Al for social impact: Results from deployments for public health and conservation

MILIND TAMBE

Director, Ctr for Research on Computation & Society

Harvard University

Principal Scientist & Director "AI for Social Good"

Google Research

Al for Social Impact (AI4SI)

Public Health

Conservation

Public Safety and Security

Optimize Our Limited Intervention Resources

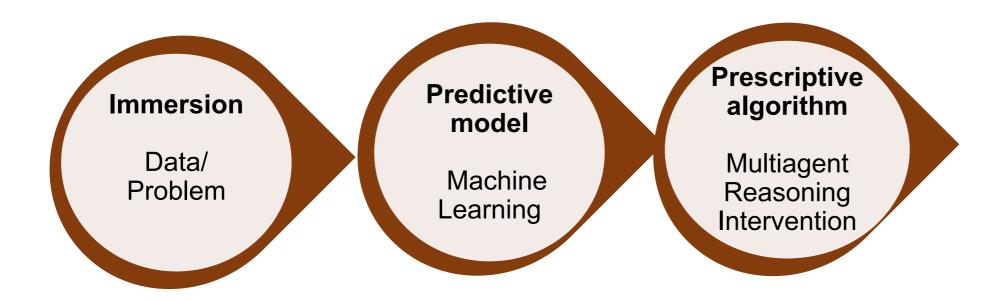
- 1. Lessons learned in AI for social impact
- 2. Steps followed in taking AI systems to social impact
- 3. Challenges & opportunities to do more together in AI4SI

Lesson #1: Achieving Social Impact and Al Innovation Go hand-in-hand

Lesson #2: Partnerships with Communities, NGOs (non-profits), governments crucial

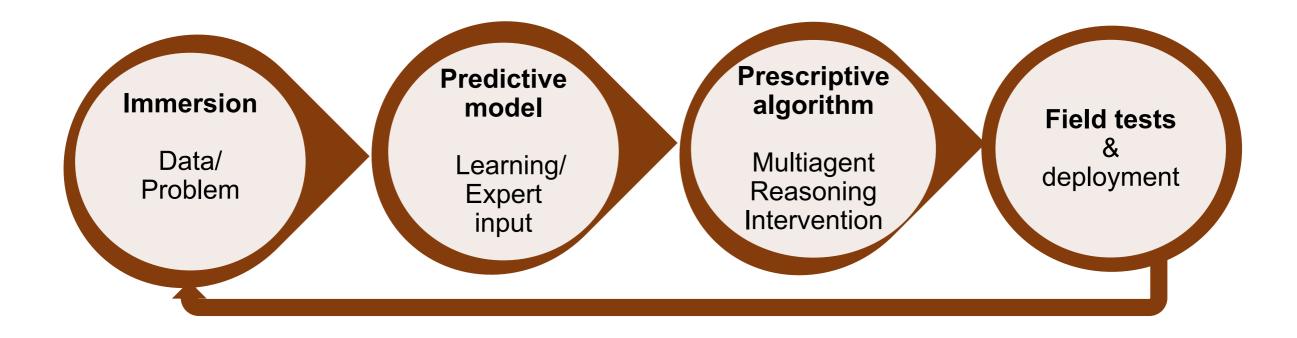
Avoid being gatekeepers to AI4SI technology

Lesson #3: Data-to-deployment pipeline; beyond improving algorithms



Lesson #3: Full data-to-deployment pipeline; beyond improving algorithms

Field test & deployment: Social impact is a key objective



Outline: Four Projects

Public Health

- Restless bandits: Maternal & child care [Google Research India]
- Social networks: HIV prevention
- Agent-based modeling: COVID-19 dynamics

Conservation

Game theory, behavior modeling: Poaching prevention

Outline: Four Projects

Public Health

- Restless bandits: Maternal & child care
- Social networks: HIV prevention
- Agent-based modeling: COVID-19 dynamics

Conservation

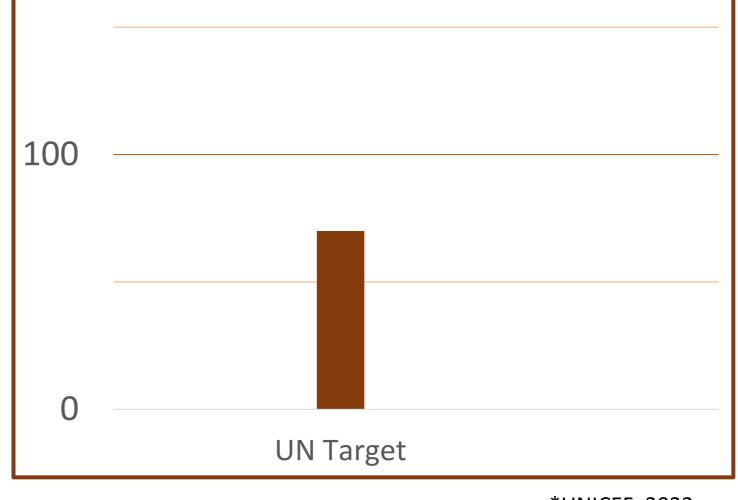
- *Game theory, behavior modeling: Poaching prevention*
- Cover papers from 2017-now [AAAI, IJCAI, NeurIPS, KDD...]
- Focus on real world results; more simulations in papers
- Lead PhD students & researchers highlighted

United Nations Sustainable Development Target

By 2030, maternal mortality ratio below 70 per 100,000 live births

Credit: WHO SEARO

Maternal Mortality Ratios (2017)



*UNICEF, 2022

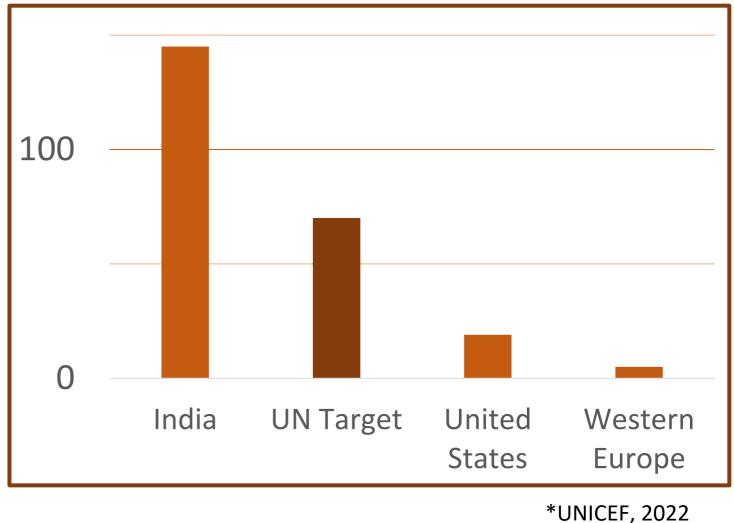
Credit: WHO/ Blink Media - Veejay Villafranca

United Nations Sustainable Development Target

By 2030, maternal mortality ratio below 70 per 100,000 live births

Credit: WHO SEARO

Maternal Mortality Ratios (2017)



Credit: WHO/ Blink Media - Veejay Villafranca

Maternal & Child Care in India

- Woman dies in childbirth every 20 min
- 4 of 10 children too thin/short

Dr. Aparna Hegde Founder, ARMMAN

 Pregnancy is not a disease.
 Childhood is not an ailment.
 Dying due to a natural life event is not acceptable.

