Al for Public Health & Conservation: Learning & Planning in the Data to Deployment Pipeline

MILIND TAMBE

Director Center for Research on Computation and Society, Harvard University

&

Director "AI for Social Good", Google Research India

@MilindTambe_Al

Al and Multiagent Systems Research for Social Impact

Public Health

Conservation

Public Safety and Security

Viewing Social Problems as Multiagent Systems

Key research challenge across problem areas:

Optimize Our Limited Intervention Resources when Interacting with Other Agents

Optimizing Limited Intervention Resources

Public Health

Conservation

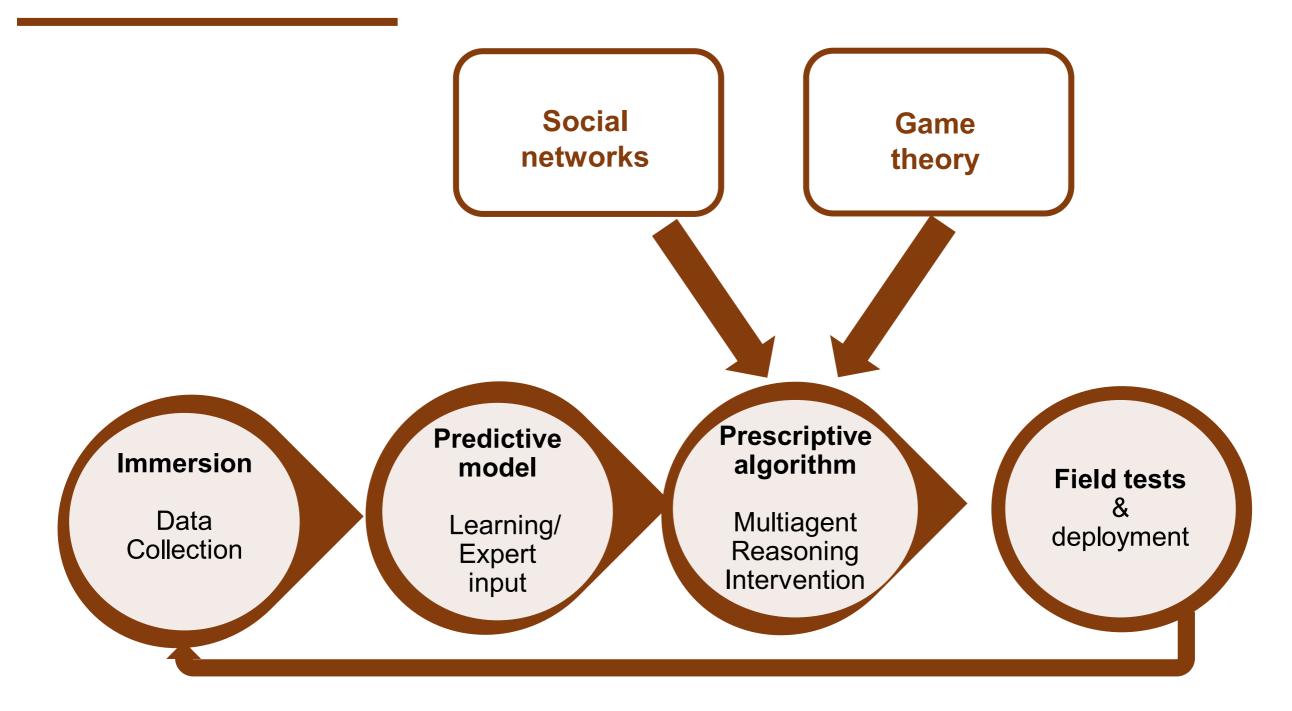
Google Research Bangalore AI for Social Good

Public Health

Conservation

Three Common Themes

Multiagent systems, Data-to-deployment pipeline, Interdisciplinary partnerships

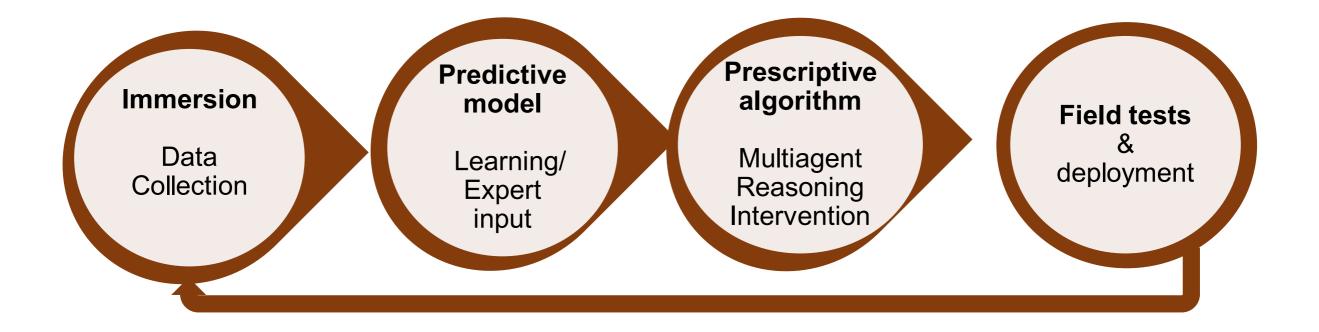


Three Common Themes

Multiagent systems, Data-to-deployment pipeline, Interdisciplinary partnerships

Field test & deployment: Social impact is a key objective

Lack of data is a norm: Must be part of project strategy



Three Common Themes

Multiagent systems, Data-to-deployment pipeline, Interdisciplinary partnerships

Three Key Takeaways

EC research on multiagent system impactful for public health/conservation projects

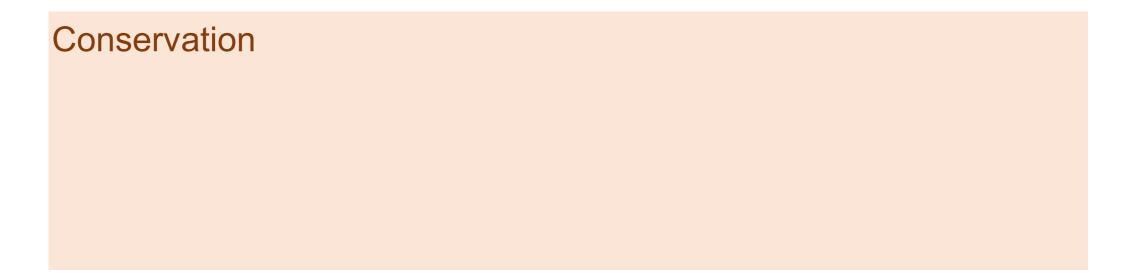
Field deployments bring up new research challenges for EC community

Wealth of new multiagent research challenges via partnerships with NGOs

Outline

Public Health

- Information dissemination & behavior change: Social networks
- Health program adherence: ML & Bandits
- COVID-19: Agent-based modeling

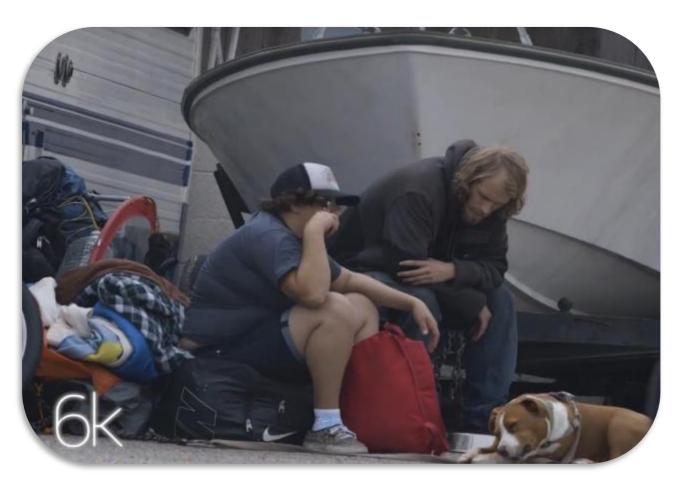


- Cover papers from 2017-now [AAMAS, AAAI, IJCAI, NeurIPS...]
- PhD students & postdocs highlighted

Information dissemination & behavior change Optimizing Limited Intervention (Social Worker) Resources

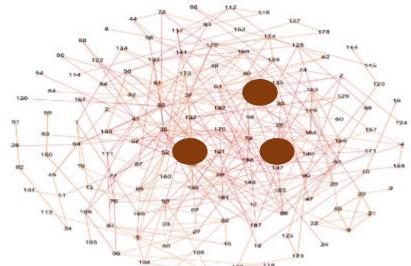
Preventing HIV in homeless youth: Rates of HIV 10 times housed population

- Shelters: Limited number of peer leaders to spread HIV information in social networks
- "Real" face-to-face interactions; not Facebook etc
- > Other applications: HIV prevention (SWASTI), Tuberculosis awareness...



Influence Maximization in Social Networks

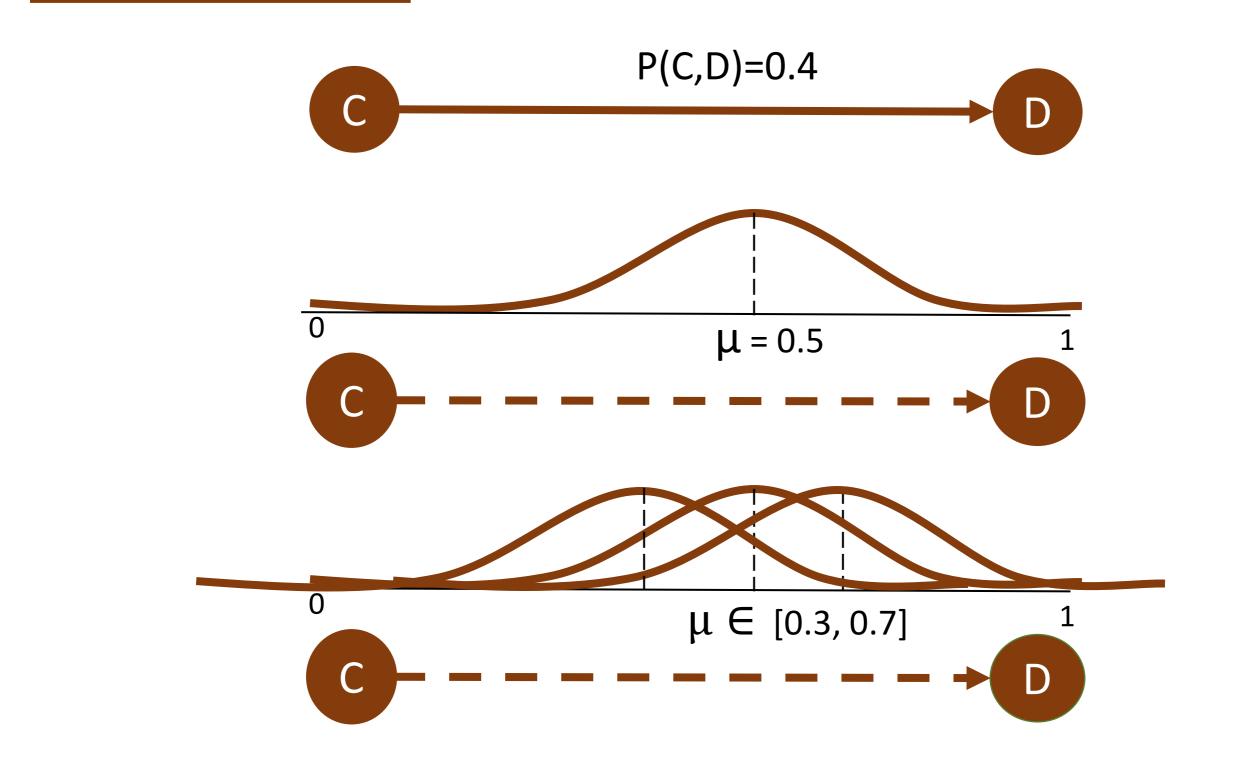
- Given:
 - Social network Graph G
 - Choose K "peer leader" nodes
 - Assume: Independent cascade model of information spread
- Objective:
 - Maximize expected number of influenced nodes



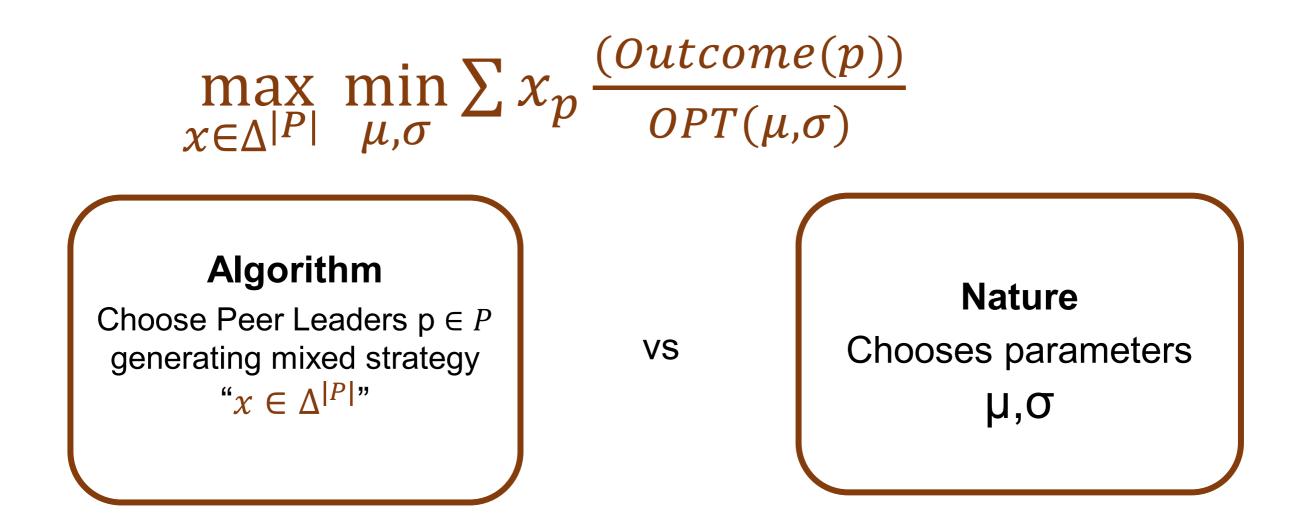
Influence Maximization in Social Networks Three Key Challenges Combined Together

