challenge in the TSG is in how to assign screenees to teams so
that both the security risk and delay are minimised.

common and intuitive technique is to discourage disallowed
actions with a penalty. This method does not guarantee that
the security risk will be bounded, however, and given that the
risk is the worst-case allocation across an episode, the prob-
ability and extent of violation increases with scale. Given
the adversarial nature of the security problem, this method
is unsuitable.

Recently, Pham, De Magistris, and Tachibana (2018) have
suggested enforcing constraints by projecting any uncon-
strained point onto the constrained space by solving an opti-
misation program that minimises the L2 distance and back-
propagating through it to train the network (Amos and Kolter
2017). This approach is very time consuming as it requires
solving a quadratic program (QP) in the forward pass in ev-
ery training iteration and, as a result, does not scale to prob-
lems with large dimensional action spaces (Amos and Kolter
2017) seen in practical screening problems.

Our RL approach is similar in spirit to Bhatia, Varakan-
tham, and Kumar (2019), which uses a complicated variable-
length iterative approximation of the L2 projection to deal
with a specific subset of linear constraints faster than Pham,
De Magistris, and Tachibana (2018). The type of linear con-
straints they can handle are constraints on the sum of sets
of variables, where these sets must form a hierarchy. In con-
trast, the approach that we propose can handle arbitrary lin-
ear constraints, that is, in which the coefficients take any real
values. Moreover, our approach is simple, can be computed
in a single step, and is easy to implement as gradients can be
computed using automated symbolic differentiation.

It is worth noting here that there has been significant re-
cent work under the umbrella of “Constrained Reinforce-
ment Learning” Achiam et al.; Chow et al. (2017; 2017).
Those methods try to solve a fundamentally different prob-
lem from the one considered in this paper, however. There,
the constraints are placed on an expected long-term sec-
ondary cost (e.g., ensuring that a mars rover lands by a cer-

tain deadline) while maximizing a primary long-term reward
(e.g., landing the rover safely). In this work, we are inter-
ested in the paradigm of “Action Constrained RL” in which
the constraints are enforced on an immediate secondary cost
(e.g., violating security risk or not) that has to hold even in
the worst case. Since constraint enforcement on long-term
expected costs cannot guarantee constraint enforcement on
immediate worst-case costs, these prior methods cannot be
employed in our problem.

Threat Screening Games (TSGs)
An overview of the screening procedure considered in
Threat Screening Games can be found in Figure 1. While
we consider an online version of the problem in this paper,
the basic structure stays the same as prior TSG models.

Every arriving passenger has a category c ∈ C, which is
made up of two parts 〈θ, κ〉, where θ is the part of the cat-
egory that the attacker cannot control (risk level determined
by screener) and κ is the part that they can control (which
flight to take). The screening resource types comprise the set
R; for example, R could be {X-Ray, Metal Detector, Ad-
vanced imaging}. Each resource type r ∈ R has a rate of
screening (called capacity in prior work) given by fr mea-
sured in units of passengers per unit time. The passengers are
screened by a team (set) of screening resources where the set
of all teams T is given a priori (T ⊂ 2R). An attacker, apart
from choosing a flight, uses an attack method m (e.g., knife
or gun) and each team t has an effectiveness (probability)
Et,m of detecting attack method m. U+

κ,m is the defender’s
utility for detecting an attacker with attacker’s choice being
κ,m and U−κ,m is the utility of not doing so.

As in previous TSG models, the adversary’s utilities are
the negation of these values. The defender has a belief
about the attacker’s uncontrollable category θ given by Pθ
with

∑
θ Pθ = 1. Additionally, as in past work (McCarthy,

Vayanos, and Tambe 2017), we work in the marginal space

in this paper, i.e., we represent the randomized allocation as
the marginal probability of allocating each screenee, instead
of a probability distribution over an exponentially large set
of integral allocations.

MDP Model of TSGs
In this paper, we model the online nature of screening by
formulating the TSG as a Markov Decision Process (MDP).
By defining a state as the arrival of a new screenee, we deter-
mine the screening strategy for passengers (actions) as they
arrive. This is unlike past approaches in which the same ran-
domized screening strategy was used for every passenger of
a given category that arrived in the same time-window.