26 Million beneficiaries (mothers); 19 states in India...

We want to do something with AI, but what can we do and how?

mMitra Mobile Health Program Adherence: Maternal & Child Care in India

mMitra mHealth program:

- Weekly 2 minute automated message to new/expecting moms
- Significant benefits:
 2 million women enrolled

Unfortunately, 30-40% may become low-listeners

mMitra Health Program Adherence: Maternal & Child Care in India

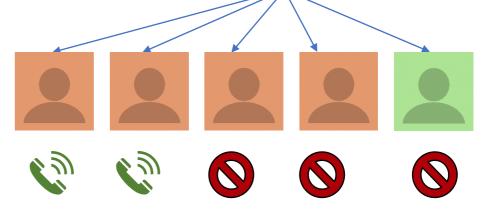
mMitra:

- Weekly 2 minute automated message to new/expecting moms
- Significant benefits:
 2 million women enrolled
- Unfortunately, 30-40% may become low-listeners
- > Limited intervention resources: Service call to small number of beneficiaries

Intervention Scheduling with Limited Resources: Motivating Restless Bandits

Example:

- Large number N beneficiaries: 100000
- Choose K=1000 for service call per week?
- Maximize health messages listened to



Intervention Scheduling with Limited Resources: Motivating Restless Bandits

Example:

- Large number N beneficiaries: 100000
- Choose K=1000 for service call per week?
- Maximize health messages listened to

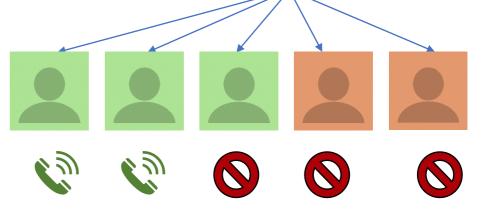


Photo Credit: IntraHealth International (CC BY-NC-SA 3.0 via

Intervention Scheduling with Limited Resources: Motivating Restless Bandits

Example:

- Large number N beneficiaries: 100000
- Which K=1000 for service call per week?
- Maximize number of messages listened to

Challenges:

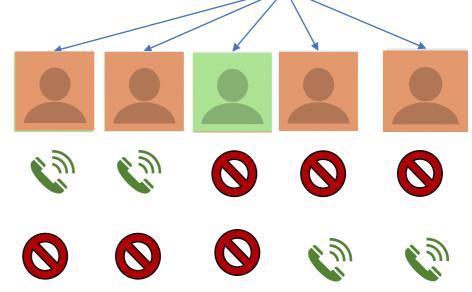
- Call may not change beneficiary state
- Beneficiary may change state on their own
- Prioritize 1000 beneficiaries per week

Restless bandit: K of N arms per week

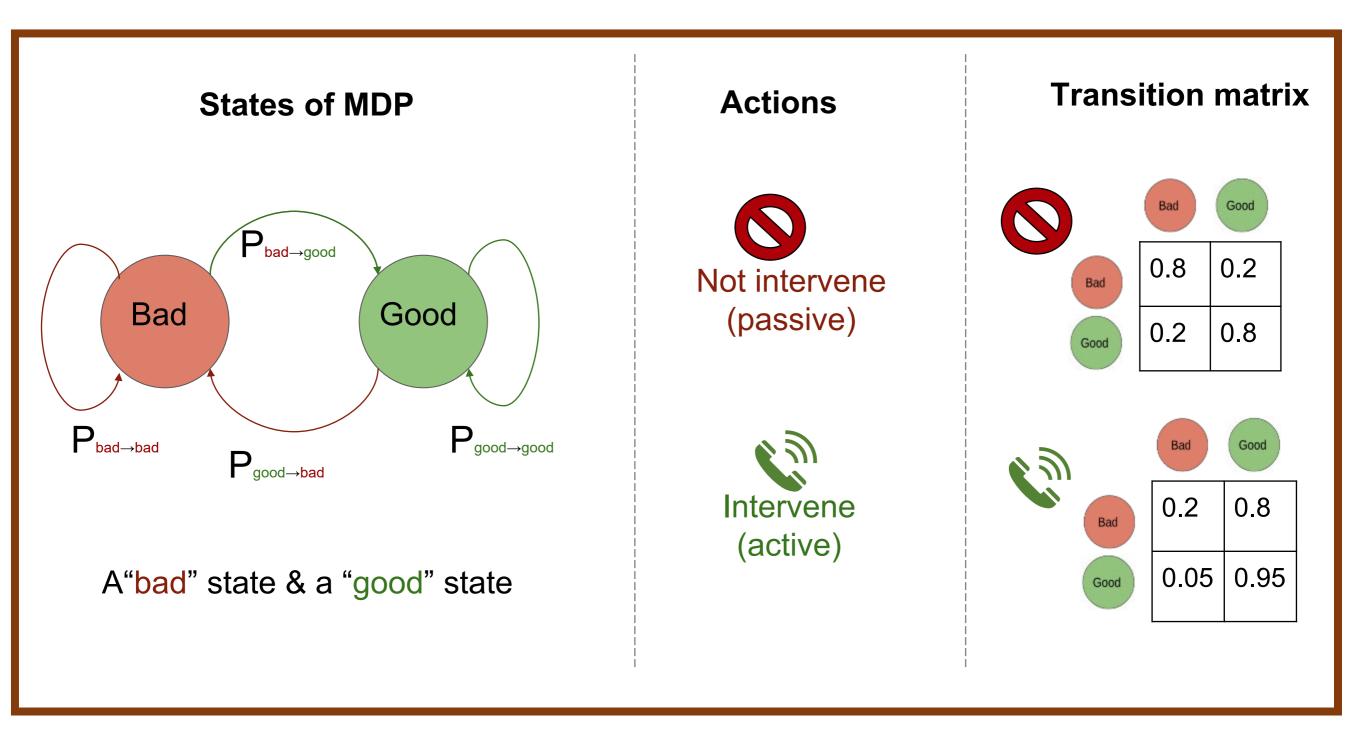
Photo Credit: IntraHealth International (CC BY-NC-SA 3.0 via