- > Uncertainty in propagation probability over edges
- >Multi-step dynamic policies to handle peer leader "no shows"
- > Unknown social network, limited query budget to uncover network

Challenge 1: Uncertainty in Real-world Physical Social Networks



Worst case parameters: a zero-sum game against nature



HEALER Algorithm Robust Influence Maximization

(AAMAS 2017)

Theorem: Converge with approximation guarantees

Equilibrium strategy despite exponential strategy spaces: Double oracle

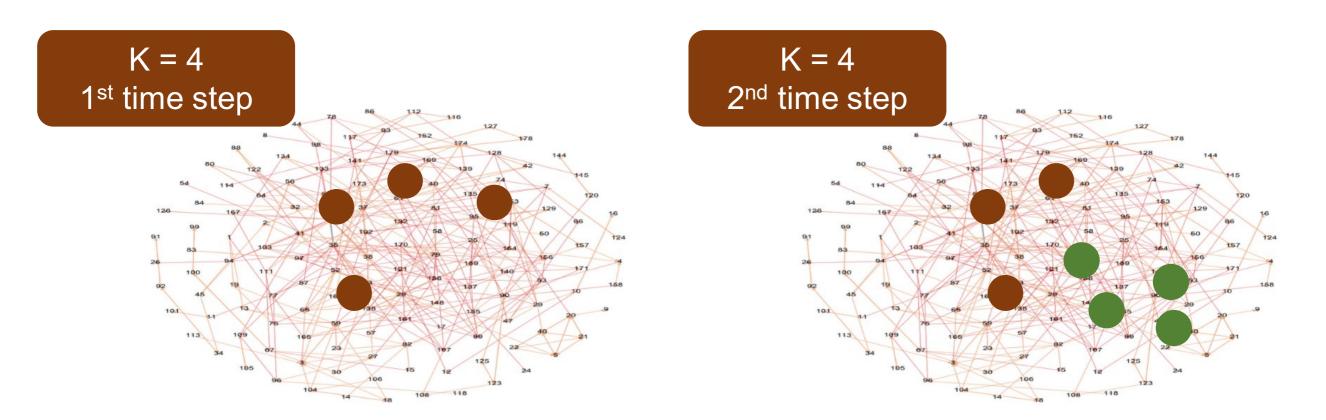
		Params #1	Params #2	Params #3		In	fluencer	s oracle	
Influencer	Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4		A.	Params #1	Params #2	
llue	Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6	$\Box \rangle$	Policy #1	0.8, -0.8	0.3, -0.3	
	Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7		Policy #2	0.7, -0.7	0.5, -0.5	
[4	$\mathbf{\mathcal{F}}$		Policy #3	0.6, -0.6	0.4, -0.4	
	Nature	Nature's oracle				Π			1
		Params #1	Params #2	Params #3					
	Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4					
	Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6					
: 7/17/202	0 Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7					

Nature

Challenge 2: Multi-step Policy

Yadav

Wilder



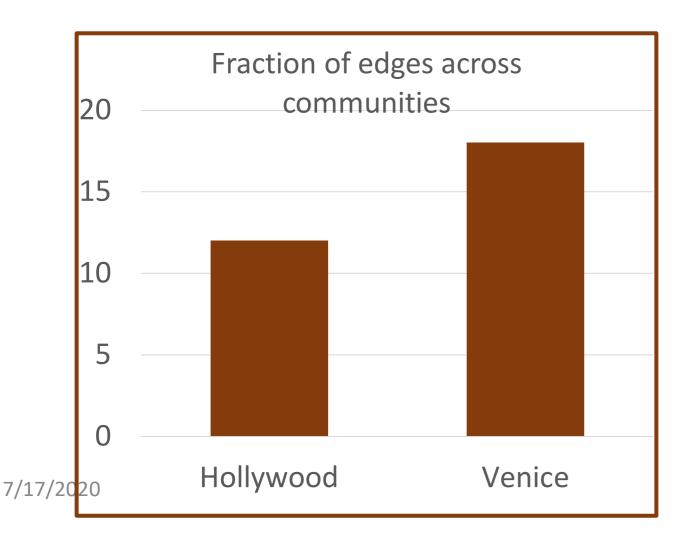
- History: {(Invited-at-time1, absent-at-time1), (Invited-at-time2, absent-at-time2),...}
- Provide policy p: $History(t) \rightarrow Invite peer leaders for t+1$
- State of network is unobservable

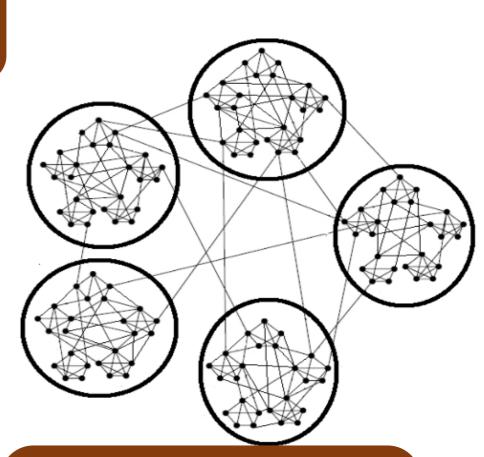
POMDPs for Multi-Step Policy for Robust, Dynamic Influence Maximization

(AAMAS 2018a)

HIDDEN STATE Choose nodes POMDP Policy

Observation: Node presence

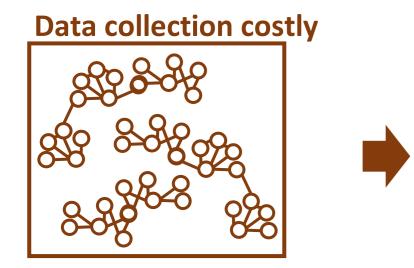


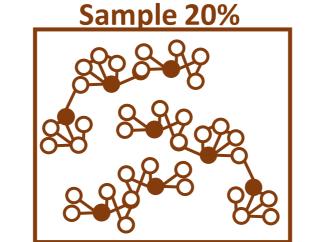


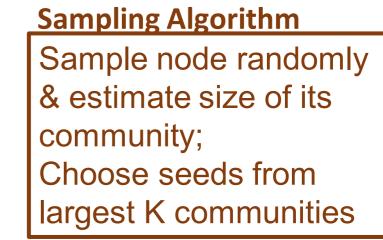
Partition POMDPs: Exploit community structure

Challenge 3: Sampling to avoid Data Collection Bottleneck (AAAI 2018)

Theorem: For community-structured graphs(*), sampling algorithm obtains a constant-factor approximation to the optimal influence spread using polylog(n) queries.







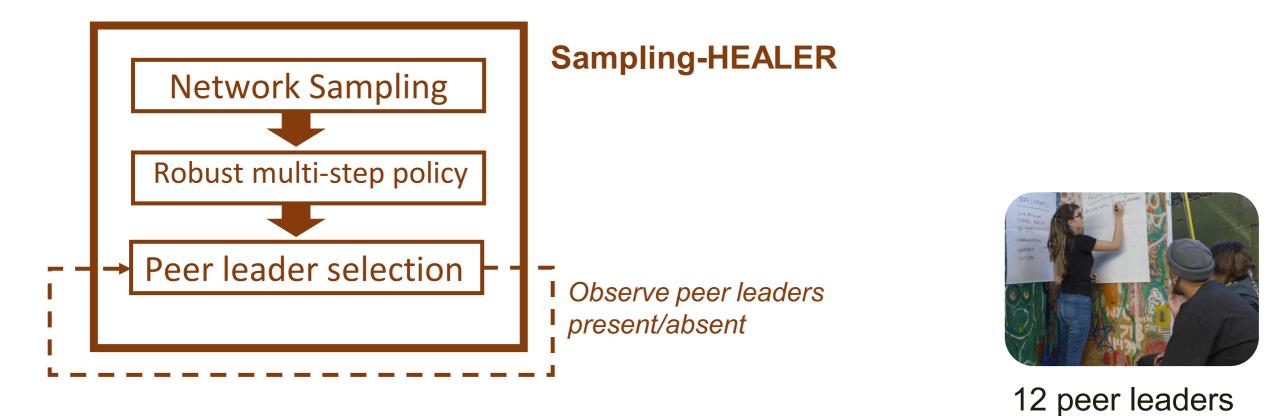
- Input: total number of nodes, n
- Sampling algorithm queries upto query budget
- Output *K* seed nodes; spread influence via independent cascade model
- Compare to *OPT*, best influence spread by algorithm with full network

"Sampling-HEALER" Pilot tests with 230 Homeless Youth

(IJCAI 2018)

Yadav

Wilder



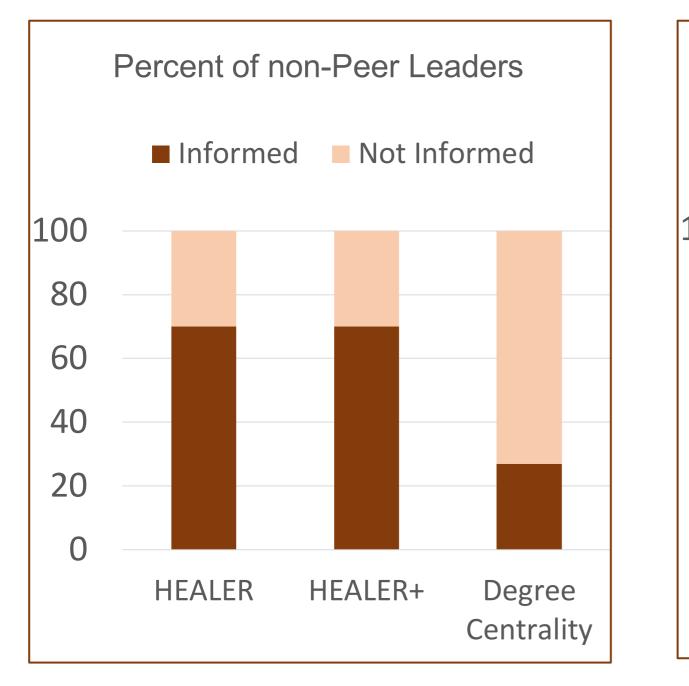
Sampling HEALER	HEALER	HEALER+	DEGREE CENTRALITY
(Sampled Network)	(Full Network)	(Full Network)	(Full Network)
60 youth	62 youth	56 youth	55 youth

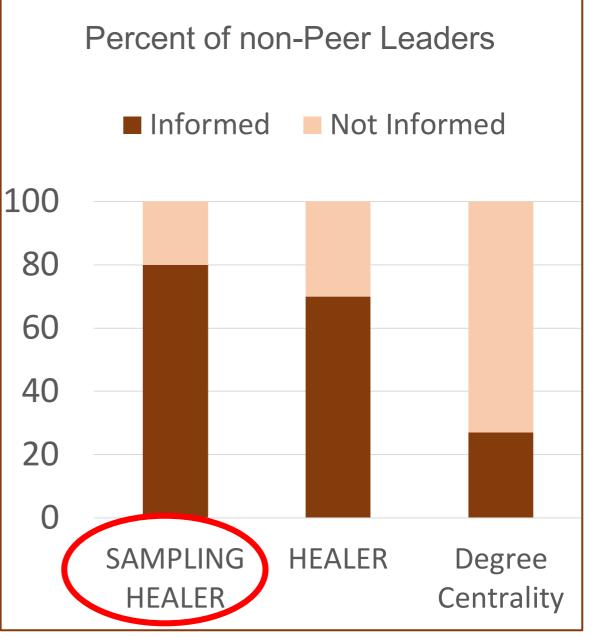
Results: Pilot Studies

(Journal of Society of Social Work & Research 2018)