The crux of our approach lies in the insight that we can
convert an upper bound on a best responding adversary’s
payoff in TSGs into a constraint on the screening policy. As
we specify below, one of the terms in the defender’s utility
(which we call detection utility) is the negation of the ad-
versary’s utility, thus, to ensure that the adversary will never
have utility more than some ψ, all we have to do is to make
sure that the defender chooses actions that ensures more than
−ψ detection utility to itself. Concretely, this constraint on
the defender policy boils down to a constraint on each ac-
tion (randomized assignment) in every time step – as long as
the defender never makes any randomized assignment that
has more than ψ expected utility for the attacker, the overall
policy will never have more than ψ utility for the attacker.
Our MDP formulation is parameterized by this bound ψ on
the attacker utility (security risk). after presenting our model
we show how the defender policy learned for the varying pa-
rameter ψ can be leveraged to compute an equilibrium in the
game-theoretic sense.

The MDP treatment also considerably simplifies the prob-
lem of dealing with passenger arrival uncertainty by incor-
porating those in the MDP transition model. We describe our
MDP formulation in detail below:

• States: The state at any given point in time is a combi-
nation of 4 quantities 〈c, ξ, h, τ〉. The first, c, is the cat-
egory of the passenger that has arrived for screening and
we have to allocate security resources to. The remaining
quantities summarise the history and provide information
about the current context. ξ ∈ R|R| encodes the number of
passengers (or part thereof) in the queue for each resource
at this current point in time. h ∈ Z+

|C| is a summary of
the history: it is the number of passengers from every cat-
egory that have already been screened. τ is the wall clock
time when the passenger arrives.

• Actions: An action πt ∈ R|T | at time step t is a ran-
domized allocation of the just-arrived passenger to teams.
We use the insight that the risk is a function of the pol-
icy and does not depend on passenger arrivals to codify
the hard bound as risk as constraints on the action space.
Only actions with risk less than the specified risk level are
allowed. Risk in TSGs is measured as the expected ad-
versary utility, which is the negation of the utility of the
defender. This leads tom different inequalities constraints
(one for each attack method) on the action stated in terms

of defender utility.

Pθ ∗
[
zmU

+
κ,m + (1− zm)U−κ,m

]
≥ −ψθ ∀m, (1)∑

t∈T
Et,mπt = zm ∀m, and

∑
t∈T

πt = 1

Given a marginal policy π, zm is the overall probability
that one of the teams t ∈ T will detect an attack of type
m. The last equality constraint enforces that πt is a prob-
ability distribution over teams. In order to explain the first
set of inequalities, we first state the defender detection
utility explicitly. Uκ,m = zmU

+
κ,m + (1− zm)U−κ,m is the

expected utility of the defender if the current passenger is
an attacker. The utility Uθ = minκ,m Uκ,m is the worst
case expected utility when the attacker is one with uncon-
trollable category θ.

∑
θ PθUθ is the overall defender de-

tection expected utility. We wish to impose a lower bound
−ψθ on PθUθ which indirectly lower bounds

∑
θ PθUθ

(or in other words, upper bounds risk). It is easy to see that
the first set of inequalities is Pθ ∗ (minm Uκ,m) ≥ −ψθ.
Since this inequality is applied for every passenger with
uncontrollable category θ, we get Pθ ∗ (minκ,m Uκ,m) ≥
−ψθ, which is nothing but PθUθ ≥ −ψθ. Thus, this guar-
antees that the overall defender detection expected utility∑
θ PθUθ ≥ −

∑
θ ψθ (or risk is bounded from above by∑

θ ψθ). As these inequalities hold for any choice of ac-
tion by attacker, this guarantees−

∑
θ ψθ detection utility

against a best responding attacker.

• Transitions: The transition from 〈c, ξ, h, τ〉 to
〈c′, ξ′, h′, τ ′〉 can be decomposed into three parts.
The first is how the allocation at the previous step and
passage of wall clock time since then affects the queues
for each resource. Passengers in the resources queues
are screened according to the screening rate of a given
resource:

ξ′r = max(ξr − (τ ′ − τ) ∗ fr, 0) for all r.

The second part controls h:

h′c = hc + 1, h′d = hc for all d 6= c.

The final part is determined by passenger arrivals and rep-
resents the likelihood of arrival of a passenger of a given
type at a given time P (c′, τ ′|h, c, t). This is a function of
the arrival history, but is unknown, which motivates our
use of RL for the problem.

