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Abstract

In 2020, maternal mortality in India was estimated to be as
high as 130 deaths per 100K live births, nearly twice the
UN’s target. To improve health outcomes, the non-profit AR-
MMAN sends automated voice messages to expecting and
new mothers across India. However, 38% of mothers stop lis-
tening to these calls, missing critical preventative care infor-
mation. To improve engagement, ARMMAN employs health
workers to intervene by making service calls, but workers can
only call a fraction of the 100K enrolled mothers. Partnering
with ARMMAN, we model the problem of allocating limited
interventions across mothers as a restless multi-armed bandit
(RMAB), where the realities of large scale and model un-
certainty present key new technical challenges. We address
these with GROUPS, a double oracle—based algorithm for ro-
bust planning in RMABs with scalable grouped arms. Ro-
bustness over grouped arms requires several methodological
advances. First, to adversarially select stochastic group dy-
namics, we develop a new method to optimize Whittle indices
over transition probability intervals. Second, to learn group-
level RMAB policy best responses to these adversarial en-
vironments, we introduce a weighted index heuristic. Third,
we prove a key theoretical result that planning over grouped
arms achieves the same minimax regret—optimal strategy as
planning over individual arms, under a technical condition.
Finally, using real-world data from ARMMAN, we show that
GROUPS produces robust policies that reduce minimax re-
gret by up to 50%, halving the number of preventable missed
voice messages to connect more mothers with life-saving ma-
ternal health information.

1 Introduction

Maternal mortality, the death of a mother' during preg-
nancy or within 42 days after childbirth, is an ongoing global
health crisis. In India, the maternal mortality rate is particu-
larly stark, estimated between 99 and 130 deaths per 100K
births in 2020 (Meh et al. 2021; Gates Foundation 2021),
significantly higher than Sustainable Development Goal 3.1
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"'We recognize that the term “mother” is imperfect, most no-
tably by not reflecting transgender and non-binary identities. We
highlight alternative language with discussion in Appendix A.

Figure 1: Mothers enrolled with
ARMMAN receive life-saving pre-
ventative care information via voice
messages throughout their preg-
nancy, childbirth, and neonatal pe-
riod. Photo courtesy of ARMMAN.

target of 70 per 100K births (United Nations 2021). Tragi-
cally, most maternal deaths are preventable (HLPF Review
of SDG3 2017), but lack of finances and awareness prevent
mothers from seeking care, particularly in low-income com-
munities (Carvalho, Salehi, and Goldie 2013).

To improve maternal health outcomes, we work with
ARMMAN, an India-based non-profit that provides free
preventive care to millions of mothers by sending auto-
mated health voice messages, specifically targeted towards
low-income communities (similar to MAMA (MomConnect
2021)). Mothers enrolled in the program receive weekly au-
tomated voice messages during pregnancy and up to one
year after childbirth. Randomized control trials showed that
ARMMAN’s intervention program significantly improves
key indicators including treatment-seeking during complica-
tions, infant breastfeeding, and post-infancy weight (Murthy
et al. 2019). However, ARMMAN found that nearly 38% of
mothers disengage, missing critical health information. To
improve engagement, ARMMAN employs health workers
to provide service calls, but there are only tens of health
workers compared to hundreds of thousands of mothers in
a given service area — so interventions must be carefully
targeted to maximize engagement.

Working with ARMMAN, we model this resource-limited
intervention planning problem as a restless multi-armed ban-
dit (RMAB), where each mother (arm) changes their weekly
engagement (state) according to a stochastic Markov deci-
sion process. RMABs are PSPACE-hard to solve exactly
(Papadimitriou and Tsitsiklis 1999) and even the widely-
cited, asymptotically optimal “Whittle index policy* relax-
ation (Whittle 1988) is challenging to compute at scale.

To improve the scalability of real-world RMAB plan-
ning, Mate et al. (2022) proposed to organize arms into
a small number of groups, infer transition dynamics from



each group’s data, then compute the Whittle index policy
per group. While the scalability of their method is desir-
able for ARMMAN’s problem setting, it ignores a key re-
ality of model uncertainty: learning transition probabilities
from historical data leads to imprecise and imperfect esti-
mates (Sinha and Mahajan 2022) which must be accounted
for in planning. Computing RMAB policies that are robust
to model uncertainty has only recently been studied. Exist-
ing methods achieve robustness to interval uncertainty over
model dynamics by planning against a model-controlling
“nature” adversary to yield policies that minimize max re-
gret (Killian et al. 2022; Xu et al. 2021). Robustness is de-
sirable for ARMMAN’s setting, but these methods require
training deep reinforcement learning (RL) agents for each
arm, so unfortunately do not scale past hundreds of arms.