Yadav

Wilder

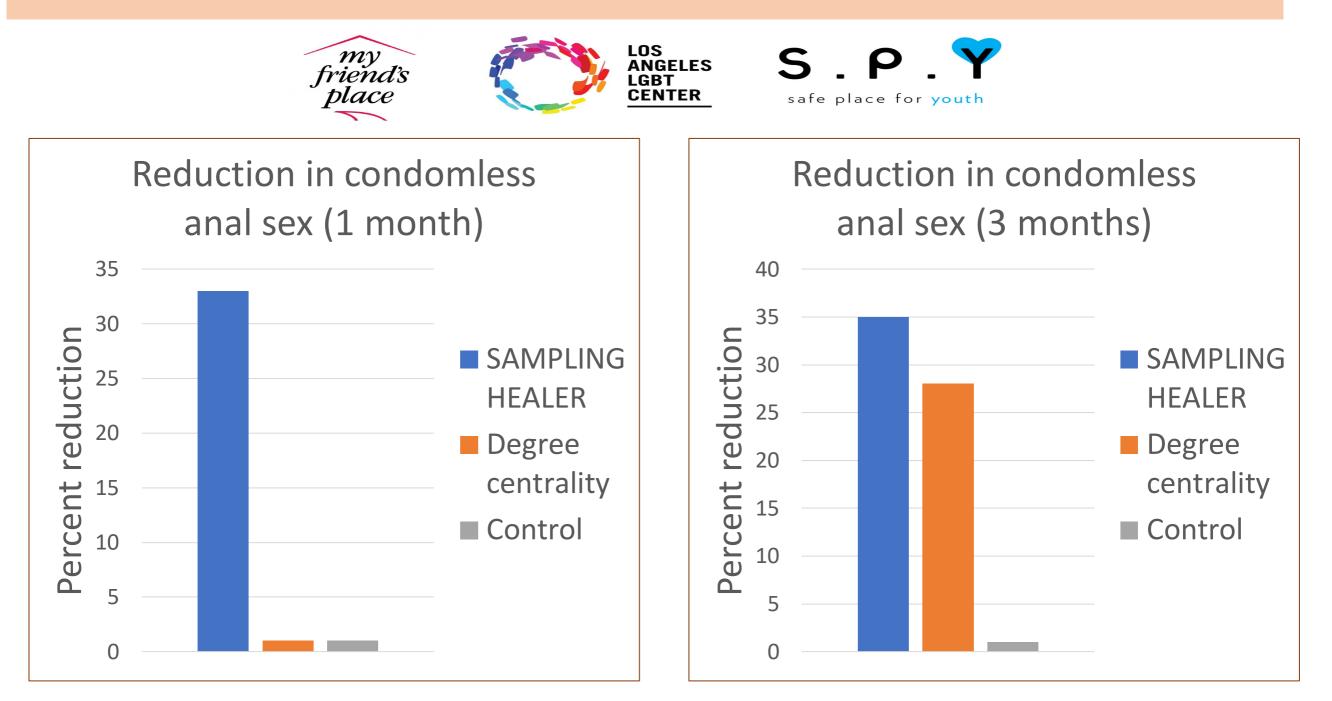




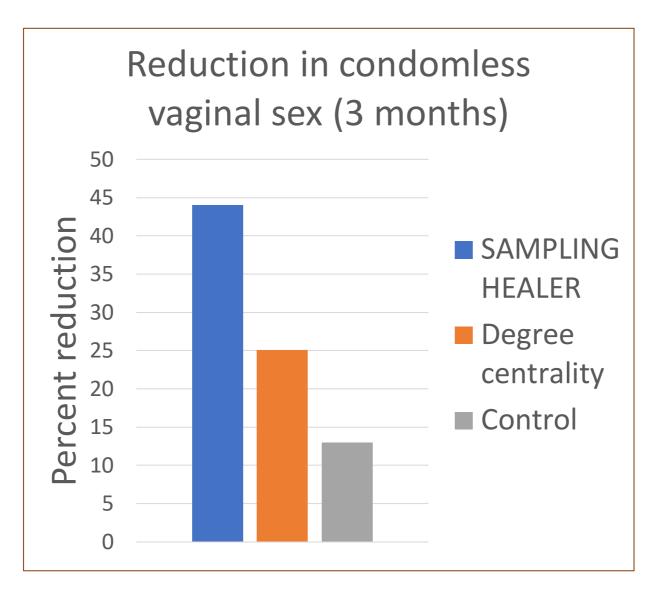
Results of 800 Youth Study [with Prof. Eric Rice] Actual Change in Behavior?

(Under submission)

First large-scale application of influence maximization for public health



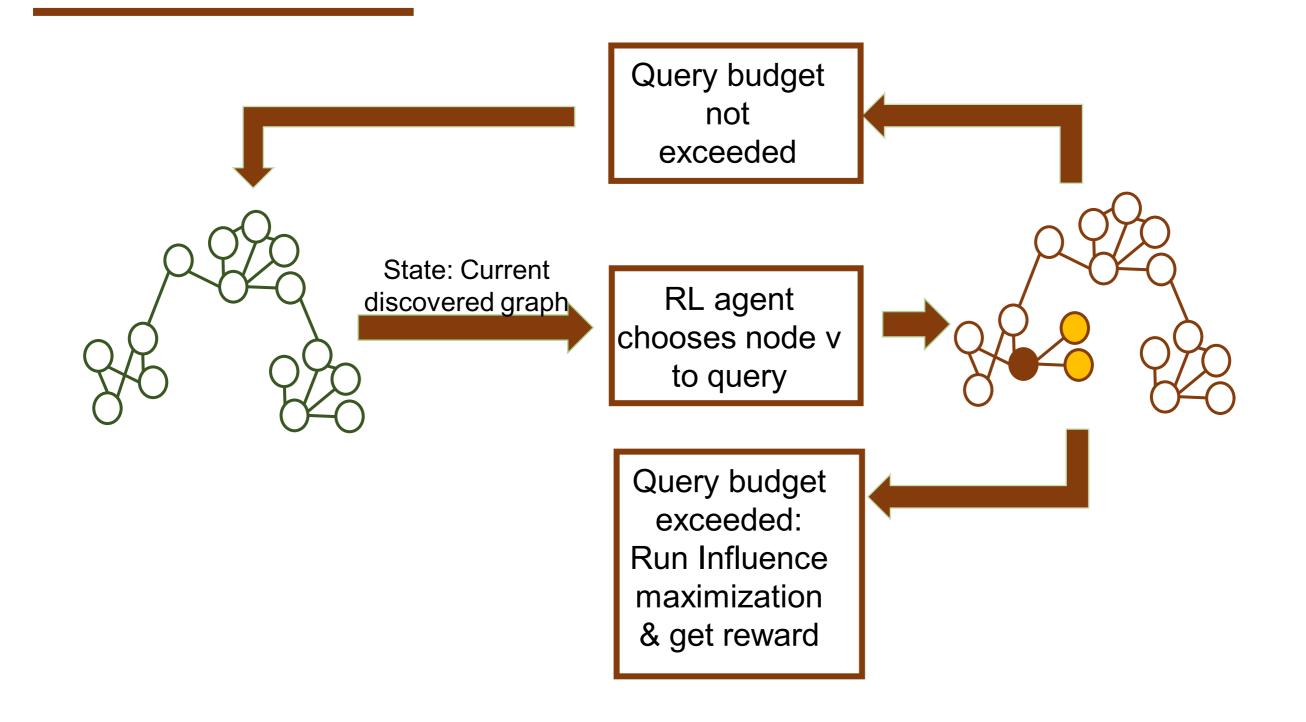
Results of 800 Youth Study [with Prof. Eric Rice]



AI Assistant: HEALER

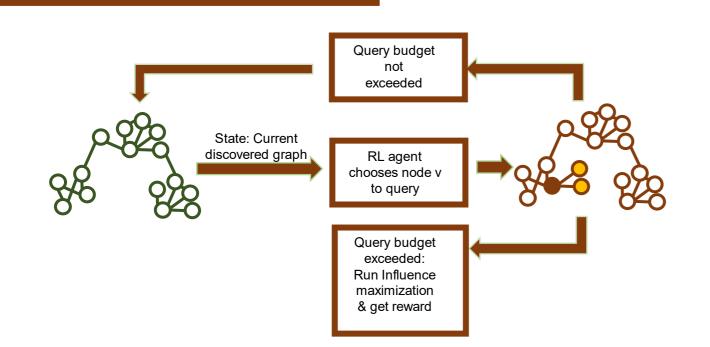
Next steps: Data to Deployment Pipeline Using an RL agent?

(with B. Ravindran & team, AAMAS 2020)



Next steps: Data to Deployment Pipeline Using an RL agent?

(with B. Ravindran & team, AAMAS 2020)

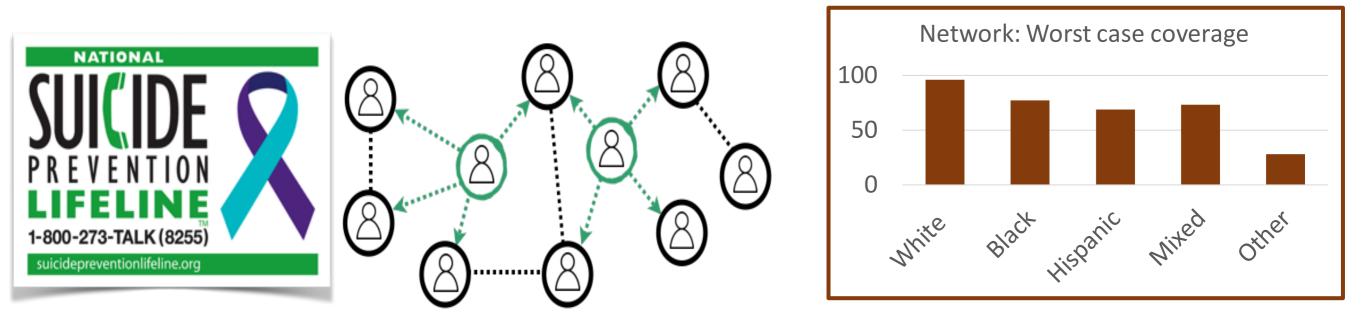


Network Family	Improve %
Rural	23.76
Animal	26.6
Retweet	19.7
Homeless	7.91

-26

Fairness in Reasoning with Social Networks: Suicide Prevention via Gatekeeper Selection

(NeurIPS 2019, IJCAI 2019)



Robust graph covering with gatekeepers, maximize worst case coverage Disparity in coverage across racial groups

Maxmin fairness:

$$\min_{c\in C} u_c(A) \geq \gamma$$

Diversity constraints:

 $u_c(A) \ge U_c$

Y: Max of minimum utility for any community

 U_c : Utility if # gatekeepers allocated proportional

to size of community

Outline

Public Health

- > Information dissemination & behavior change: Social networks
- > Health program adherence: Passive via ML vs Active via bandits
- COVID-19: Agent-based modeling

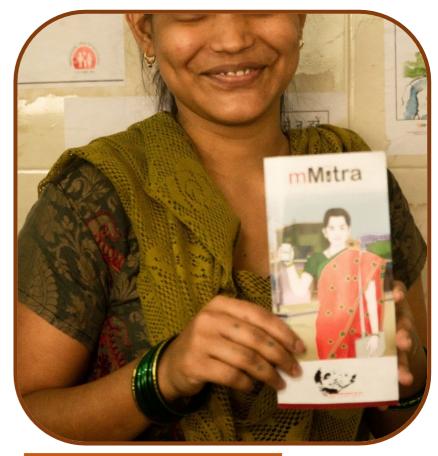
Conservation

Health Program Adherence Maternal & Child Care in India

(Under submission)

India: Woman dies in childbirth every 15 min; 4 of 10 children too thin/short

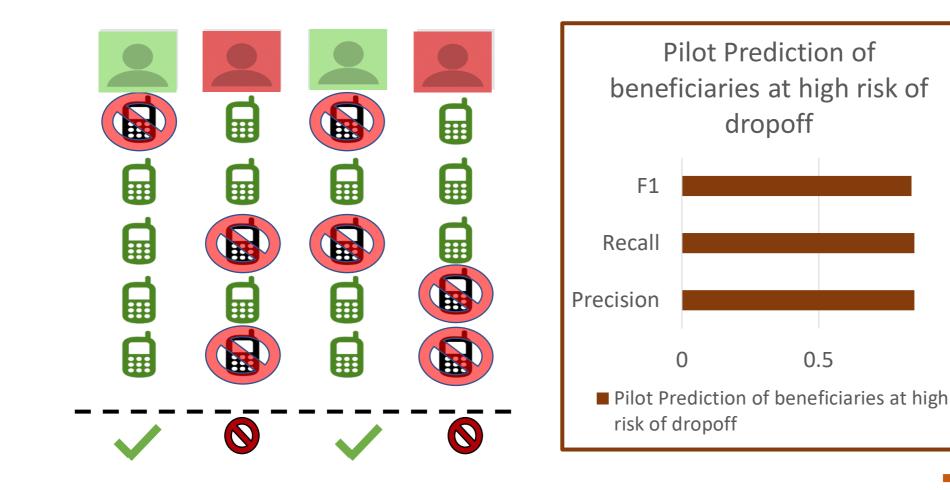
- > ARMMAN: 18 Million women enrolled, 160000 health workers...
- > mMitra: Weekly call to new/expectant moms; friendly 3 minute messages about health
- > *mMitra: Significant benefits shown; 2.2 million women enrolled*
- > Unfortunately, significant fraction low-listeners or drop-outs



1

Predict beneficiaries likely to drop out: Allows ARMMAN to focus intervention

- > Neural networks for prediction: Extensive tests with past data
- Results of pilot with 18000 beneficiaries: High precision, recall, accuracy
- > Prediction software deployed: helps 300,000 beneficiaries in mMitra

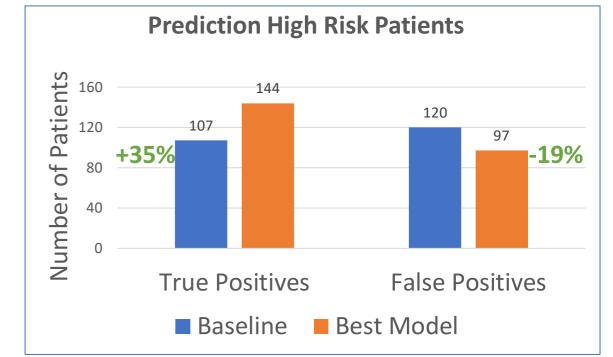


ARMMAN Pilot 18000 Beneficiaries Nov & Dec 2019 ➤ Test: Jan-April 2020

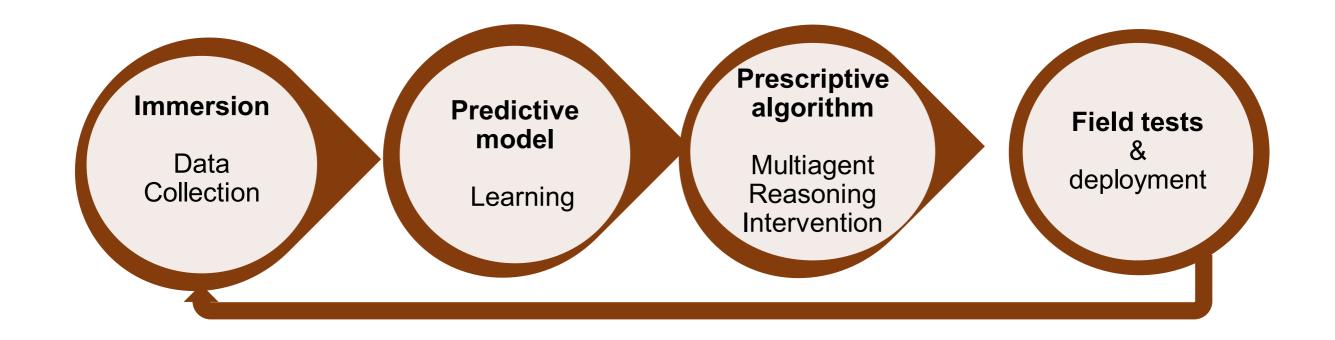
Passive Adherence Monitoring Preventing Tuberculosis in India

(KDD 2019)

- Tuberculosis (TB): ~500,000 deaths/year, ~3M infected in India
- > Non-adherence to TB Treatment: Digital adherence tracking via daily phone calls
- Intervene before patients miss dose
- Predict adherence risk from phone call patterns?
- Results from Mumbai, India: 15,000 patients, 1.5 million phone calls



Intervention Reasoning: Active Adherence Monitoring



Health worker calls, patients do not call

Intervention Scheduling with Scarce Data: **Passive vs Active Adherence Monitoring** (Under submission)

Health worker

Call patients: Track, improve adherence

Challenge:

- Large number of patients (N)
- Which 'k' patients to call?