Date: 9/15/2022

https://www.intrahealth.org/)

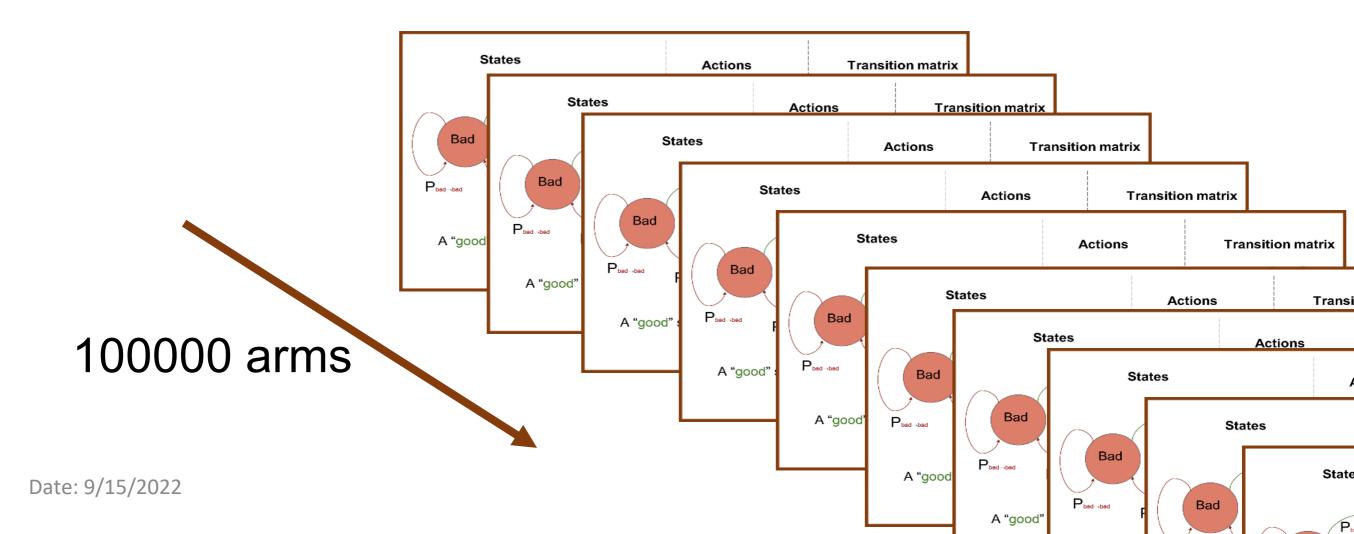


Restless Bandits Model: Each Arm is an MDP (Markov Decision Problem) Each Arm Models One Mother/Beneficiary



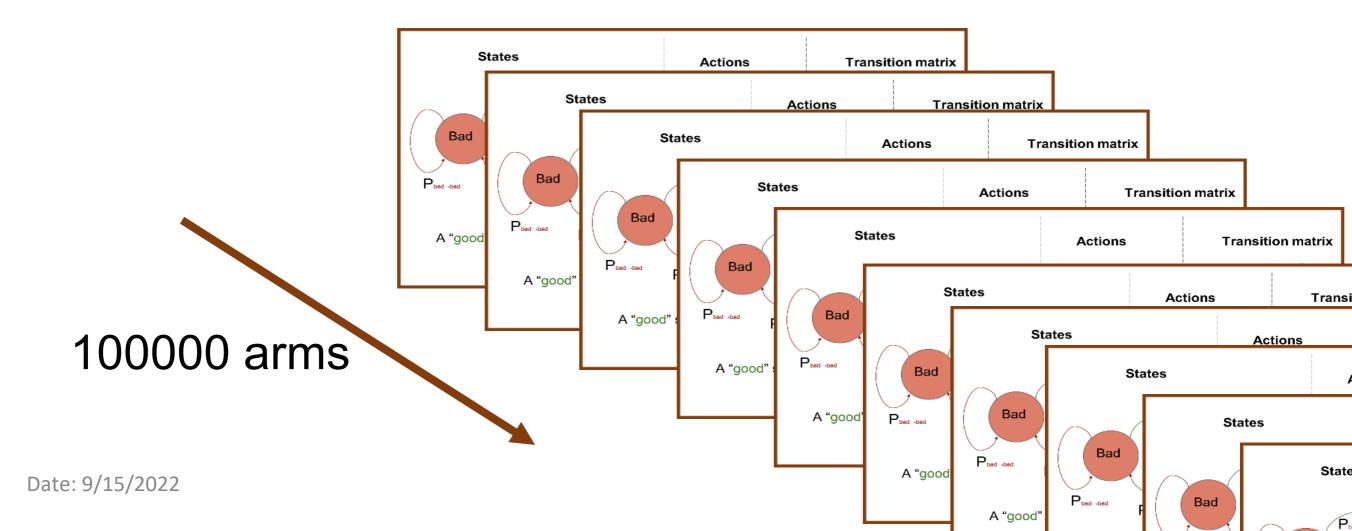
Compute Whittle index for current state of each arm: Computes benefit of intervention Use (Qian et al 2016) algorithm to compute Whittle index, choose top K

$$W(s) = INF_{\gamma} \{ \gamma \colon Q_{\gamma}(s, \mathbb{O}) = Q_{\gamma}(s, \mathbb{O}) \}$$



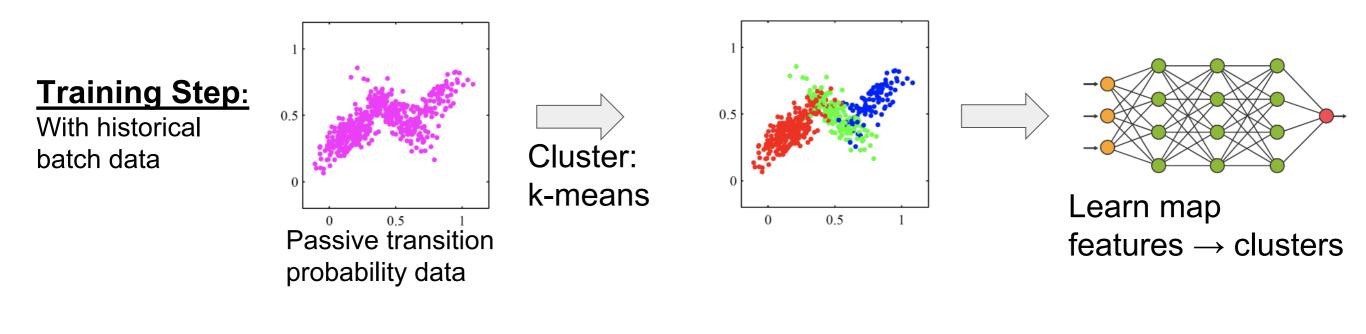
Compute Whittle index for current state of each arm: Computes benefit of intervention Use (Qian et al 2016) algorithm to compute Whittle index, choose top K