• Rewards: The reward for each time step t is the negative
of the expected wait time of the currently arrived passen-
ger. The wait time is determined by the maximum wait
time over all resources in the realized team allocation. The
wait time for each resource r is determined by the screen-
ing rate fr and the number of passengers ξr already in
queue for that resource: ξr/fr. We use Uo,t to denote the
delay reward at time t (note Uo,t is negative). The value
(long term reward) is given by Vo = E[(1/N)

∑N
t=1 Uo,t],

whereN passengers arrive in a day (implicitly conditional
on the start state with empty history).

Relationship to Game Theory
In the above constrained RL problem, the defender learns
a policy which is a mixed strategy of the defender (mixed
since the allocation at each time step is randomized).
The adversary observes this policy and chooses an op-
timal attack a, which is a combination of κ and at-
tack method m. Thus, this is a Stackelberg game set-
ting, similar to prior models of TSG. There are two com-
ponents of the defender’s value function: (a) the risk of
not detecting the adversary, captured in

∑
θ PθUθ and (b)

the effect of delay, captured in Vo. The above RL ap-
proach solves the following problem maxπ∈Fψ Vo(π) where
π represents policies and Fψ = {π | PθUθ(πt, a) ≥
−ψθ for all attacker actions a and all θ}. Observe that here
we explicitly write the arguments for Uθ and Vo. In par-
ticular, Vo does not depend on the attacker action and the
definition of Fψ ensures achieving a minimum of −

∑
θ ψθ

detection utility against a best responding adversary.
While the RL approach restricts the policy space of the

defender via a bound on risk, one may wonder if the de-
fender can achieve higher utility without such a restriction.
Another way to view the problem is where the defender op-
timizes

∑
θ PθUθ + w ∗ Vo over all possible π without any

restrictions, where w is a constant weight that specifies the
relative importance of minimizing risk and average delay
time of passengers. While our approach requires the defence
agencies to specify acceptable security risk level, this other
approach requires specifying a trade-off weight w between
two completely different types of utilities (security risk and
delay), which is why we believe that the hard bound on secu-
rity risk based model is more natural. In any case, we show
a relation between these two approaches that allows us to
switch back and forth between them.

Theorem 1. There exists a ψ (dependent on w) such that
any π∗ ∈ argmaxπ∈Fψ Vo(π) is the defender strategy part
of a Strong Stackelberg Equilibrium (SSE) of the Stackelberg
game defined with defender objective as

∑
θ PθUθ +w ∗Vo.

Proof. An SSE is one which maximizes
∑
θ PθUθ +w ∗Vo,

subject to the best response of the attacker. The definition
Uθ = minκ,m Uκ,m already takes care of the best response
of the attacker as the attacker utility is −Uκ,m and the at-
tacker action κ,m that minimizes Uκ,m maximizes −Uκ,m.
Also, as Uκ,m is continuous in π and min of continuous
functions is continuous,

∑
θ PθUθ is continuous in π.

The space of possible π is compact, thus, the continuous
bounded function

∑
θ PθUθ + w ∗ Vo of π achieves a max-

imum at some π∗ ∈ Π∗. This set Π∗ is the set of defender
strategies that form an SSE of the game. Let the value U∗θ
and V ∗o be obtained at this π∗.

Consider the values −ψ∗θ = PθU
∗
θ and ψ∗ = 〈ψ∗θ〉θ∈Θ.

Note that Fψ is specified by linear inequalities given by
Equation 1, thus, Fψ is a polytope. Also, π∗ ∈ Fψ∗ . We
claim that the optimal solution of maxπ∈Fψ∗ Vo(π) is in
Π∗ ∩ Fψ∗ , which is not empty as π∗ ∈ Π∗ ∩ Fψ∗ . As∑
θ PθU

∗
θ +w∗V ∗o is the global maximum, for any π ∈ Fψ∗

if
∑
θ PθUθ+Vo =

∑
θ PθU

∗
θ +V ∗o then π ∈ Π∗. And also,

there does not exist any π ∈ Fψ∗ such that
∑
θ PθUθ+Vo >

∑
θ PθU

∗
θ + V ∗o , which proves our claim. Since the optimal

solution is in Π∗, this proves our result for ψ∗.

The above theorem also provides an easy algorithm to
solve for an approximate SSE in the unrestricted game us-
ing the RL approach. The approach is to construct a Pareto
frontier a priori by solving for the optimal policy for many
values of ψ where these values are uniformly spaced and
distributed throughout the possible space of ψ values. Then,
when given w, the solution will choose one of the specific
points for which the output π maximizes

∑
θ PθUθ +w ∗Vo

over all points considered in the ψ space.