Approach:

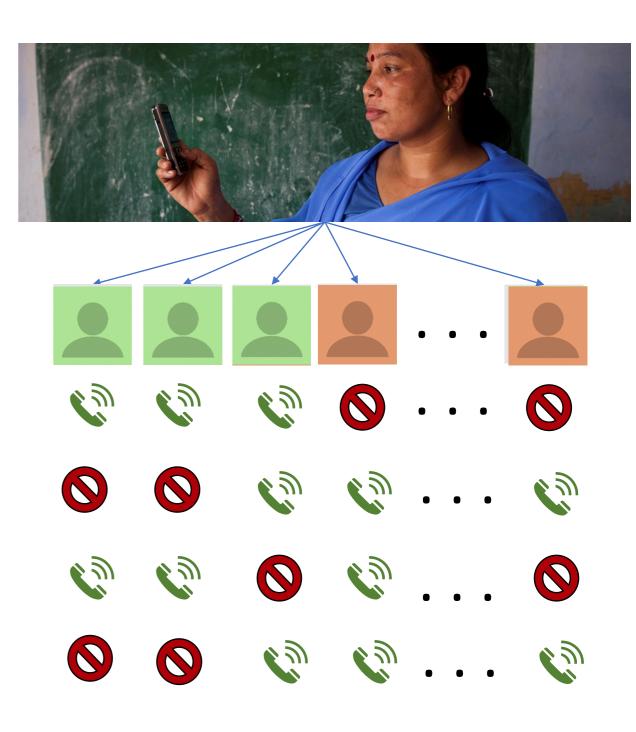


Photo Credit: IntraHealth International (CC BY-NC-SA 3.0 via

Date: 7/17/2020

https://www.intrahealth.org/)

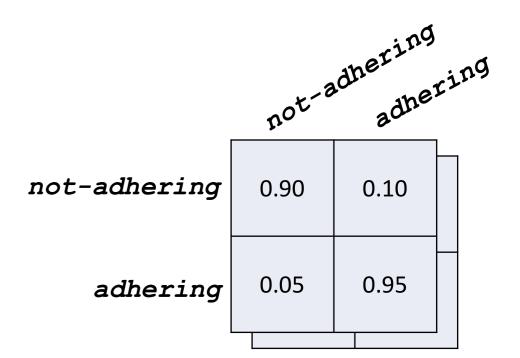
Intervention Scheduling with Scarce Data: Adherence Restless Bandits(A-RMAB)

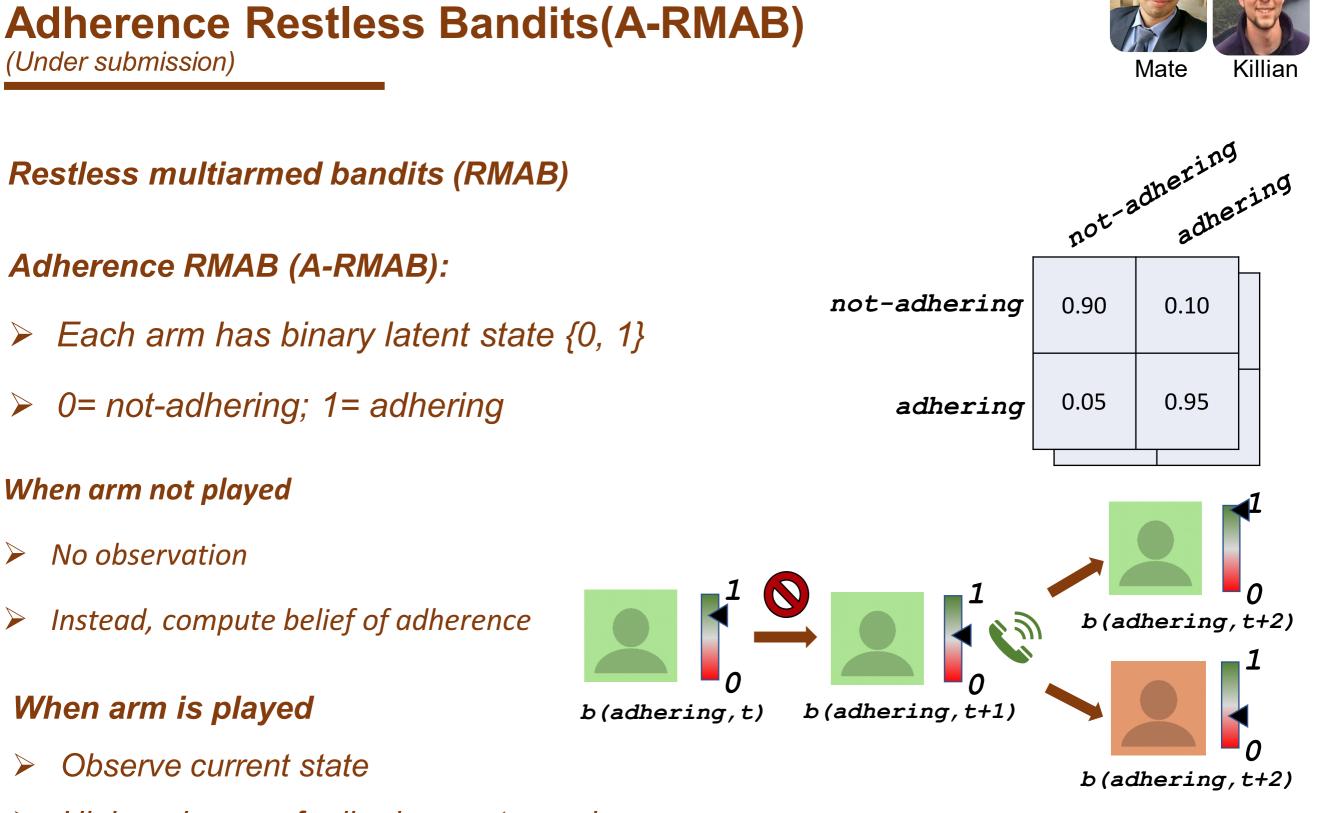
(Under submission)

Restless multiarmed bandits (RMAB)

Adherence RMAB (A-RMAB):

- \succ Each arm has binary latent state {0, 1}
- 0= not-adhering; 1= adhering





Higher chance of adhering next round

P(adhering | call) > P(adhering | no call)

Intervention Scheduling with Scarce Data:



> Performance guarantee requires A-RMAB to be indexable

Theorem 1: A-RMAB Indexable if threshold policies are optimal.

➤ Threshold policies: Call → Belief of adherence below threshold → Call Forward threshold:

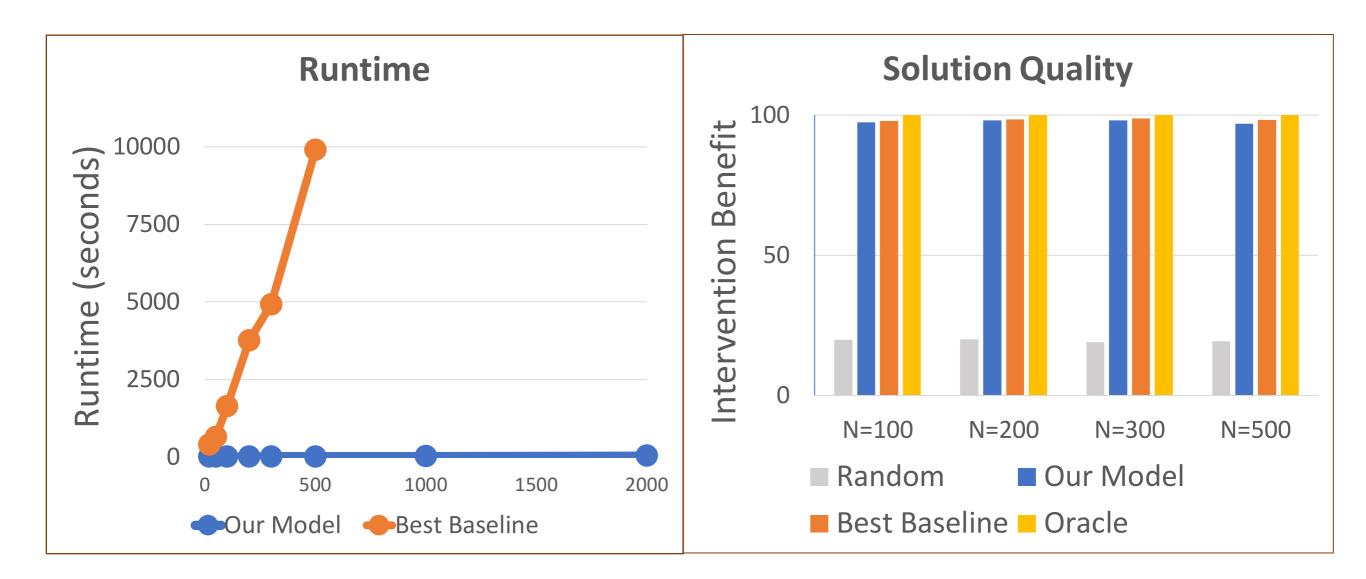
Theorem 2: Forward threshold optimal if intervention effect on "Non-adherent" patients is large.

Empirically, almost all patients are threshold optimal

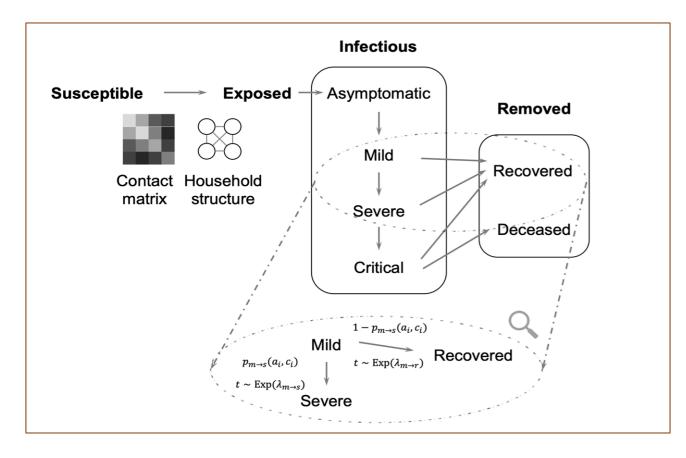
 \Rightarrow Fast algorithm + no sacrifice on performance

Intervention Scheduling with Scarce Data: Adherence Restless Bandits(A-RMAB)

> Orders of magnitude speedup with no solution quality loss



COVID-19: Agent-based Simulation Model (Under submission)



Agent-based model:

- Families
- Co-morbidities
- > Age
- Testing
- Contact tracing

GEORGIA DEATH TOLL PROJECTIONS UNDER DIFFERENT LOCKDOWN PLANS

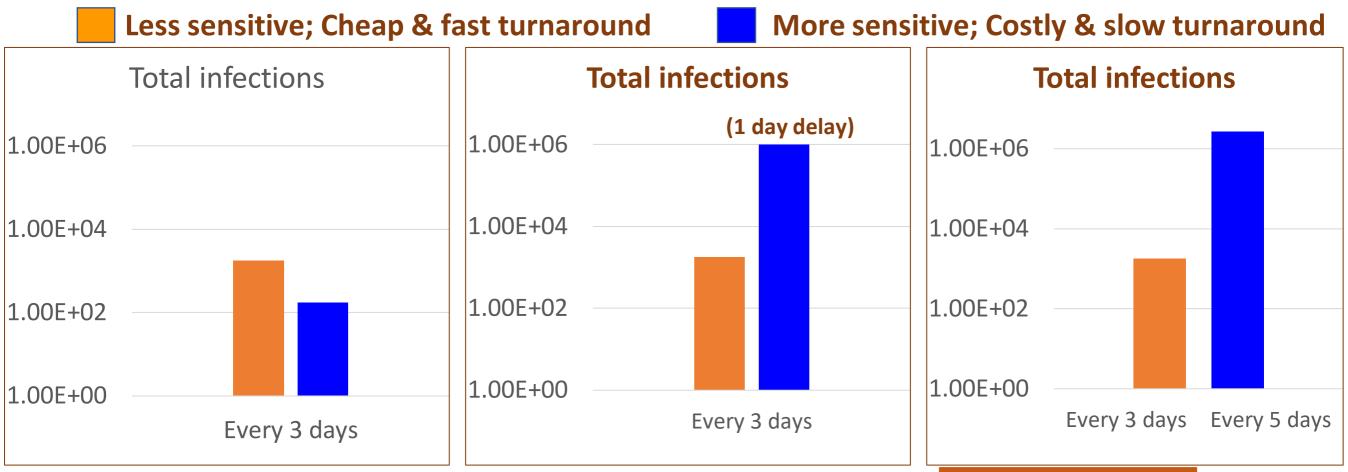
FULL LOCKDOWN: 1,004 - 2,922
GOV. KEMP'S CURRENT PLAN: 1,604 - 4,236
NO LOCKDOWN AT ALL: 4,279 - 9,748