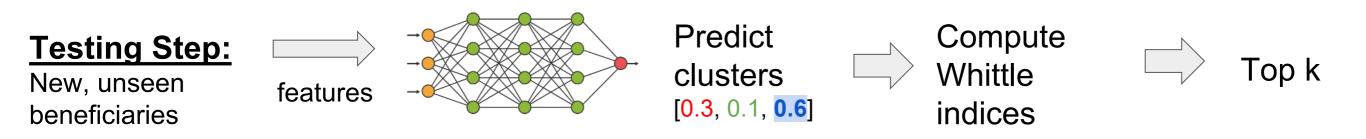
Proven indexability for asymptotic optimality



Key Research Challenge Unknown Transition Probabilities

- Limited previous beneficiary data: features f + engagement sequence {(s, a, s'), ... }
- > Clustering compensates for lack of data, also speeds up Whittle index computation





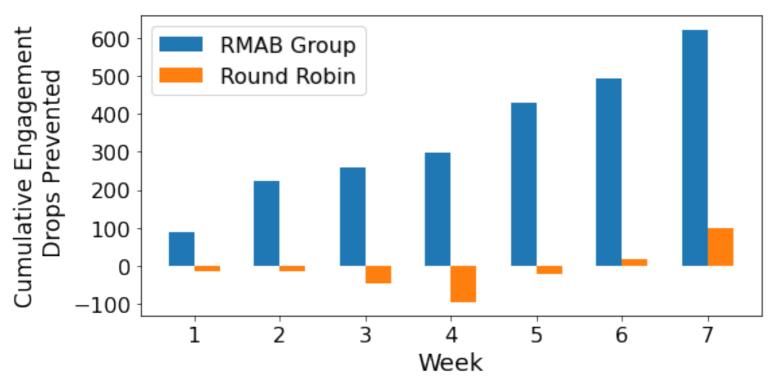
Results of 23000 Beneficiary Field Study (AAAI 2022)

Taneja Mate

First large-scale application: restless multiarmed bandits (RMAB) for public health

- 7667 beneficiaries per group: RMAB, Round-robin, Current-Standard-of-Care (CSOC)
- Pulled 225 arms/week for seven weeks

- How many more health messages listened to over Current-Std-of-Care (CSOC) group
- Statistical significance: linear regression model



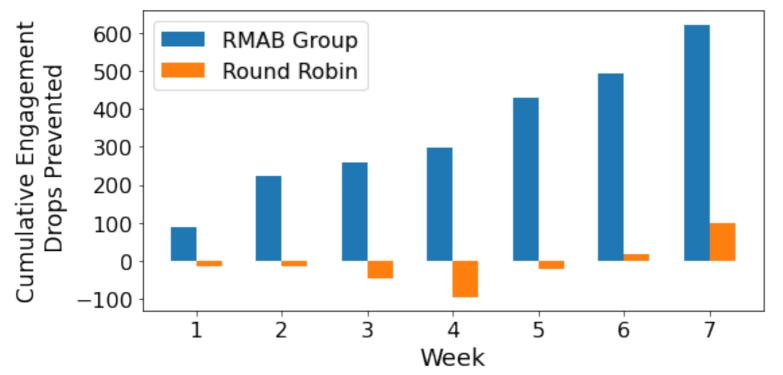
	RMAB vs CSOC	RR vs CSOC	RMAB vs RR
% reduction in cumula- tive engagement drops	32.0%	5.2%	28.3%
p-value	0.044*	0.740	0.098^{\dagger}

Results of 23000 Beneficiary Field Study (AAAI 2022)

Mate

First large-scale application: restless multiarmed bandits (RMAB) for public health

- Important to optimize service calls
- RMAB cuts by 30% drop off rates over current standard of care



	RMAB vs CSOC	RR vs CSOC	RMAB vs RR
% reduction in cumula- tive engagement drops	32.0%	5.2%	28.3%
p-value	0.044*	0.740	0.098