Overall Solution
To solve the screening problem modelled in Section , we use
Reinforcement Learning (RL). We use techniques from RL
instead of trying to solve the MDP directly because the exact
passenger arrival distribution is unknown. Rather than trying
to model the distribution explicitly, we use model-free RL
techniques to jointly learn the distribution and the optimal
policy.

Specifically, we use the Deep Deterministic Policy Gradi-
ent (DDPG) (Lillicrap et al. 2015) algorithm that is a state-
of-the-art technique in Deep Reinforcement Learning lit-
erature. DDPG is an extension of the standard actor-critic
approach that allows the modelling of a continuous action
space like the one present in our problem. However, DDPG
cannot enforce general action-space constraints as is.

To deal with this, we propose an α-projection layer in
Section that enforces constraints on the output of the pre-
vious layer. We then modify the standard DDPG algorithm
by adding this α-projection layer on top of the output layer
of the actor network. This ensures that any action produced
by the actor satisfies the risk constraints on the action space.
This combination of DDPG and α-projection represents the
overall approach that what we use to solve the MDP.

Enforcing Linear Constraints on Continuous
Action Spaces in Deep RL

We wish to enforce the security risk constraints on the ac-
tions at every time step in our problem. Also, these secu-
rity risk constraints must always be enforced, that is, these
should never be violated.

All prior approaches for imposing hard constraints on the
action output of any policy neural network use a layer(s)
at the end of the network to map the unconstrained output
from intermediate layers to an output in the feasible space.
Mathematically, suppose the output must lie in a feasible
space Y defined by linear inequality constraints. Let f(x)
be the output of the intermediate layer, given input x. The
last layer(s) define a mapping M such that M(f(x)) lies in
the feasible space Y . For our problem, Y is a fixed poly-
tope for a given problem instance (see Equation 1). Typi-
cally, such mappings M have been some type of Lp projec-
tion (p = 1 or 2) in the past. This projection is written as
an optimization problem and enforced as a neural network
layer using techniques such as OptLayer (Pham, De Mag-
istris, and Tachibana 2018). However, such mappings are

Center P1’

P1P1

Optimal

Figure 2: A schematic representation of α-projection. Left: The feasible region is shown as the polygon. The red points are
produced by an intermediate layer. The α-projections of the red points are shown with the cross marks. If the red point is inside
the feasible region, the α-projection of the point is the point itself. For one red point (inside the small dashed circle), the L2
projection is shown with the arrow. Right: A zoomed-in version of the dashed circle. This shows that if the L2 projection
of P1 is the optimal point (green), then the intermediate layer will adjust its output to P1’ to get the optimal point with the
α-projection.

expensive to compute in practice as they require solving a
quadratic program for every training iteration and every ex-
ecution. This creates the need for an efficient mapping. First,
we list desirable properties of such a mapping.

• Onto: To make sure that the neural network has the oppor-
tunity to output any value in the feasible space. This en-
sures that there is no loss in solution quality arising from
a restricted solution space.

• Continuous everywhere and differentiable almost every-
where: This allows the neural network to learn through
this mapping layer by backpropagating gradients.1

• No vanishing or exploding gradients: The gradients of the
mapping should be informative when optimizing loss, that
is, should not be zero or very large for many points.

Observe that the mapping M need not be a closest point (in
any distance) in Y to the unconstrained f(x). This is because
the whole neural network is the function composition M ◦ f
and the training ensures that the output M ◦ f minimizes
the loss. The purpose of M is to only ensure feasibility of
output, thus, any choice of M (with the properties above)
will work since the neural network will appropriately adjust
f so that M ◦ f is optimal.

α-projection
We propose a very efficient mapping M , which we call α-
projection. We start by finding a feasible point y0 ∈ int(Y),
where int(Y) are all the interior points of Y . Then, we find
the maximum α ∈ [0, 1] such that y = α ∗ f(x) + (1−α) ∗
y0 and y ∈ Y , with the final output being the point y, so
M(f(x)) = y. Intuitively, we join f(x) and y0 with a line
and choose the closest point to f(x) on this line that lies in
Y , which could be f(x) itself if f(x) ∈ Y . See Figure 2.