CORONAVIRUS PANDEMIC MODELING FROM HARVARD & MIT SHOWS POSSIBLE CONSEQUENCES IN GEORGIA OF EASING RESTRICTIONS

COVID Testing Policy: Accuracy vs Ease (Under submission)

- Range of tests entering market, varying sensitivity/cost: Quantity vs Quality?
 - qRT-PCR ("gold standard"): Detect viral concentration of **10³**/mL, \$50-100
 - RT-LAMP: **10⁵**/mL, \$5-30
 - Antigen strip ("Less sensitive"): **10⁶**/mL, \$3-5

Test sensitivity is secondary to turnaround time & frequency for COVID-19 surveillance



Challenges from field deployments

Influence maximization for health information dissemination

- > Performance guarantee? Combined unknown network, robust dynamic policy
- Influence model: Independent cascade vs Activation jump vs...
- Fairness in influence maximization

Restless bandits for health adherence monitoring & intervention planning

- Efficient algorithms under uncertainty of patient observations
- Unknown, evolving patient adherence behavior
- Enable community health workers to interject in intervention planning

Outline

Public Health

Conservation

Protect wildlife, forests, fisheries: Game-focused learning

Integrating real time data for protection: Signaling games

Poaching of Wildlife in Uganda Limited Intervention (Ranger) Resources to Protect Forests

Snare or Trap Wire snares

Date: 7/17/2020

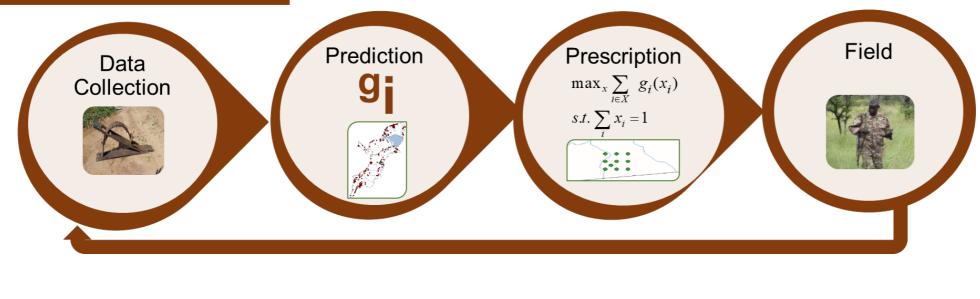
From Stackelberg Security Games to Green Security Games

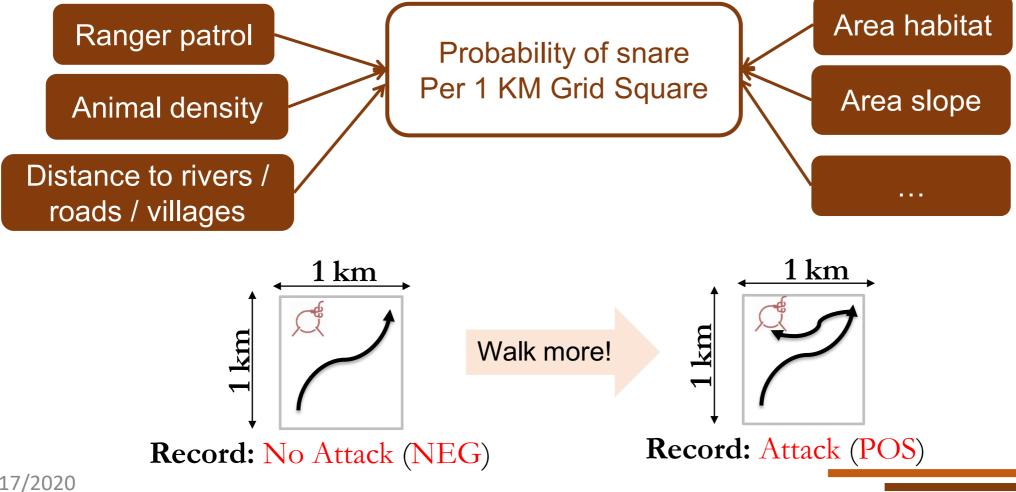
(IJCAI 2015)

- Stackelberg security games (SSG)
- > With boundedly rational poachers
- Learn adversary response model at targets "i"

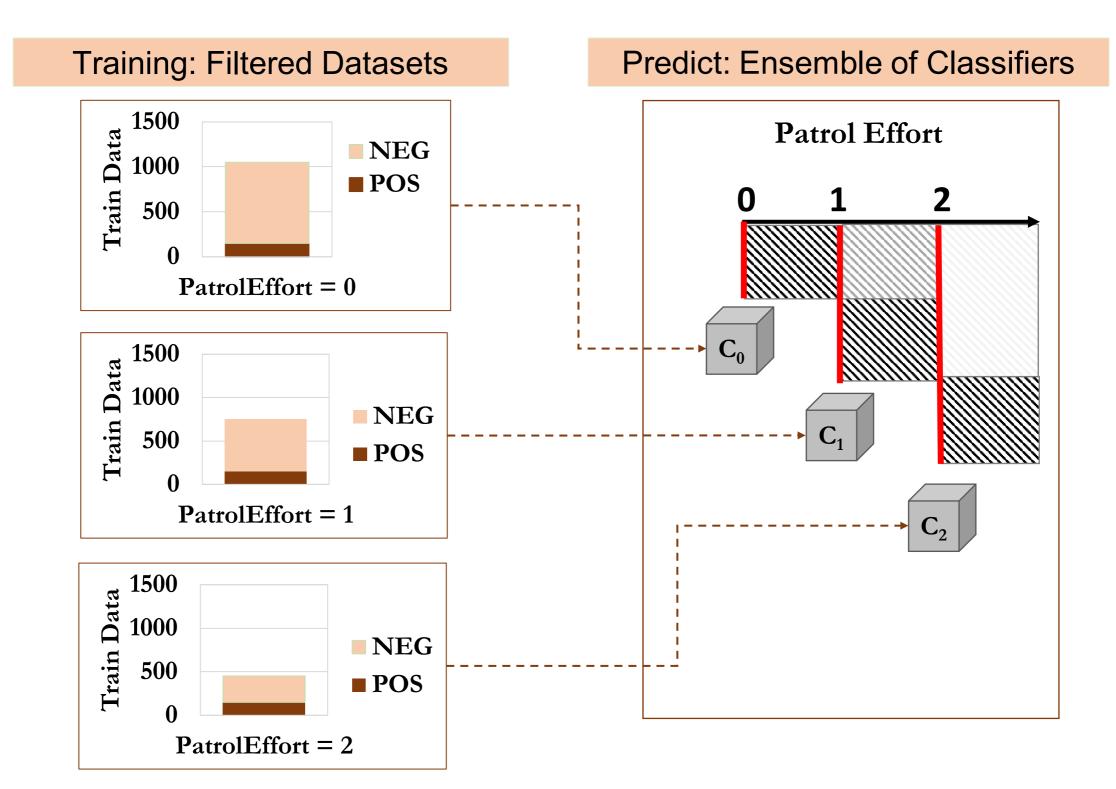
		Area1	Area2
	Area1	4, -3	-1, 1
A.	Area2	-5, 5	2, -1

Learning Adversary Response Model: Uncertainty in Observations



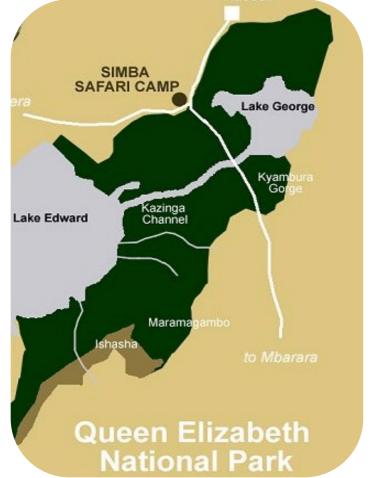


Adversary Response Modeling Imperfect Observation Ensemble Model



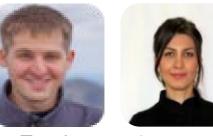
PAWS: Protection Assistant for Wildlife Security Adversary Model in the Lab

Poacher Behavior Prediction



Results from 2016

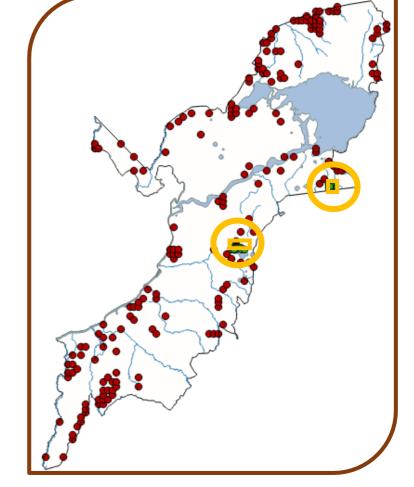
PAWS: First Pilot in the Field (AAMAS 2017)



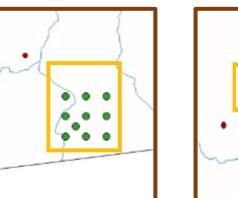
Ford

Gholami

Two 9-sq.km areas, infrequent patrols

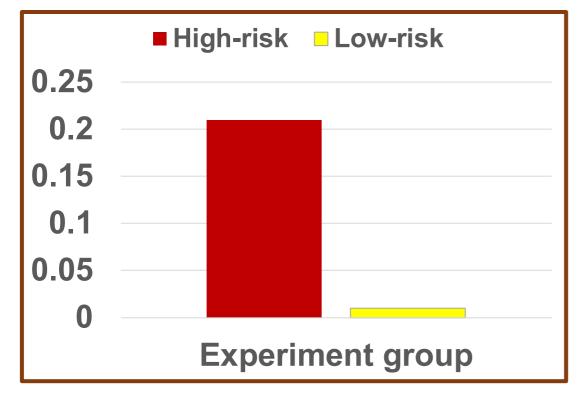


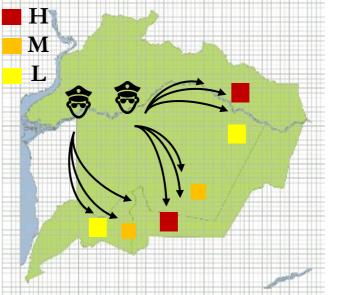
- Poached elephant
- 1 elephant snare roll
- 10 Antelope snares



PAWS Predicted High vs Low Risk Areas: 2 National Parks, 24 areas each, 6 months (ECML PKDD 2017, ICDE 2020)

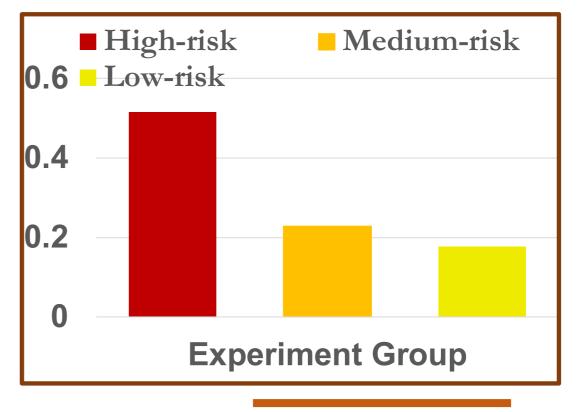
Snares per patrolled sq. KM





Murchison Falls National Park

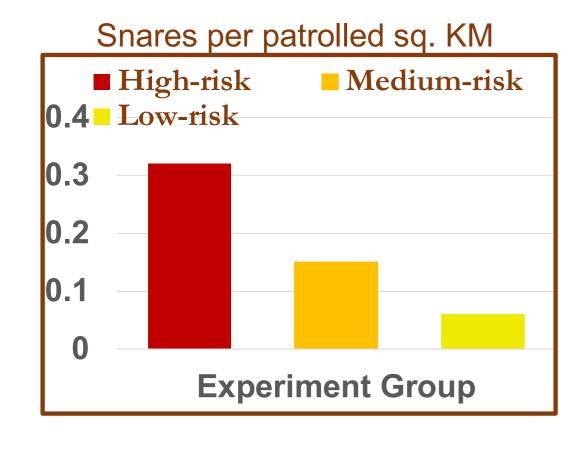
Snares per patrolled sq. KM



PAWS Real-world Deployment Cambodia: Srepok Wildlife Sanctuary (ICDE 2020)

"@Milind: I am Super excited with the results. Let's get this going on other countries too this year."