To enable large-scale, robust intervention planning for
ARMMAN, we bridge the gaps in previous works by in-
troducing robust grouped RMAB. Our model achieves scala-
bility by considering a grouped-arm paradigm and optimiz-
ing for minimax regret over the uncertain model dynamics
per group. Unfortunately, the grouping abstraction breaks
key assumptions used in previous robust RMAB work: that
(1) policies improve by collecting samples of regret by
evolving a joint state of all arms, and (2) the nature adversary
controls the transitions of each arm individually. We over-
come (1) by decomposing regret per arm, freeing the planner
from relying on a cumbersome joint state to enable efficient
group-abstracted planning. For (2), we prove that restricting
the adversary to control dynamics only over groups does not
change the equilibrium strategy, allowing us to leverage the
scalable robust grouped model to find policies over hundreds
of thousands of arms without sacrificing quality.

Our contributions are as follows. First, we introduce
robust grouped RMABs with a minimax regret objective
and propose a solution that employs the double oracle
framework (McMahan, Gordon, and Blum 2003). The ap-
proach we propose is GROUPS: Group RMAB Oracles for
Uncertainty-robust Planning at Scale. Second, we develop
novel methods designed for robust grouped RMABs to im-
plement the two oracles, the planner and adversary. Planning
over groups of arms allows large scale-up but presents sev-
eral new algorithmic challenges as we detail above. Third,
we prove that the minimax regret—optimal strategy is the
same whether the planner and adversary play at individual
or group level. Our proof enables massive scale-up as it is
now sufficient to compute robust strategies only over groups,
instead of over individual arms. Finally, we demonstrate em-
pirically on real data that GROUPS reduces worst-case re-
gret up to 50% compared to baselines, representing po-
tentially thousands of additional engagements with life-
saving information. We are working with ARMMAN to de-
ploy GROUPS to positively impact maternal health.

2 Related Work

Mobile-based maternal health services are effective and af-
fordable in low- and middle-income communities (Watter-
son, Walsh, and Madeka 2015; Tamrat and Kachnowski
2012). Successful programs include MatHealth in Uganda
(Musiimenta et al. 2021), Aponjon in Bangladesh (Alam

et al. 2017), ARMMAN in India (Murthy et al. 2019), and
text4baby in the United States (Evans, Wallace, and Snider
2012). Our work is designed to support such programs.

Whittle (1988) introduced RMABs and proposed the
Whittle index policy, which computes indices estimating
each arm’s “return on investment” then acts on arms with
the top K. Weber and Weiss (1990) showed this policy is
asymptotically optimal under a technical condition. Many
RMAB studies assume known transition dynamics, although
some recent works design methods to learn policies online
(Wang, Huang, and Lui 2020; Nakhleh et al. 2021; Biswas
et al. 2021; Killian et al. 2021; Wang et al. 2022). However,
these online approaches require collecting a prohibitively
large number of samples, limiting their real-world applica-
bility in scenarios where the time horizon is short.

Most robust planning literature consider single-MDP (one
arm) settings (Pinto et al. 2017; Lanctot et al. 2017; Li
et al. 2019), rather than the budget-coupled N-MDP setting
of RMAB. Even for single MDPs, optimizing criteria such
as minimax regret (Braziunas and Boutilier 2007) requires
searching massive strategy spaces; double oracle (McMa-
han, Gordon, and Blum 2003) is one approach to do so effi-
ciently. Recent work combines double oracle with deep RL
to solve for minimax regret—optimal robust policies for sin-
gle MDPs (Xu et al. 2021). Killian et al. (2022) extended the
idea to solve larger RMABs. Both Xu et al. (2021) and Kil-
lian et al. (2022) use deep RL which, if applied to a group
setting, would need to explicitly account for the size of each
group and state of each arm within each group, limiting their
methods’ ability to scale beyond hundreds of arms. For the
large problem size that ARMMAN faces, our methods must
scale to hundreds of thousands of arms.

Finally, robust planning for stochastic bandits is well
studied (Maillard 2013; Huo and Fu 2017) However,
stochastic bandits are stateless and lack passive rewards, and
so are not expressive enough to model ARMMAN’s setting.

3 Model

We consider grouped RMABs where N arms (enrolled moth-
ers) comprise M groups. Each arm n € [N] follows an MDP
(S; A;P™r; ) wheres € S := {0;1} is the state space
indicating whether a mother is engaging (Sn = 1) or not en-
gaging (Sp = 0) with automated voice messages; r(S) = S
is the reward function; a € A := {0; 1} is the action space,
i.e., {not intervene, intervene}; P"(s; a; s") is the probabil-
ity that arm N transitions from state s to s’ given action a;
€ [0; 1] is the discount factor. Let s € SN and a € AN be
the combined state and action vectors of all arms. At each
timestep t, the task is to choose K mothers to intervene on
(deliver service calls to) given the current state Sg.
Formally, we compute RMAB policies SN
AN that respect the the budget constraint | (S)[1 =
K. For a given policy and a fixed environment P :=
{P " }n2[nj representing a matrix of transition probabilities
of @l arms, the average discounted reward is G( ;P) :=
E[ tj;o 'r(st) | ;P]. Given P, the optimal policy which
maximizes reward is 5 := max G( ;P). An asymp-
totically optimal RMAB policy is the Whittle index pol-