Forward pass α-projection turns out to be very effi-
cient for linear constraints such as those in the TSG-RL

1Non-differentiability for points in a measure zero set are al-
lowed, as is in the ReLU activation.

problem. For training neural networks, every iteration re-
quires a forward pass for the network also. An optimiza-
tion layer (such as our α-projection layer) requires solv-
ing an optimization problem. However, our simple map-
ping allows obtaining α in a closed-form with no need to
solve expensive optimizations. To get to the closed-form,
first, lets consider m inequality constraint with the ith con-
straint being ai · y ≤ bi. Using our mapping, this ith con-
straint is α ∗ (ai · f(x)) + (1 − α) ∗ (ai · y0) ≤ bi. Thus,
α ∗ (ai · f(x)− ai · y0) ≤ b− ai · y0. We get a similar upper
(or lower, depending on the sign of ai ·f(x)−ai ·y0) bound
for α for every inequality constraint and then α is the sim-
ply the highest value in [0, 1] that satisfies all these bounds.
All these bounds are closed-form formulas, thus, comput-
ing α is very efficient for the forward pass, and obtaining
y = α ∗ f(x) + (1− α) ∗ y0 is easy.

Gradients: Computing the gradient (for backpropaga-
tion) of α w.r.t. the input f(x) to the mapping layer is also
easy. For readability, we write s instead of f(x). As stated
in the previous paragraph α is the minimum of a number of
upper bounds (ignroing lower bounds), where these upper
bounds are given closed-form functions bi(s) (y0 is a con-
stant). Thus, α = min(1, b1(s), . . . , bk(s)) for some k < m.
For notational ease, let b0(s) = 1. For any specific s0, if
there is a unique index j for which α = bj(s) then the gra-
dient is simply∇bj(s), which is 0 if j = 0. If there is a set of
indices J (|J | > 1) and α = bj(s) for all j ∈ J , then the gra-
dient is simply (1/|J |) ∗ (

∑
j∈J ∇bj(s)). In practice, these

gradients need not be explicitly calculated and can be han-
dled by automatic symbolic differentiation libraries (Abadi
et al. 2015) instead. Thus, our approach is also simple to
implement.

Handling equality constraints: For equality constraints,
say k constraints, the general approach would be to elim-
inate k variables using Gaussian elimination (or any other
method) and then deal with the only inequalities in this new
space. However, for our TSG problem, we only have one

equality constraint, which is a probability simplex constraint
that can be easily enforced by a softmax layer. With a slight
abuse of notation, we use s to denote the output of the soft-
max whose input is the unconstrained output f(x). s sat-
isfies the probability simplex constraint. Additionally, we
choose y0 such that it also satisfies the probability simplex
constraint. Then, the final output α∗s+(1−α)∗y0 satisfies
the probability simplex constraint and all the inequality con-
straints. Thus, for our problem, the overall mapping is made
of 2 layers: a softmax followed by the α-projection layer.

Choosing an Interior Point
The choice of y0 is important. First, y0 should be an interior
point. Otherwise, if y0 is on an external face (hyperplane) of
the Y polytope, all external points on the side of the face not
containing the polytope will map to y0. This violates non-
zero gradients property of a feasible mapping, as all points
on one side of the hyperplane will have zero gradients. We
also find that we get better performance when y0 is near the
centre of the polytope. While there are many different types
of centres, we choose the Chebyshev centre of a polytope be-
cause: (1) Chebyshev centre can be computed efficiently by
solving a linear program and (b) the Chebyshev centre max-
imizes the minimum distance from the faces of the polytope,
that is, making sure the centre is far from bad points. Infor-
mally, Chebyshev centre is the centre of the largest ball that
fits inside the polytope. Note that we need to compute the
Chebyshev centre only once for our polytope Y and that this
computation time is of the order of seconds.

Experiments
In line with past work on TSGs, we evaluate the performance
of our approach on the airport passenger screening domain.

For the most simple head-to-head comparison, we look at
the difference in solution quality between our approach and
past work within single time-window. Brown et al. (2016)
and McCarthy, Vayanos, and Tambe (2017) both have the
same optimal solution in this case and the optimal marginal
solution can be found by using a simple linear program (LP).
When we compare the solutions of the LP to our approach,
we control for the risk and measure the corresponding differ-
ence in delay. Specifically, we take the different risk levels
associated with the uncontrollable categories ψθ from the
solution of the LP and run our approach using those as the
risk threshold in the risk constraints of our approach. We
then test both sets of policies (LP and ours) using an online
simulator and compare the ratio of average delays obtained.