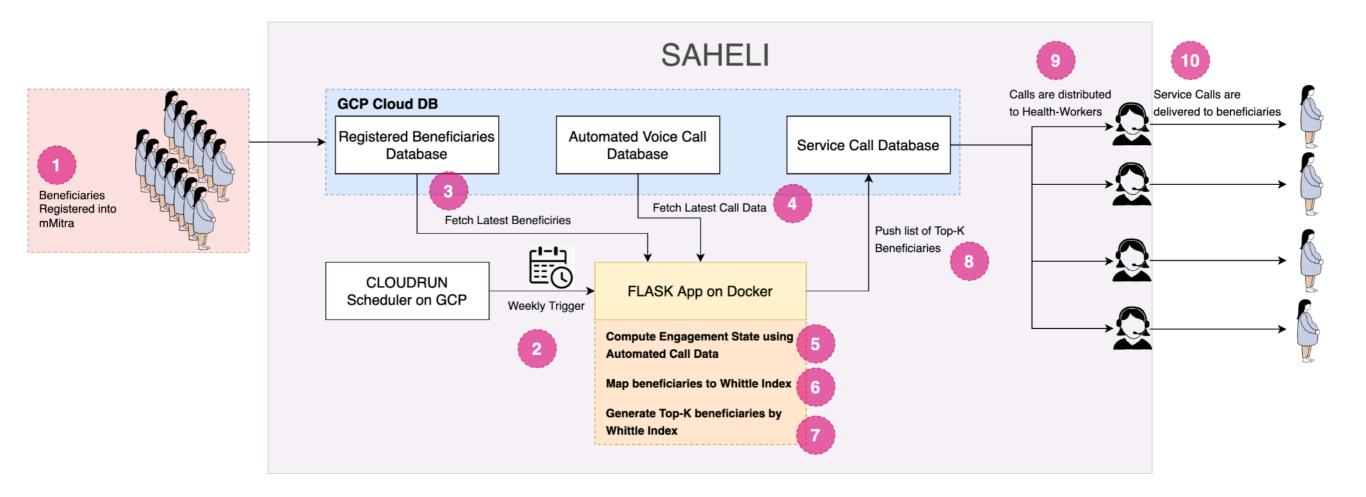
SAHELI: RMAB Deployed at ARMMAN

"Friend" in Hindi; also an acronym

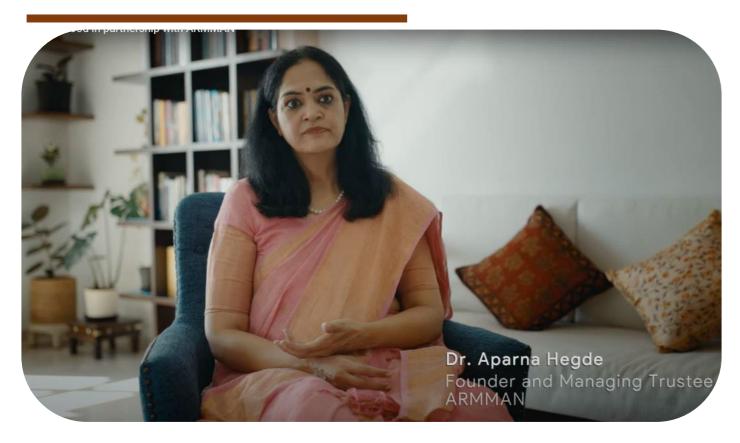
Verma

Singh

50K beneficiaries assisted, continue to assist more



SAHELI Deployment Youtube: "AI for Social Good in partnership with ARMMAN"



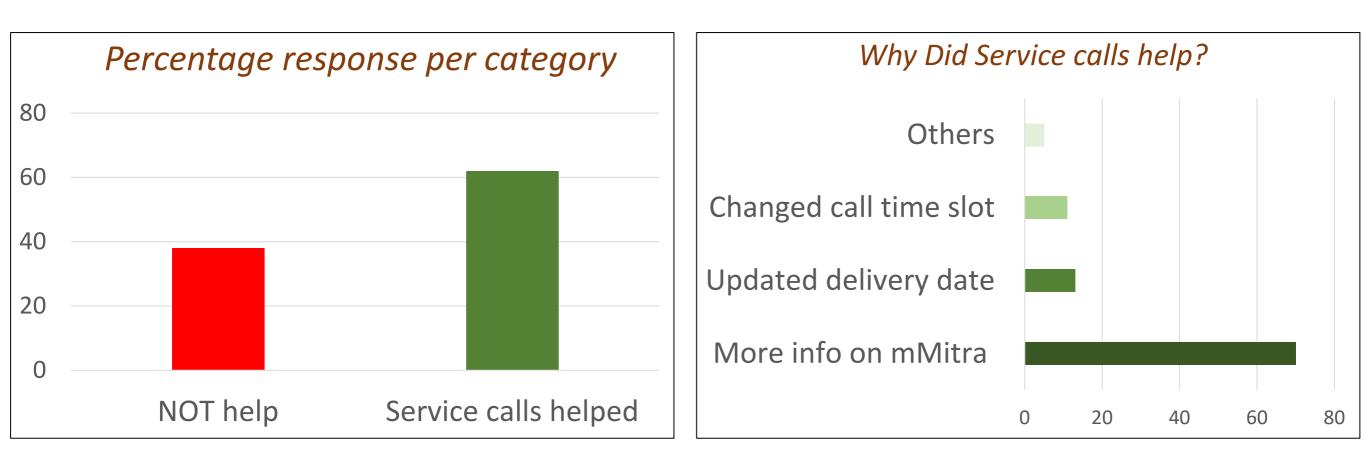
"We are able to reach out to more and more women each week, and get them back into the fold and save lives, because of AI" – Dr Aparna Hegde

SAHELI Deployment Youtube: "Al for Social Good in partnership with ARMMAN"

SAHELI Deployment: Why Did Service calls help

Madhiwala

- Surveyed 500 service call receivers
- > Did service call improve your listenership?
- > Why did service calls help?



Simpler Alternative? Simulation Comparison: Simpler Benchmarks

- 7667 beneficiaries per group:
 RMAB-Whittle, RMAB-Greedy, Random, Current-Standard-of-Care (CSOC)
- Pulled 225 arms/week for seven weeks
 - Mean Engagement Improvement

 1000

 800

 600

 400

 200

 0

 Random

 RMAB (Greedy)

 RMAB (Whittle)

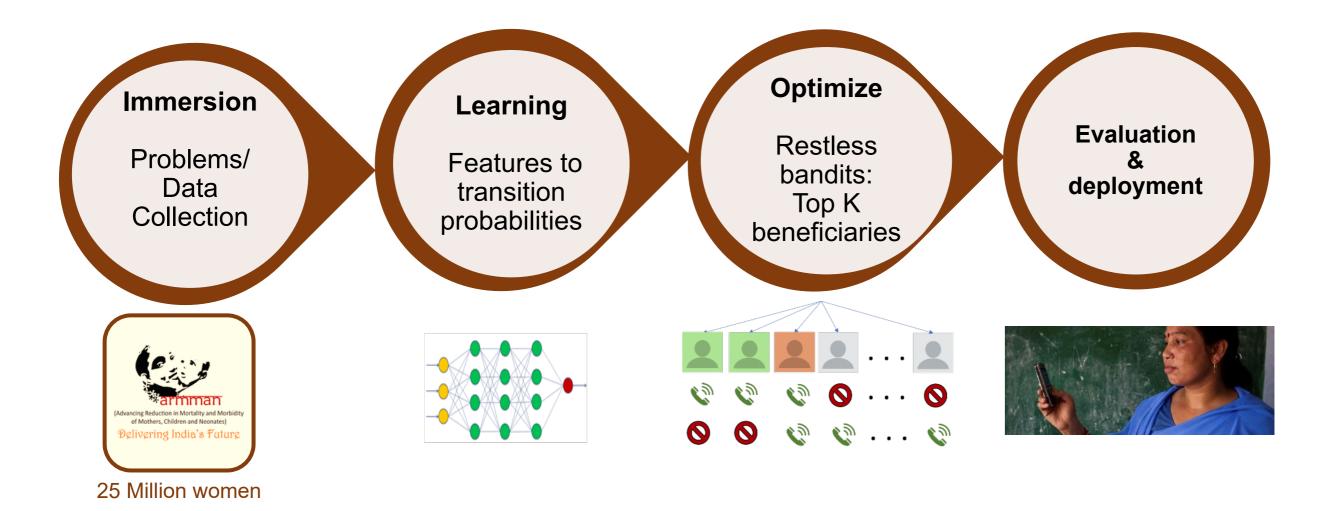
Statistically significant improvement over CSOC

Next Steps: Decision-focused Learning in Restless Bandits

Wang

Data-to-deployment pipeline:

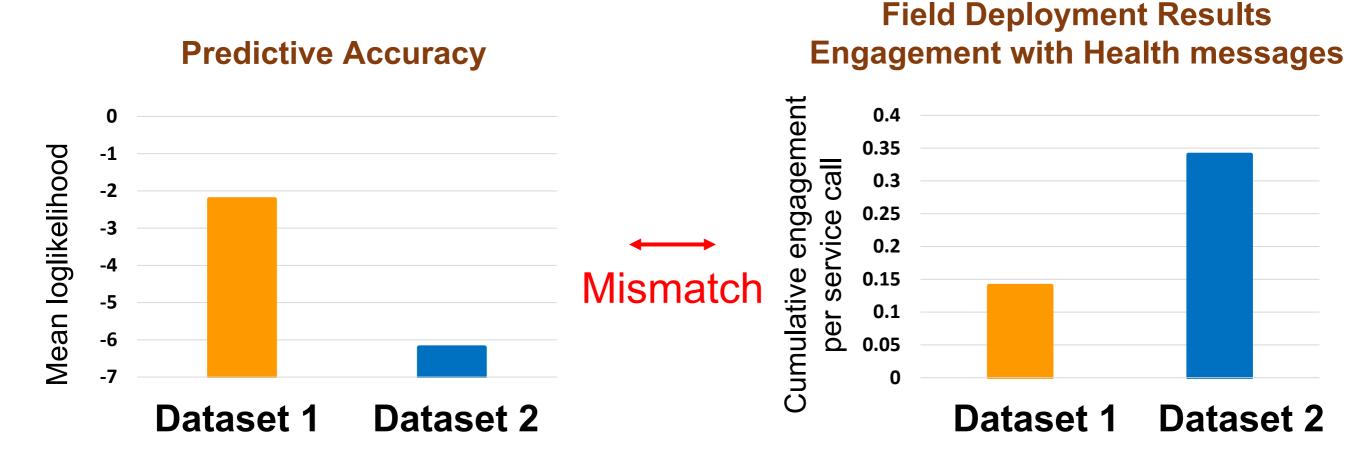
- **TWO STAGES**: Maximize learning accuracy, then optimize (maximize decision quality)
- Maximizing learning accuracy ≠ Maximizing decision quality



Next Steps: Decision-focused Learning in Restless Bandits

(Under submission)

- Maximizing learning accuracy ≠ Maximizing decision quality
- Real world example from ARMMAN

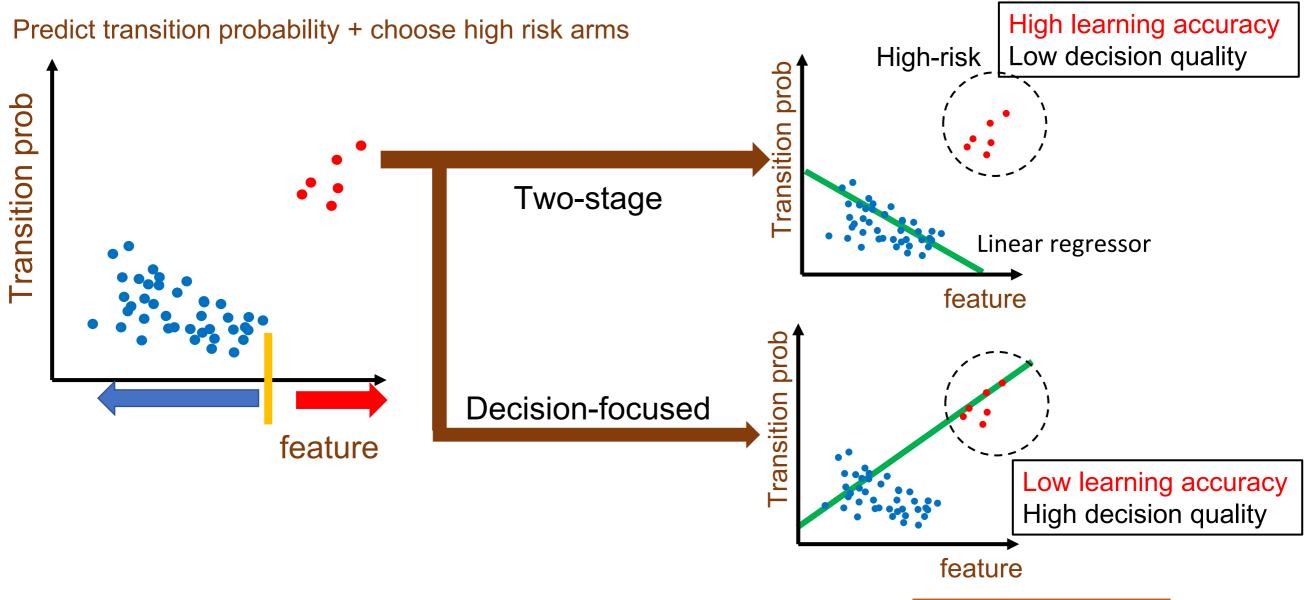


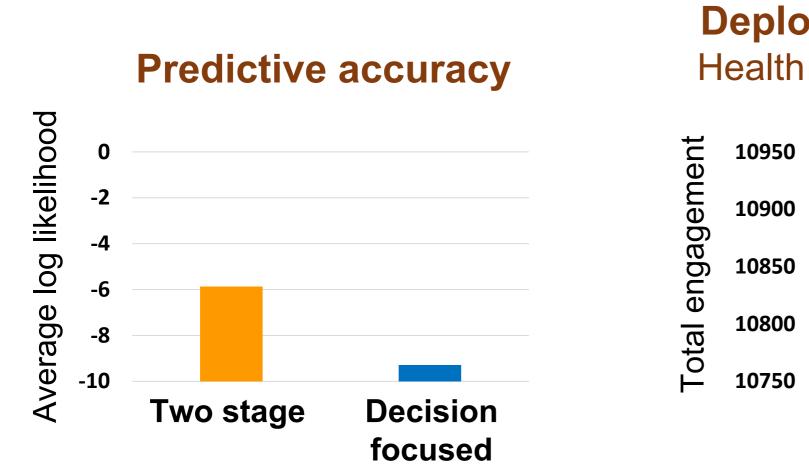
Verma

Next Steps: Decision-focused Learning in Restless Bandits

(AAMAS2020, NeurIPS 2020, NeurIPS 2021)

- Data limitation: Maximizing learning accuracy ≠ Maximizing decision quality
- Decision-focused learning: Modify loss function to directly maximize decision quality





 ∂ MDP accuracy

 ∂ model

Two stage

90 (out of 300 calls * 4week)