icy (WIP), which computes the Whittle index W[ (s) for
each arm N and state S, then intervenes on the arms with
the greatest K indices. The Whittle index represents “re-
turn on investment,” interpreted as a charge for acting
that makes no intervention equally valuable as interven-
tion in the long term. Let QB (s;a; ) = r(s) — a +
Esrzs [maxaoa QB (s’ a’; )] be the long-term expected
value of action @ on arm n in state S. Then, for a given P,
the Whittle index for arm n at state S is W2 (S) = min{
QB(sil; ) =Qp(si0; )}
Grouped RMAB For scalability, we organize arms into
groups, extending the concept from Mate et al. (2022)
to our more challenging robust setting, e.g., by cluster-
ing based on historical engagement patterns. We then esti-
mate uncertainty intervals over transition probabilities per
group. However, note that our robust policy computation
steps in Section 4 are agnostic to the particular grouping
and interval estimation methods. Let [N] — [M]
be a surjective mapping of arms to groups and  1(m)
be the set of arms in group M. The uncertainty intervals
are E:;]a;so = [Qa;so;ﬁsa;so] for all m;s; a;s’. Then let
P = {E?a;sl)}‘S:a;sO be the interval uncertainty matrix for
group M across all states and actions. Importantly, though
arms in the same group have the same uncertainty intervals,
they may not have the same instantiated probabilities within
those intervals.

Minimax regret We define regret for grouped RMAB as:
R( ;P):=G( &;P)-G( ;P); (1

where P instantiates P™ € P for all groups m € [M].
Our objective is learn a policy that minimizes max regret:

minmPaXR( P 2

We choose minimax regret as our robust objective since it
does not require probability distributions over the uncer-
tainty intervals (Braziunas and Boutilier 2007). Such distri-
butional information is scarce in our setting where K < N,
giving us few samples of transitions for action a = 1.

4 Methodology

We introduce GROUPS (Group RMAB Oracles for
Uncertainty-robust Planning at Scale), a four-step approach
visualized end-to-end in Fig. 2. Step (3) is our key algo-
rithmic contribution. In step (1), similar arms (mothers) are
mapped into groups. In step (2), we combine data from
arms in each group with historical engagement data, us-
ing bootstrapping to estimate uncertainty intervals Em for
each group (Schomaker and Heumann 2018). In step (3),
we compute a minimax regret—optimal policy over groups,
where arms in a given group are treated as having the
same transition probabilities, greatly improving computa-
tional efficiency. Critically, we show in Section 5 that this
group-level planning is lossless — i.e., the policies we
compute are the same minimax regret—optimal policies as
would be computed if grouped arms were allowed differ-
ent transition probabilities (within the same uncertainty in-
tervals). In step (4), we map group-level policies back to

individual-level policies by computing Whittle indices for
each group m € [M], then assigning an index to each arm n
within that group based on its current state Sp,. Our policy is
to intervene on mothers with the top K indices.

Double oracle In step (3), we adopt a double oracle (DO)
framework (McMahan, Gordon, and Blum 2003), solving
Eq. 2 by formulating the problem as a two-player zero-sum
game between the RMAB planner and nature adversary,
where the players aim to minimize and maximize regret re-
spectively. The planner’s pure strategy space is the finite set
of all feasible RMAB policies ; the adversary has the con-
tinuous space of transition probabilities P within the uncer-
tainty intervals P for all m € [M]. The algorithm main-
tains a finite pure strategy set for each player. Each iteration,
we compute a mixed strategy Nash equilibrium (MSNE) on
the game over the finite strategy sets. A mixed strategy is
a probability distribution over pure strategies. In each it-
eration, the planner oracle computes a best response pure
strategy against the adversary’s mixed strategy; is added
to the planner’s finite strategy set. We follow a symmetric
approach to compute a best response P for the adversary.
Upon termination, we return the final planner mixed strat-
egy, which is guaranteed, under mild conditions, to be an

-optimal minimax solution (Xu et al. 2021). In practice, we
terminate after T iterations (Lanctot et al. 2017). The key
technical challenge of using the double oracle approach is
designing planner and adversary oracles for group RMABs.

4.1 Planner Oracle: WI for Mixed Strategy

An adversary mixed strategy  contains tuples (Pj; i)
where j is the probability of playing pure strategy Pj. Sim-
ilarly, a planner mixed strategy  contains tuples ( j; i)
where j is the probability of playing pure strategy j.