We construct our problem instances using the descrip-
tion in Brown et al. (2016) and McCarthy, Vayanos, and
Tambe (2017). The attacker utility associated with success-
fully launching an attack U+ is sampled from a uniform dis-
tribution over [1, 10], while the utility of failing to launch an
attack U− is set to 0. The game is zero-sum and, as a result,
the defender utilities are the negation of the attacker utili-
ties. There are 3 attack methods m, 5 uncontrollable scree-
nee risk levels θ and 5 screening resource types |R|. The ef-
ficacies (probability of detection) of different resources are
sampled from a uniform random distribution over [0, 1] for

Figure 3: Static vs. Adaptive: We measure the ratio of av-
erage delays of the LP to average delays of our online ap-
proach (so higher is better) across different problem sizes.

each attack method. We create 10 random 2-sized combina-
tions of resources to represent the teams T and their effica-
cies are found assuming that the efficacies of their associ-
ated resources are independent. We choose a passenger ar-
rival distribution as used in McCarthy, Vayanos, and Tambe
(2017), and consider arrivals to be normally distributed in a
3-hour window leading up to the departure of the flight. We
combine this with real flight departure times taken from one
of the busiest airports in the world to generate a realistic ar-
rival distribution of passengers. The default number of flight
types for experiments is 10.

Finally, for runtime, all past methods have used non-
gradient based optimization methods and have reported run-
times for programs that have run on CPUs. As has been ob-
served in other domains, GPUs offer a huge advantage due
to the immense parallelization of matrix operations for neu-
ral network optimization. However, to perform a fair com-
parison to past work, we run all our experiments on a CPU.
Thus, while our scalability results show the runtime trend
with increasing problem size, the absolute wall clock time
can be much better with GPUs.

Static vs. Adaptive
First, we show that our online approach outperforms past
window-based approaches even when the problem size is
large. The experiments here are evaluated for 30 random
game instances and averaged across 100 samples of passen-
ger arrival sequence. The results can be seen in Figure 3.

For the one time-window problem, improvement in solu-
tion quality comes from the fact that past work has a static
policy within one time-window, whereas our solution can
adapt based on the actual number of passenger arrivals. As a
result, our approach can exploit the structure present within
a time-window. The reason our improvement decreases with
an increase in the number of flights is because, as the prob-
lem size increases, the structure present in a randomly gen-
erated problem decreases. For example, with many overlap-
ping Gaussian distribution of passenger arrivals, the overall
arrival is almost uniform which we show leads to a lower
gain (see Section).

Moreover, the performance improvement within one

Figure 4: Delay vs. Risk: We measure how the delay de-
creases (as fraction of delay at LP optimal risk) with increas-
ing risk allowance.

Figure 5: Scalability in training steps: We measure the ac-
tor loss of our DDPG network as a function of the number
of mini-batches that are fed to it as input.

time-window is a lower bound on the amount of improve-
ment we can achieve over past methods. The solution quality
associated with past methods deteriorates with an increase in
the number of windows (details in Section) while there is no
notion of time-windows in our model and hence no degrada-
tion over long periods.

Delay vs. Risk
In Figure 4, we show the inherent trade-off between risk and
average delay by varying ψ (keeping the ratio of ψθ fixed
across θ) and measuring its effect on the delay. To do this,
we take the optimal risk level obtained by solving the LP
and then measure the impact on average delay as we relax
it. The results show average delay as a fraction of the delay
obtained at the LP optimal risk. The resulting curve can be
seen as the Pareto frontier described in Section restricted to
the case where the ratio of ψθ fixed across θ. As expected,
less stringent risk requirements result in lower average delay.

Scalability
In Figure 5, we show how training time is affected by the
size of the game instance. Given that neural networks are

Figure 6: Scalability in actual time: We measure the time in
secs at 10,000 training steps for different number of flights.

Figure 7: Delay vs. Variance: We measure the ratio of de-
lays for policies computed by LP to our approach across dif-
ferent standard deviation for our arrival distribution.

not guaranteed optimal, measuring this is slightly challeng-
ing but we use the metric of the time at which our DDPG’s
actor network converges to measure how long the training
time takes. As we see in the figure, the number of steps to
convergence is about the same, regardless of the number of
flights. Based on Figure 5, we choose 10,000 training steps
as the number of steps for convergence.