Rohit Singh, WWF (2019)



521 snares/month our tests
 vs

101 snares/month 2018

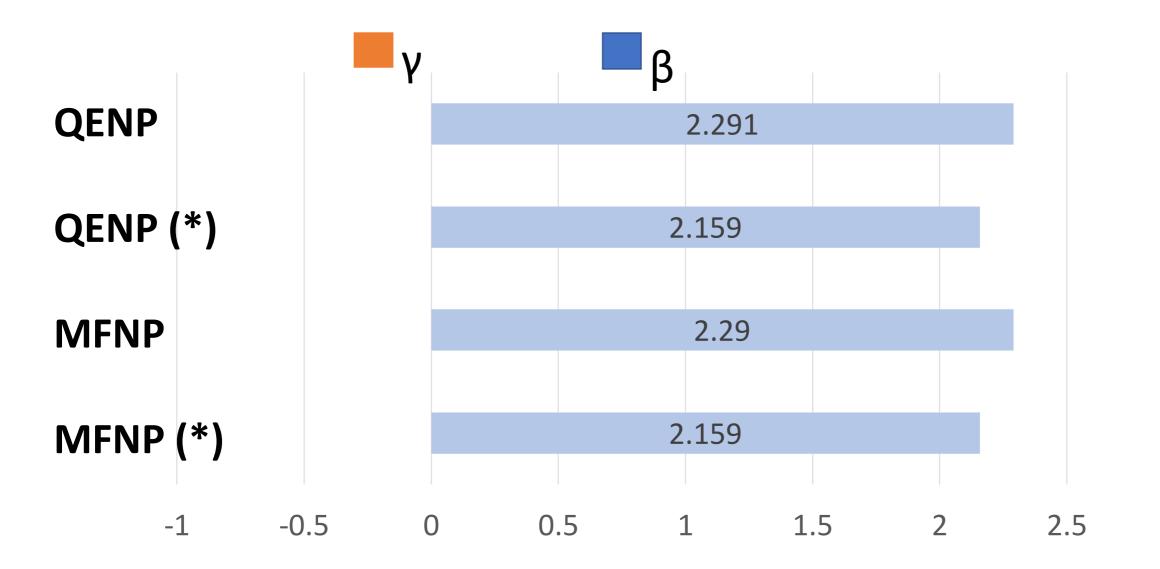
Is Adversary observing & Reacting to Patrols? Evidence from the Field Justifies Stackelberg Assumption

Xu

Perrault

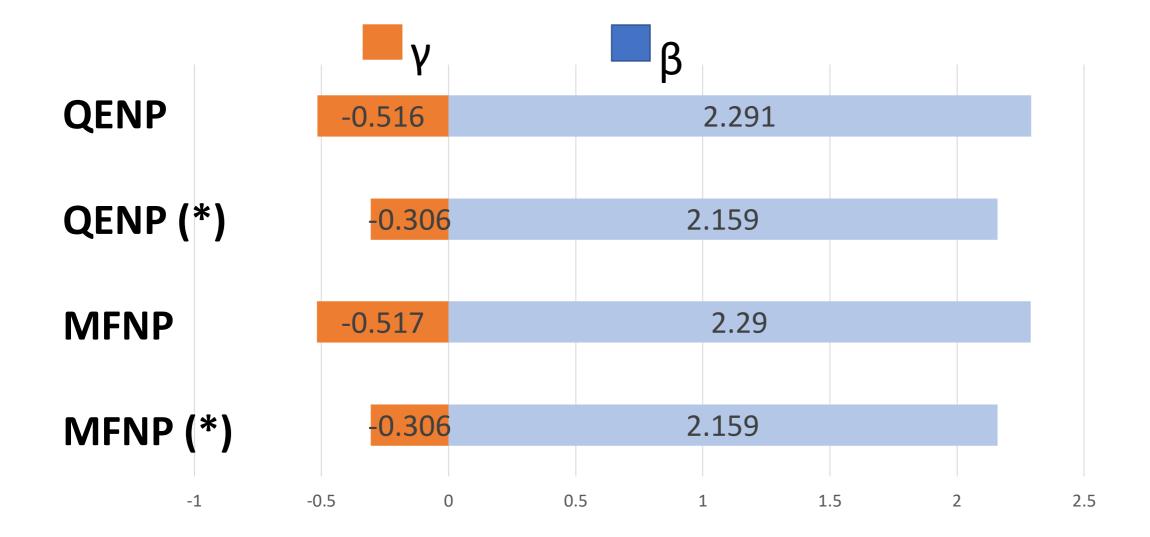
Logistic regression model

 $a_i + \gamma \cdot \texttt{past_effort} + \beta \cdot \texttt{current_effort}$



Demonstrating Deterrence: Evidence from the Field Justifies Stackelberg Assumption

- Is adversary observing & reacting to patrols? Logistic regression model
 - $a_i + \gamma \cdot \texttt{past_effort} + \beta \cdot \texttt{current_effort}$



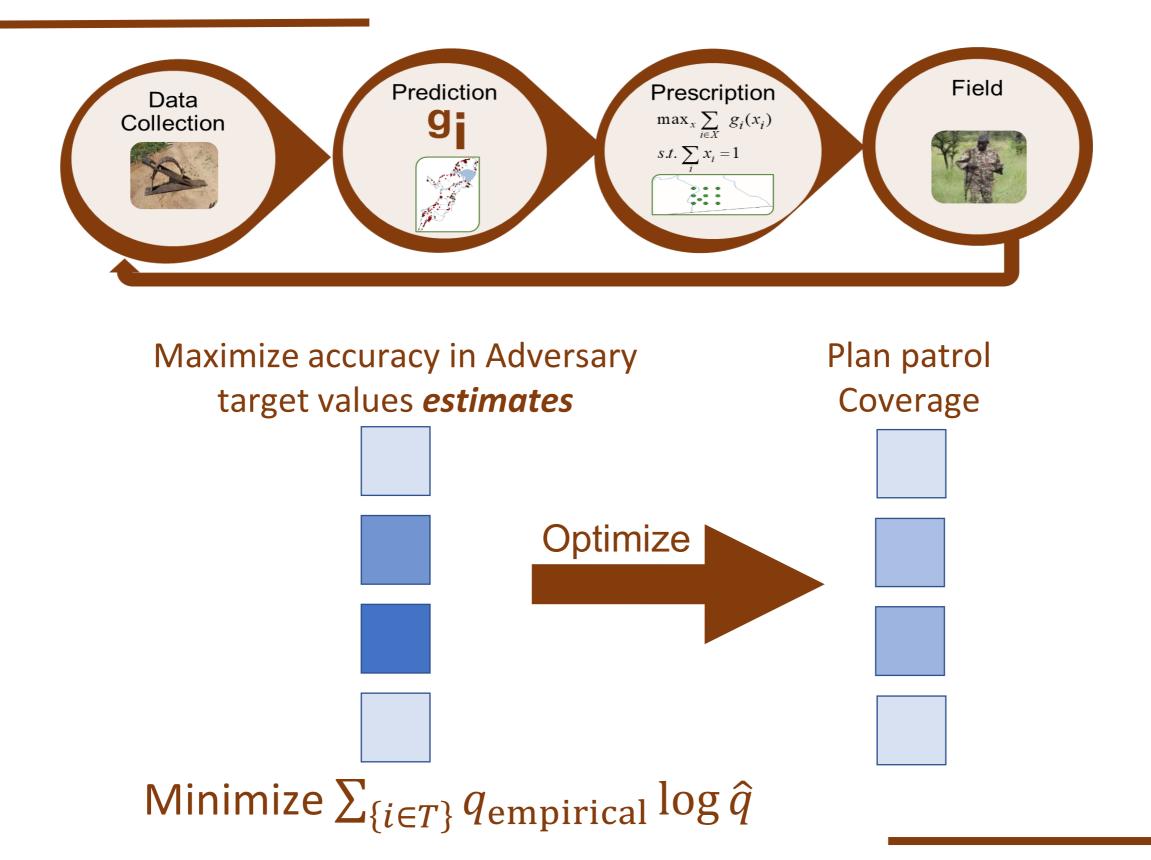
Xu Perra

Solving Security Game with Learned Adversary Model

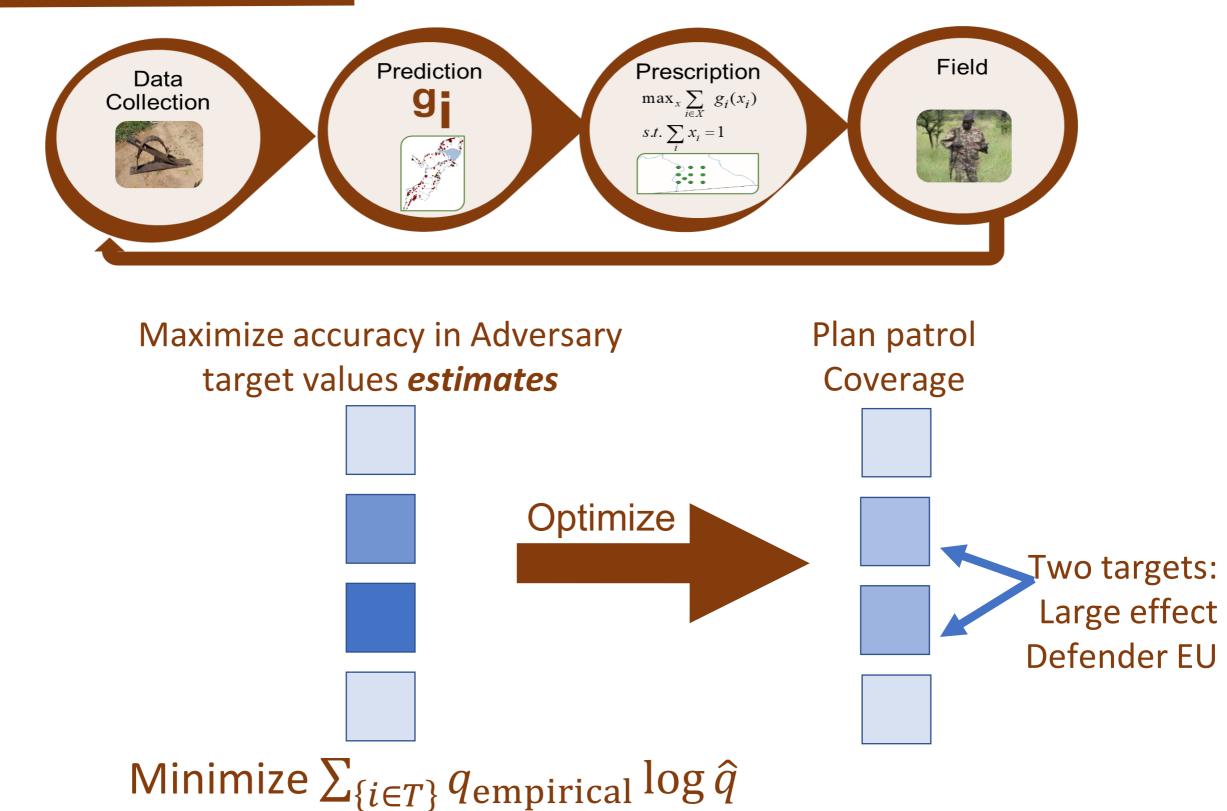
Solving Stackelberg security game with learned adversary model
 Difficulty of generating routes: many constraints on patrols

- Insufficient data: Errors in planning patrols on targets
- Game focused learning to maximize decision quality
 - → Maximizing learning accuracy ≠ Maximizing decision quality

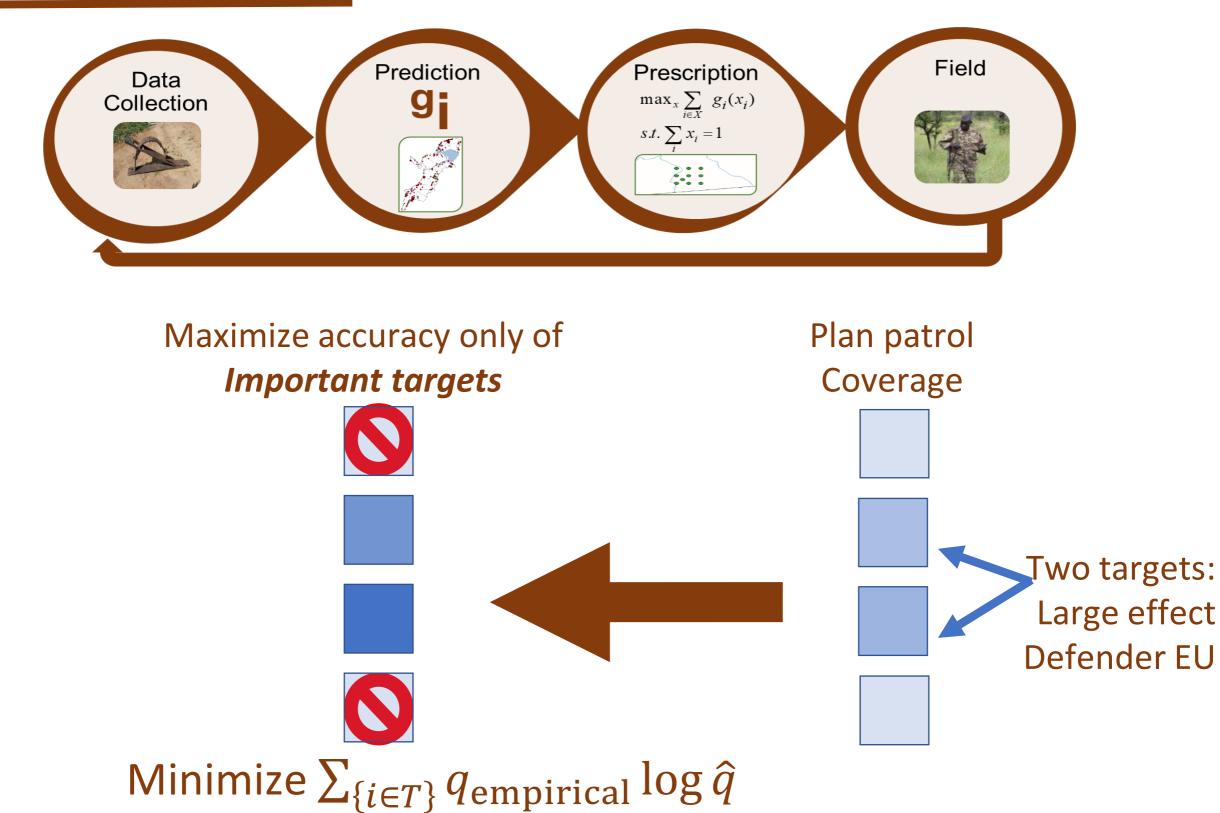
Previous Stage-by-Stage Method: Make Prediction as Accurate as Possible Then Plan