The planner oracle must compute an intervention pol-
icy that minimizes regret with respect to a given adver-
sary mixed strategy  over environment settings Pj. Since

and thus all P; are fixed, and only the second term of re-
gret in Eq. 1 depends on , minimizing regret is equivalent
to maximizing reward, to ensure that mothers engage with as
many voice messages as possible. However, existing reward-
maximizing RMAB algorithms assume a single environment
Pj, versus a mixed strategy  over multiple P;. To address
this combinatorially hard problem, we develop a new heuris-
tic approach that computes well-performing policies based
on strategically weighted combinations of Whittle indices.

Unfortunately, optimizing exact regret is at least
PSPACE-hard (Papadimitriou and Tsitsiklis 1999). Previous
work optimized regret of the Lagrange relaxation (Killian
et al. 2022), but relied on joint arm states which does not
scale. We introduce a decomposed notion of regret, allowing
us to optimize regret of the full RMAB in a far more scalable
way. We call this Whittle index regret: the sum of Whittle
indices played by a policy compared to the optimal WIP.
The key is that the Whittle index is a measure of “reward
if played” — so agents who play arms with low Whittle in-
dexes in lieu of arms with high Whittle indexes will incur
large regret. As a further advantage, this regret notion natu-
rally extends to groups — since the Whittle index is a func-
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Figure 2: GROUPS pipeline for robust grouped RMABs. (1) Assign enrolled mothers (arms) to groups. (2) Estimate uncertainty
intervals over transition probabilities. (3) Novelty of this work: Compute robust minimax regret—optimal policy via double
oracle, where each oracle efficiently searches the large-scale strategy spaces by using the group abstraction. (4) To execute

policies, translate group-level indices |~_£“ to arm-level intervention policy.

tion only of transition probabilities and rewards, all of which
are shared in a group under Pj — improving scaling.

Given states S, denote the set of arms pulled by policy as
® (s)={ne[N]: n(s) =1} where n(S)isthe action
on arm N. The planner’s Whittle index regret R’ (s) is:

Cma (WRET) - WRET :®)
Pi; i) JLK] n2 n2 (s)

The first term in Eq. 3 corresponds to a planner’s optimal
mixed strategy which plays the WIP corresponding to each
setting of transition probabilities Pj in . To minimize re-

gret R’\’,ff "¢ we seek a policy  that plays Whittle indices as
close as possible to the WIPs in the first term, which equiv-
alently maximizes the second term. How to produce a pure
strategy  that closely follows the mixed WIP policies of
the first term is the key challenge. We start by making the
first term more closely computable as a pure strategy with a
relaxation that leads to relaxed regret, by moving the expec-
tation over  inside the max over indices:

8 o

<X X =
me[xg] _ iWEg. (s") _ - 4)
j j=K Tn2 (p;; )2 7

We replace the first term of R (s) (from Eq. 3) with
Eq. 4 to get RV (s). This illuminates a heuristic for the
planner oracle. Specifically, Eq. 4 can be computed exactly
by a single policy , meaning we can make Ry’ (s) = 0
by finding a  equivalent to Eq. 4. To do so, we compute
Whittle indices for each pure strategy Pj, compute the j—
weighted average index 1" for each group m and state S,
then follow the greedy strategy of a WIP. Since the expec-
tation over ; is pushed through the max (Eq. 4) we have
RO (s) < REY™ | but we show in appendix Fig. 4 that

Algorithm 1: WI4MS (Planner Oracle)
Input Adversary mixed strategy

1: for (P;; i) € do //environment and probability i
22 for{m=1toM}and{s € S}do

3: I[m;s] += i x COMPUTEWI(m;s; P;™)
4: = WIP(l) // implements Whittle index policy
5: return // planner pure strategy

this weighted index policy performs well, despite this relax-
ation. We call this approach Whittle Index for Mixed Strat-
egy (WI4MS), given in Alg. 1. Whittle indices are com-
puted via COMPUTEWI described in Alg. 4 in the appendix.

4.2 Adversary Oracle: RegretMax Whittle Index

The adversary oracle must find one environment P that max-
imizes regret for the planner’s current mixed strategy  over
policies { } to maximize the number of missed calls. To
guide the search, we must address challenges both in max-
imizing regret of RMAB policies and in searching over a
continuous strategy space Em. Our insight is to maximize
regret by manipulating the optimal RMAB policy (a Whittle
index policy) to simultaneously minimize the values of Whit-
tle indices acted on by the planner and maximize indices that
are not.

We utilize again the notion of Whittle index regret, re-
defined for the adversary oracle:

2 3
adversary _ — 4 > Nn/en ?.p5
Rw = E Wg(s™) piP
n2 E’(s) 3
1
> > i
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