Of course, as the input size increases with increasing
number of flights, the time taken per training step increases,
thus, the actual wall clock time to get to 10,000 steps for
different number of flights varies. Figure 6 show the actual
wall clock time for convergence (to 10,000 steps) with vary-
ing number of flights. The increase appears linear showing
the scalability of our approach (as a reminder these results
are not even using GPUs). In contrast, past work (Brown et
al. 2016; McCarthy, Vayanos, and Tambe 2017) scale highly
non-linearly with number of flights and have shown solu-
tions only up to 50 flight and 15 flights respectively.

Delay vs. Variance
In Figure 7, we look at how the variance associated with
the passenger arrival distribution affects our gain over the
time-window based solutions. Here the x-axis is measured
using 2σ because of the intuition that 95% of passengers of
a flight arrive within a 2 standard deviation window around

the mean. This graph can be interpreted as the effect that
changing the width of the arrival window (of 95% passen-
gers) has on solution quality. We vary it from 0 to 5 hours.

We find that as the variance associated with arrivals in-
creases, the gain obtained by using an online approach as
ours decreases. We believe that this is because the amount
of structure present in the problem decreases as the variance
increases. In the limit, when the variance is infinity, the ar-
rivals are uniformly distributed, memory-less, and resemble
a Poisson process. As a result, there is no information to be
gained whenever the next passenger arrives, hence the per-
passenger adaptive solution would do as good as one per
time-window adaptive solution in this limiting case. Con-
versely, if the same number of flights arrive over a longer
duration, say 24 hours, our algorithm would do consider-
ably better in terms of the average delay since the arrival
windows are less likely to overlap, resulting in smaller over-
all variance.

Conclusion
In summary, we proposed a novel model for threat screen-
ing that captures inherent features of the problem such as
continuous arrival of screenees. We then provided an RL-
based method to solve the model which includes the novel
α-projection method for imposing hard constraints on ac-
tions. We believe these advances make our approach for
threat screening realistic and applicable in practice. More
broadly, our approach can be applied to solve zero-sum se-
curity games with sequential moves.

Acknowledgement
This research was supported by the Singapore Ministry of
Education Academic Research Fund (AcRF) Tier 2 grant
MOE2016-T2-1-174 and Ministry of Education Academic
Research Fund (AcRF) Tier 1 grant 19-C220-SMU-011.
This work was also sponsored by the Army Research Office
and accomplished under MURI Grant Number W911NF-17-
1-0370. Perrault was supported by the Center for Research
on Computation and Society.

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Leven-
berg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah,
C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Tal-
war, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas,
F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu,
Y.; and Zheng, X. 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from
tensorflow.org.
Achiam, J.; Held, D.; Tamar, A.; and Abbeel, P. 2017. Con-
strained policy optimization. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70,
22–31. JMLR. org.
Amos, B., and Kolter, J. Z. 2017. Optnet: Differentiable
optimization as a layer in neural networks. In Proceedings