Decision

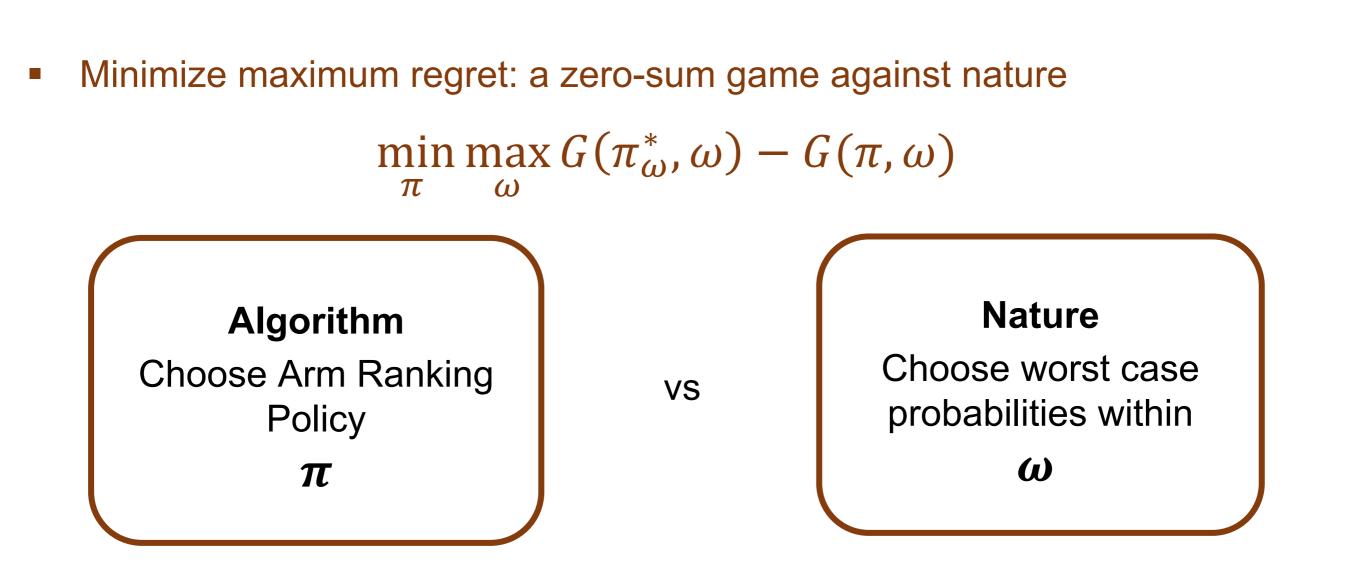
focused

Decision-focused learning: ARMMAN RMAB results

Next Steps: Decision-focused Learning in Restless Bandits (AAMAS2020, NeurIPS 2020, NeurIPS 2021)

two-stage :

32



Given limited data, transition probabilities with *interval uncertainty*

Next steps: Robust Restless Bandits via MinMax Regret

0.4 0.7

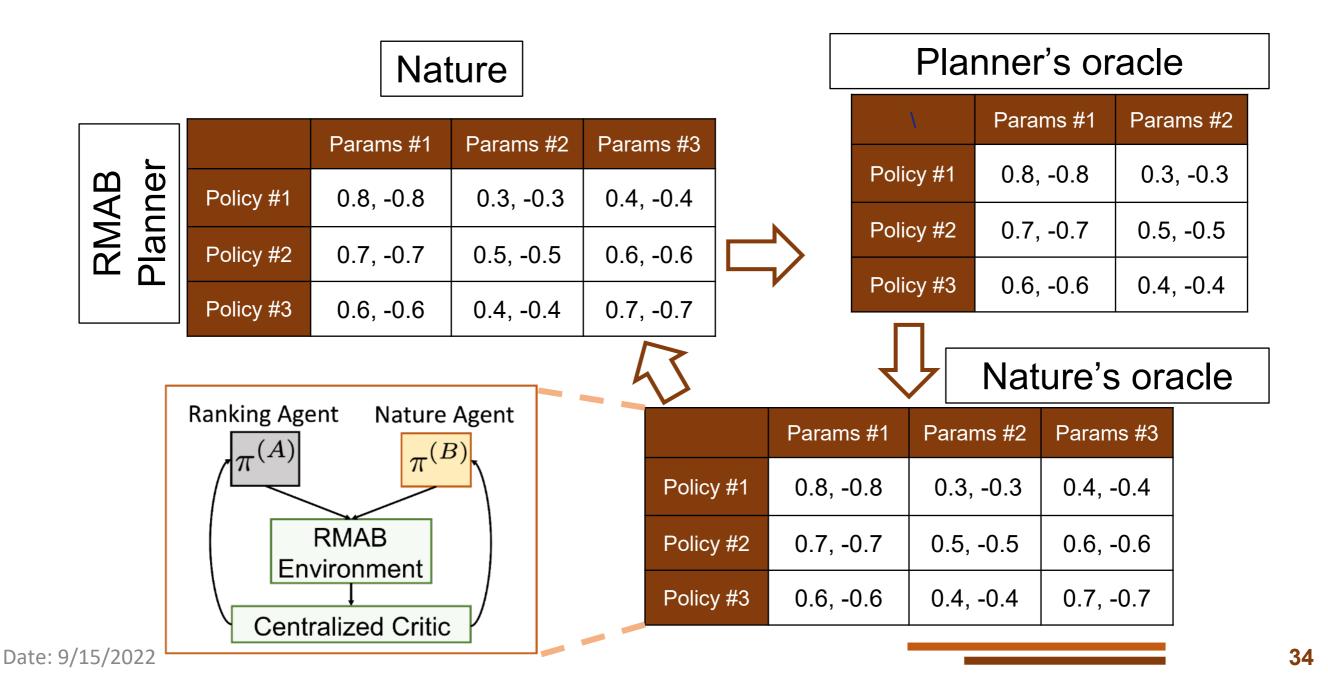
Arm 1: 0 - [- 1

0.2 0.4

Arm 2: O - [-]

Double Oracle for Robust Restless Bandits (UAI 2022)

• Equilibrium strategy despite combinatorial strategy spaces: Double oracle



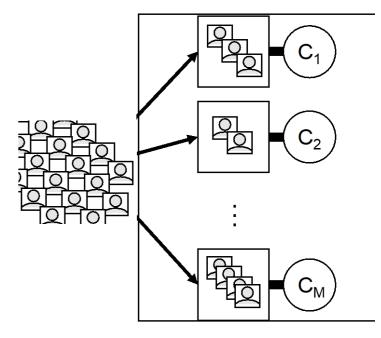
Robust Restless Bandits at Scale via Abstraction For ARMMAN