Stage by Stage Method: Need to Focus on Important Targets



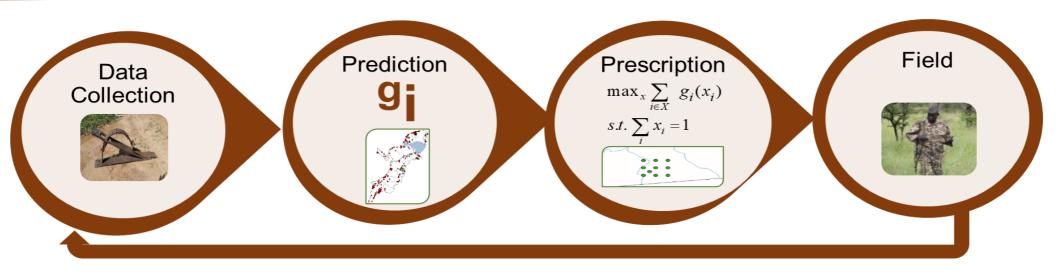
Game-Focused Learning: Need to Focus on Important Targets

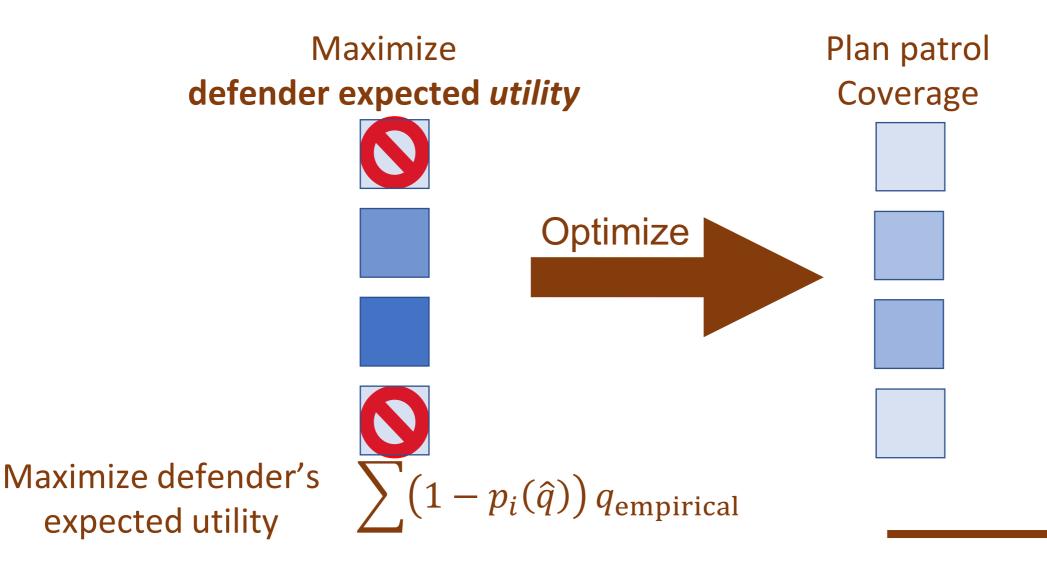


Game-Focused Learning: End-to-End Method Builds on Decision-focused Learning

(AAAI 2019, AAAI 2020)

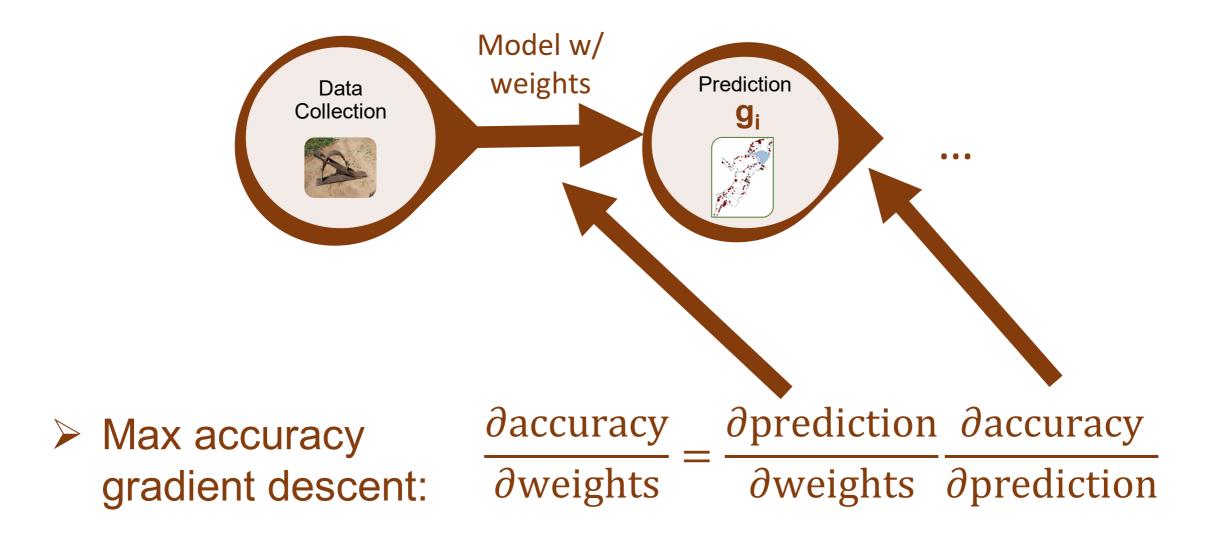
Perrault Wilder





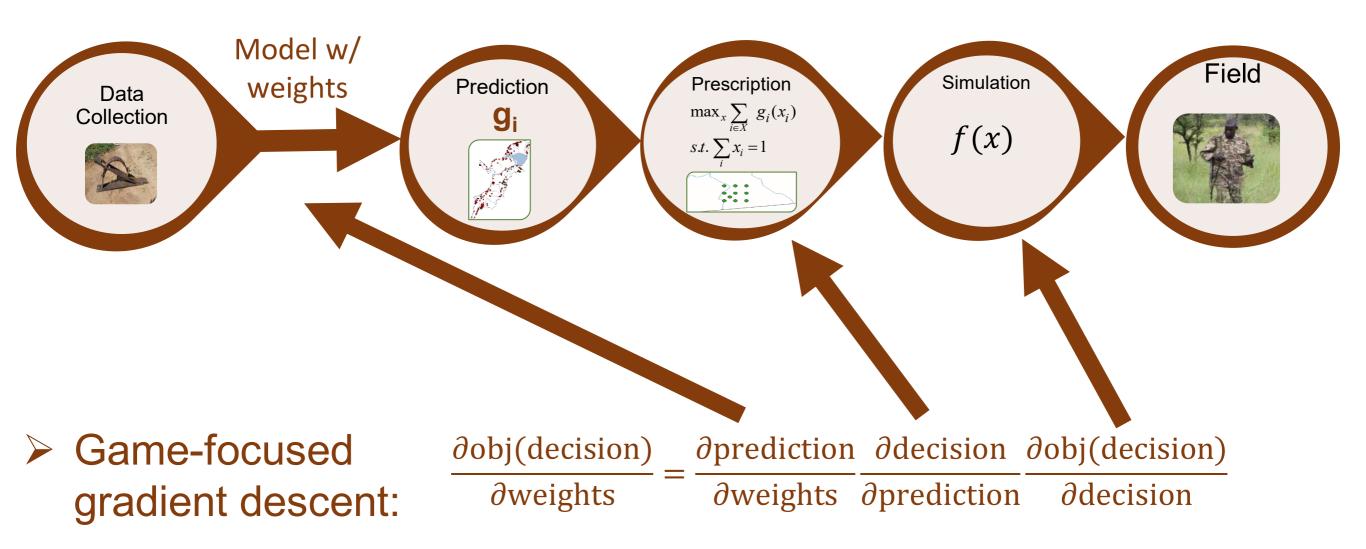
Previous Two-Stage Method: Gradient Descent

Perrault Wilder

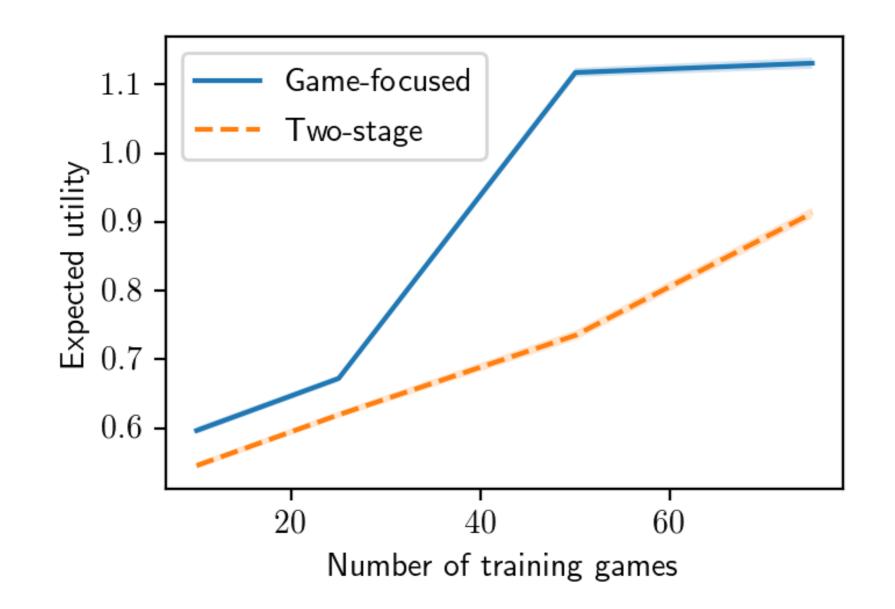


Game-Focused Learning: End-to-End Method

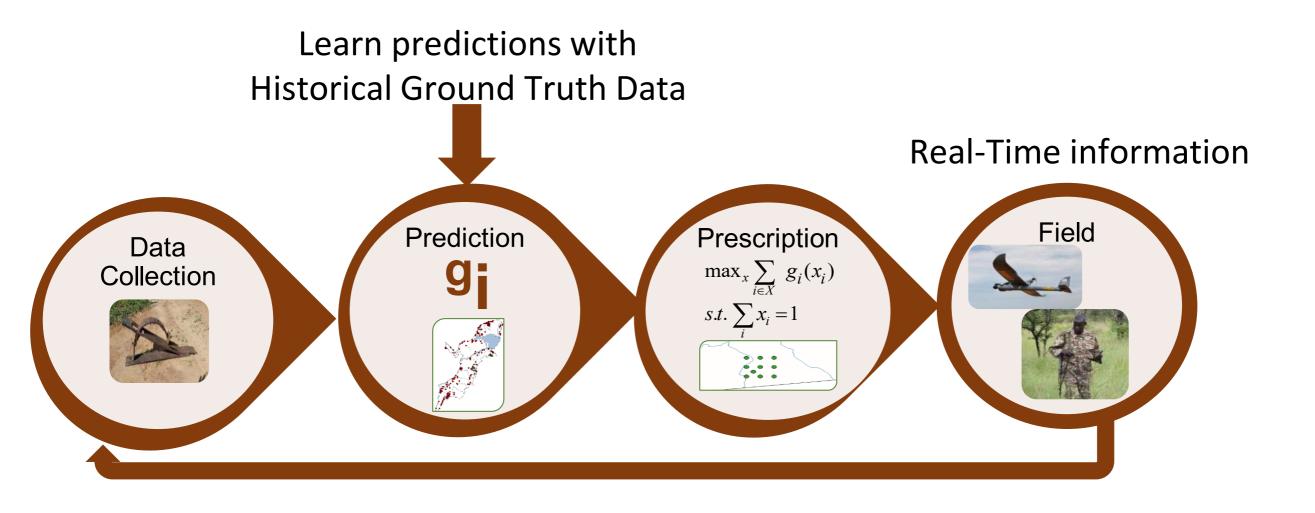
Perrault Wilder



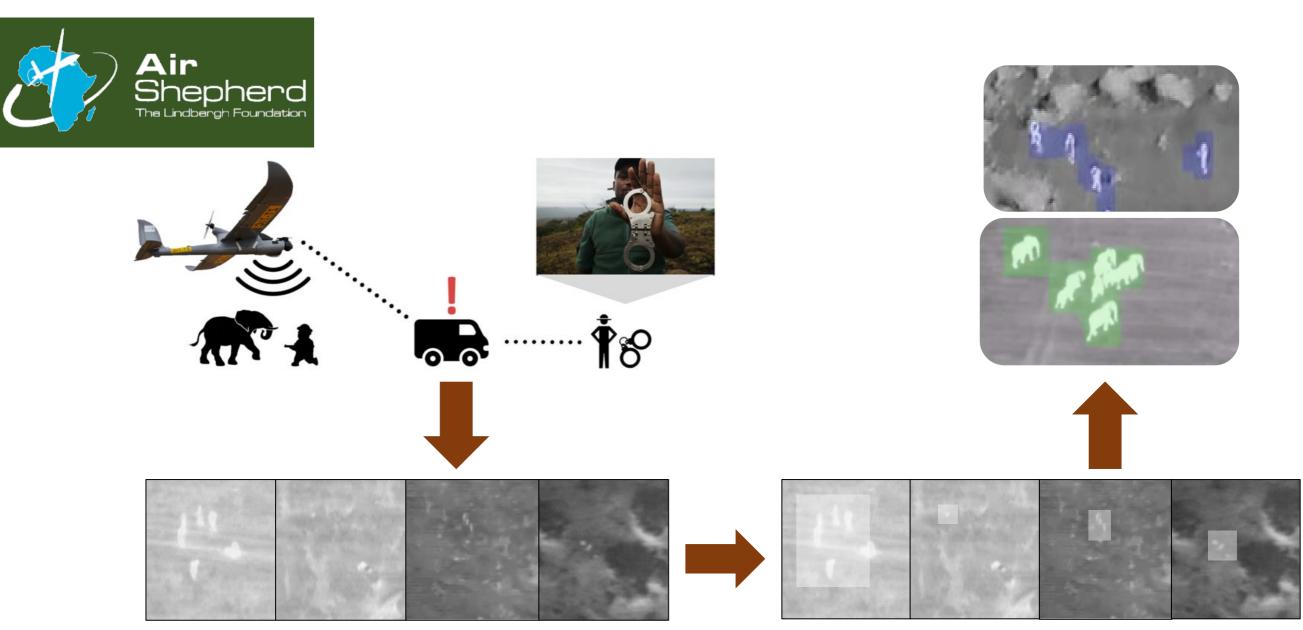
Game-Focused Learning: Comparison to Two-Stage