of the 34th International Conference on Machine Learning-
Volume 70, 136–145. JMLR. org.
Balcan, M.-F.; Blum, A.; Haghtalab, N.; and Procaccia,
A. D. 2015. Commitment without regrets: Online learn-
ing in stackelberg security games. In Proceedings of the
sixteenth ACM EC, 61–78. ACM.
Basilico, N.; Gatti, N.; and Amigoni, F. 2009. Leader-
follower strategies for robotic patrolling in environments
with arbitrary topologies. In Proceedings of The 8th Inter-
national Conference on Autonomous Agents and Multiagent
Systems-Volume 1, 57–64. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Bhatia, A.; Varakantham, P.; and Kumar, A. 2019. Resource
constrained deep reinforcement learning. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 29, 610–620.
Bosansky, B.; Jiang, A. X.; Tambe, M.; and Kiekintveld,
C. 2015. Combining compact representation and incremen-
tal generation in large games with sequential strategies. In
Twenty-Ninth AAAI Conference on Artificial Intelligence.
Brown, M.; Sinha, A.; Schlenker, A.; and Tambe, M. 2016.
One size does not fit all: A game-theoretic approach for dy-
namically and effectively screening for threats. In Thirtieth
AAAI Conference on Artificial Intelligence.
Černỳ, J.; Boỳanskỳ, B.; and Kiekintveld, C. 2018. In-
cremental strategy generation for stackelberg equilibria in
extensive-form games. In Proceedings of the 2018 ACM EC,
151–168. ACM.
Chow, Y.; Ghavamzadeh, M.; Janson, L.; and Pavone, M.
2017. Risk-constrained reinforcement learning with per-
centile risk criteria. The Journal of Machine Learning Re-
search 18(1):6070–6120.
Dastin, J. 2016. Thousands miss flights be-
cause of airport screening: American airlines execu-
tive. https://www.reuters.com/article/us-usa-security-
american-airline/thousands-miss-flights-because-
of-airport-screening-american-airlines-executive-
idUSKCN0YH1KV. Online; accessed 2 Sep 2019.
Delle Fave, F. M.; Jiang, A. X.; Yin, Z.; Zhang, C.; Tambe,
M.; Kraus, S.; and Sullivan, J. P. 2014. Game-theoretic pa-
trolling with dynamic execution uncertainty and a case study
on a real transit system. Journal of Artificial Intelligence Re-
search 50:321–367.
Kamra, N.; Gupta, U.; Fang, F.; Liu, Y.; and Tambe, M.
2018. Policy learning for continuous space security games
using neural networks. In Thirty-Second AAAI Conference
on Artificial Intelligence.
Kamra, N.; Gupta, U.; Wang, K.; Fang, F.; Liu, Y.; and
Tambe, M. 2019. Deep fictitious play for games with contin-
uous action spaces. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’19.
Kroer, C.; Farina, G.; and Sandholm, T. 2018. Robust stack-
elberg equilibria in extensive-form games and extension to
limited lookahead. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Letchford, J., and Conitzer, V. 2010. Computing optimal
strategies to commit to in extensive-form games. In Pro-
ceedings of the 11th ACM conference on Electronic com-
merce, 83–92. ACM.
Letchford, J.; MacDermed, L.; Conitzer, V.; Parr, R.; and
Isbell, C. L. 2012. Computing optimal strategies to commit
to in stochastic games. In Twenty-Sixth AAAI Conference on
Artificial Intelligence.
Letchford, J.; Conitzer, V.; and Munagala, K. 2009. Learn-
ing and approximating the optimal strategy to commit to.
In International Symposium on Algorithmic Game Theory,
250–262. Springer.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.
Maxwell, M. S.; Restrepo, M.; Henderson, S. G.; and
Topaloglu, H. 2010. Approximate dynamic programming
for ambulance redeployment. INFORMS Journal on Com-
puting 22(2):266–281.
McCarthy, S. M.; Laan, C. M.; Wang, K.; Vayanos, P.; Sinha,
A.; and Tambe, M. 2018. The price of usability: Designing
operationalizable strategies for security games. In Proceed-
ings of theTwenty-Seventh International Joint Conference on
Artificial Intelligence: IJCAI-18, 454–460.
McCarthy, S. M.; Vayanos, P.; and Tambe, M. 2017. Stay-
ing ahead of the game: Adaptive robust optimization for dy-
namic allocation of threat screening resources. In IJCAI,
3770–3776.
Pham, T.-H.; De Magistris, G.; and Tachibana, R. 2018.
Optlayer-practical constrained optimization for deep rein-
forcement learning in the real world. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
6236–6243. IEEE.
Schlenker, A.; Xu, H.; Guirguis, M.; Kiekintveld, C.; Sinha,
A.; Tambe, M.; Sonya, S. Y.; Balderas, D.; and Dunstat-
ter, N. 2017. Don’t bury your head in warnings: A
game-theoretic approach for intelligent allocation of cyber-
security alerts. In IJCAI.
Simao, H. P.; Day, J.; George, A. P.; Gifford, T.; Nienow, J.;
and Powell, W. B. 2009. An approximate dynamic program-
ming algorithm for large-scale fleet management: A case ap-
plication. Transportation Science 43(2):178–197.
Wang, Y.; Shi, Z. R.; Yu, L.; Wu, Y.; Singh, R.; Joppa,
L.; and Fang, F. 2019. Deep reinforcement learning for
green security games with real-time information. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, 1401–1408.
Wright, M.; Wang, Y.; and Wellman, M. P. 2019. Iter-
ated deep reinforcement learning in games: History-aware
training for improved stability. In Proceedings of the 2019
ACM Conference on Economics and Computation, 617–636.
ACM.