Green Security Games: Integrating Real-Time Information in the Pipeline



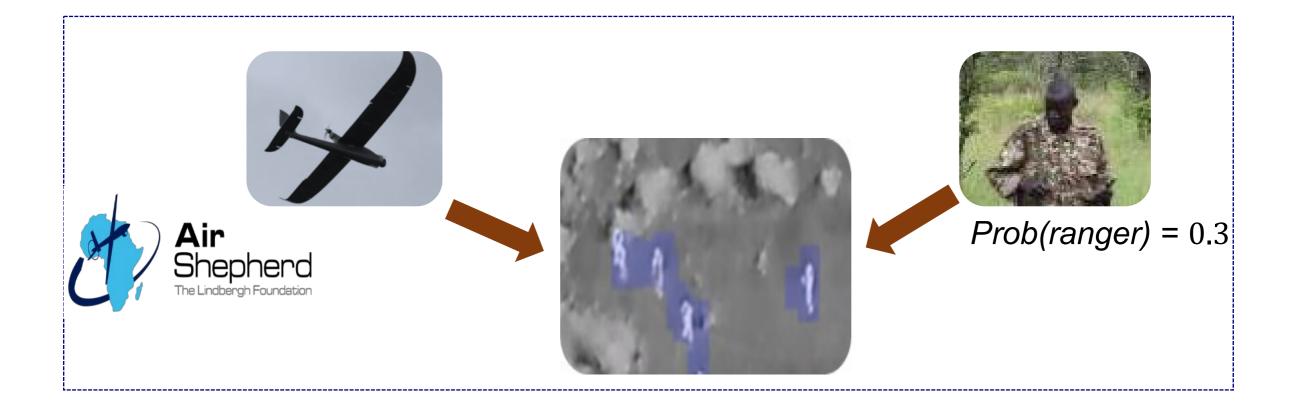
Green Security Games: Integrating Real-Time "SPOT" Information (IAAI 2018)



Goal: automatically find poachers

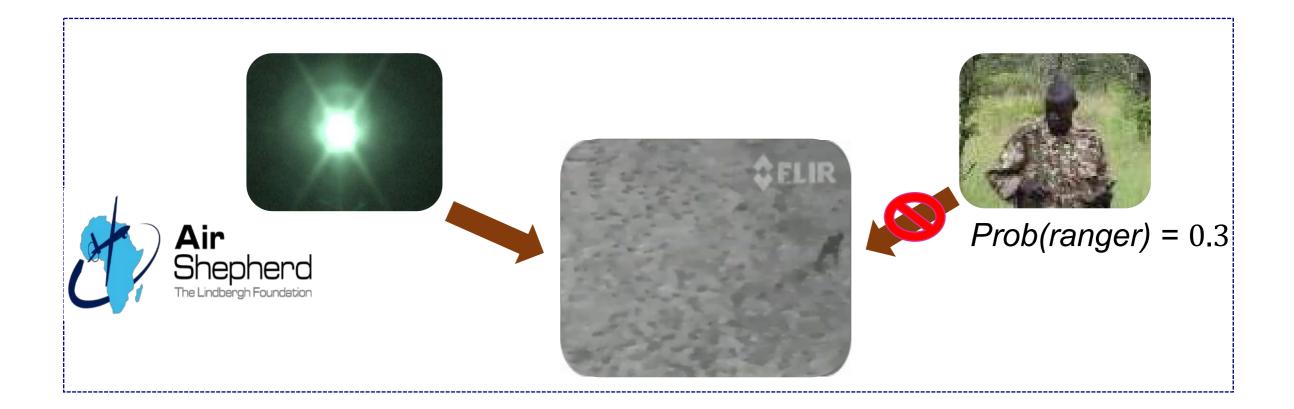
Drone Used to Inform Rangers

- Prob(ranger arrives) = 0.3 [poacher may not be stopped]
- Deceptive signaling to indicate ranger is arriving



Drone Used to Inform Rangers

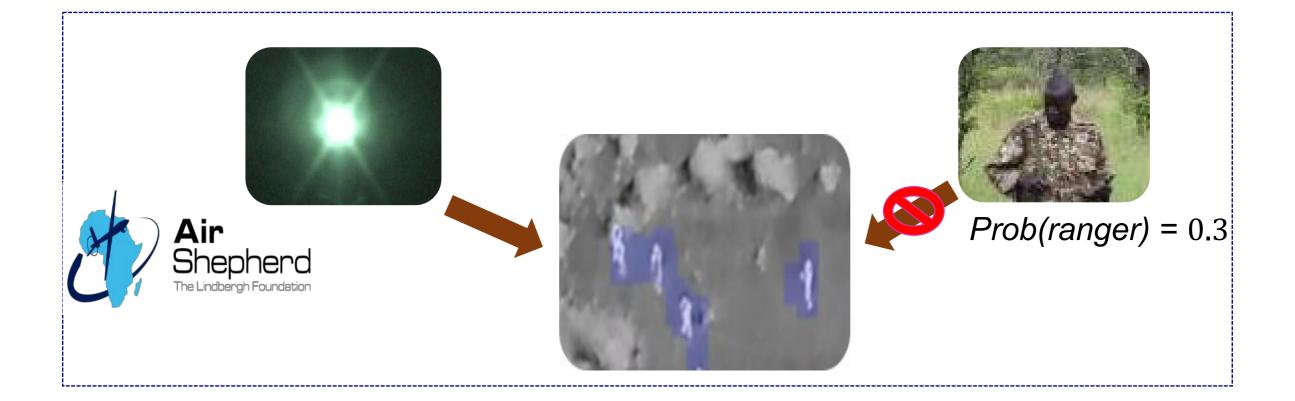
- Prob(ranger arrives) = 0.3 [poacher may not be stopped]
- Deceptive signaling to indicate ranger is arriving



Drone Used to Inform Rangers

Xu

- Prob(ranger arrives) = 0.3 [poacher may not be stopped]
- Deceptive signaling to indicate ranger is arriving
- Must be strategic in deceptive signaling



Strategic Signaling: Informational Advantage Defender Knows Pure & Mixed Strategy

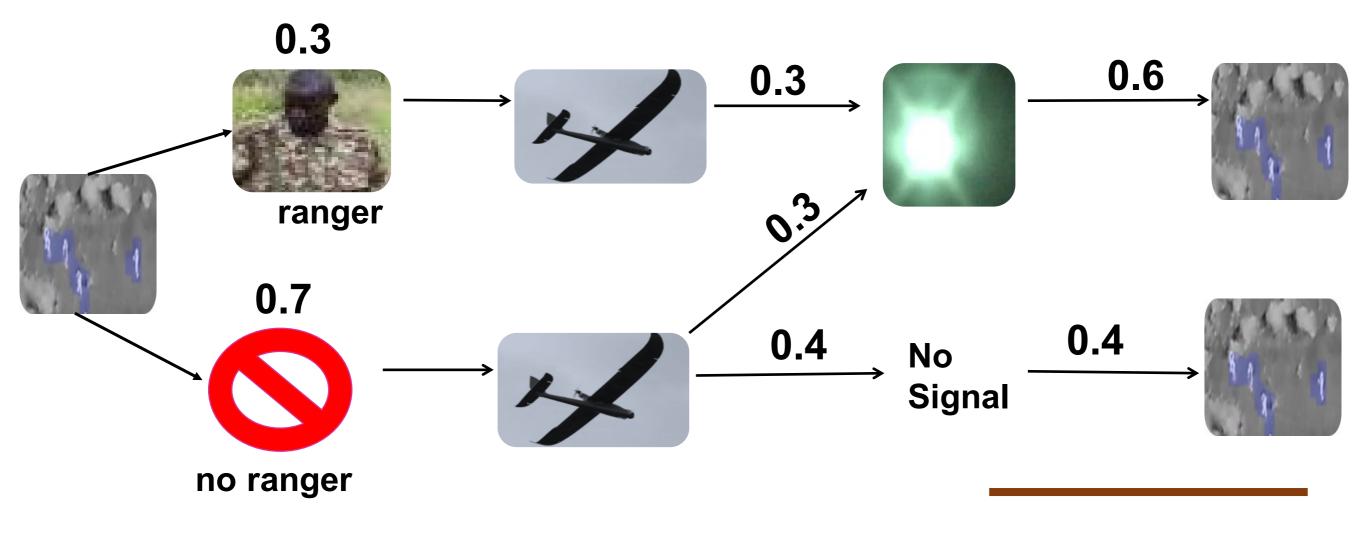
(AAAI 2018, AAAI 2020)

Xu

Bondi

Si-G Model: Stackelberg Security Games with Optimal Deceptive Signaling

- Poacher best interest to "believe signal" even if know 50% defender deception
- > Theorem: Computing optimal defender commitment is NP-hard even for zero-sum Si-G
- Extended to strategic signaling in presence of errors detecting adversaries



PAWS GOES GLOBAL with SMART platform!!

Protect Wildlife 800 National Parks Around the Globe

Also: Protect Forests, Fisheries...

Challenges from field deployments

Integrated learning of adversary models & game theoretic planning

- Learning adversary models with limited real-world data
- Robust game theoretic planning with learned adversary model uncertainty
- Active gathering of adversary information

Strategic signaling in "green security games" with real-time information

- Uncertainty in real-time information
- Multi-agent spatio-temporal coordination in signaling
- Cost-benefit tradeoff in investment in signaling

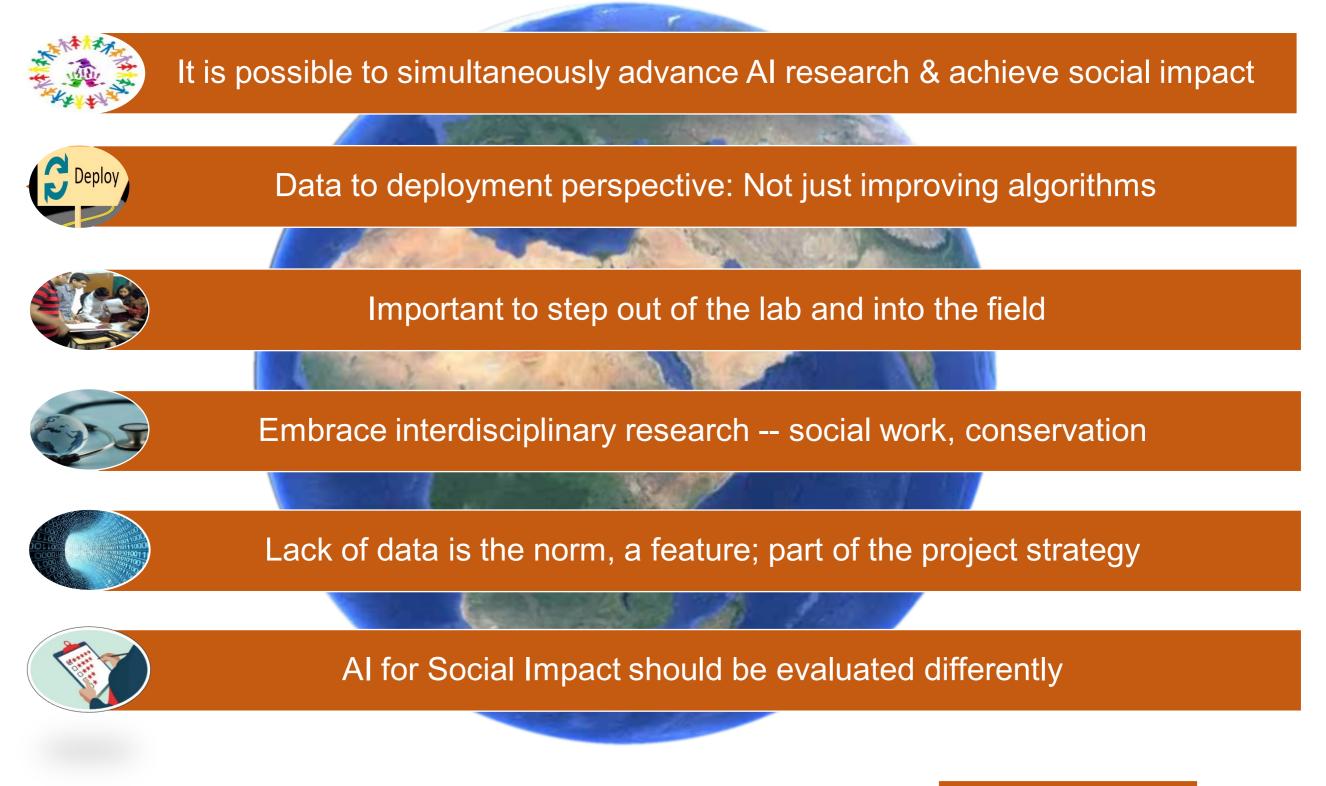
Three Key Takeaways

EC research on multiagent system impactful for public health/conservation projects

Field deployments bring up new research challenges for EC community

Wealth of new multiagent research challenges via partnerships with NGOs

Future: Al Research for Social Impact



Key Collaborators on Papers Referenced

(In the order papers referenced)

- Eric Rice (USC)
- Nicole Immorlica (MSR)
- Yair Zick (UMASS, Amherst)
- Balaraman Ravindran (IIT-Madras)
- Amit Sharma (MSR)
- Maia Majumder (Harvard)

- Michael Mina (Harvard)
- Daniel Larremore (Colorado)
- Andy Plumptre (Cambridge)
- Rohit Singh (WWF)
- Phebe Vayanos (USC)
- Bistra Dilkina (USC)

Collaborate to realize Al's tremendous potential to Improving society & fighting social injustice

@MilindTambe_Al