Biswas

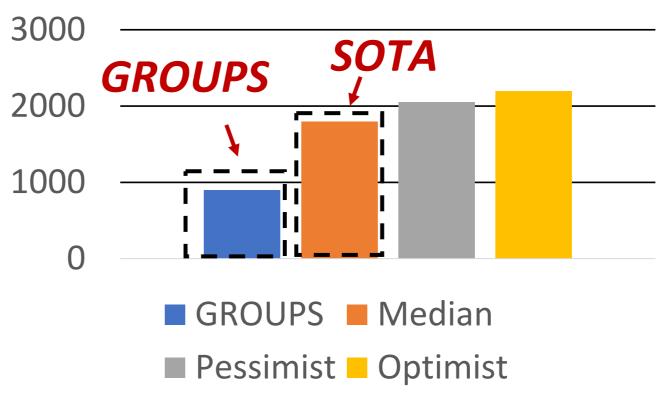
Killian

Scale up robust planning: GROUPS

➢ Group similar arms, plan up to 300k+ arms



Simulation: GROUPS leads to ~1000 more health messages Listened in the worst case



Next steps: Adherence Monitoring for Preventing Tuberculosis (KDD 2019)

Tuberculosis (TB): ~500,000 deaths/year, ~3M infected in India

TB Treatment 6 months of pills everwell

Which patients to call? Challenge of partial observability (POMDP)

Killian

b(adhering,t+1) b(adhering, t+2)

Theorem (Whittle Index): Collapsing bandits are Indexable if threshold policies are optimal.

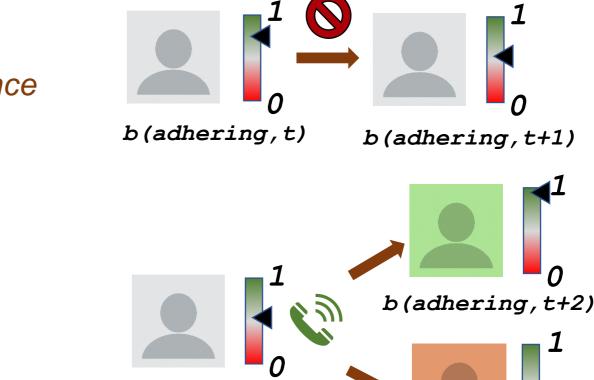
When arm played: Uncertainty collapses

Observe current state

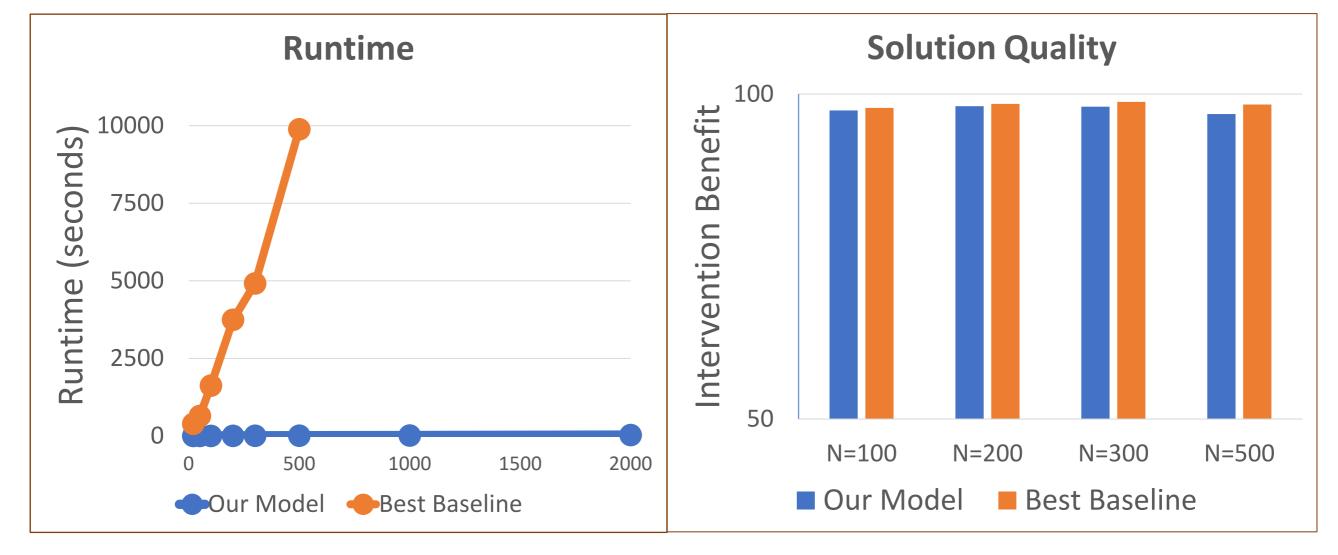
When arm not played (patient not called)

No observation, update belief of adherence

Exploit "collapsing" for fast algorithm: Fixed number of belief states



38



- Orders of magnitude speedup with little solution quality loss
- **ORANGE** = Best baseline
- **Blue** = Our model

New Fast Algorithm:

(NeurIPS 2020, AAMAS 2022)

Collapsing Bandits for Partial Observability

Mate Killian

Online Learning of Restless Bandits

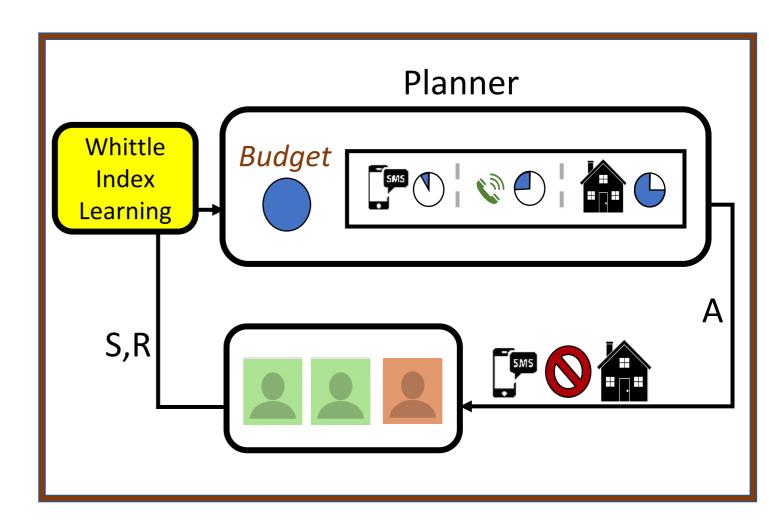
(KDD 2021, IJCAI 2021, AAMAS 2021)

No past data, tabular Q-learning methods

- **2 action RMAB:** Whittle index \succ
- 2+ action RMAB:
 - > Multi-action index
 - Lagrange Policy (general)

Fast Planning

Risk aware restless bandits



2023 and beyond (IJCAI 2022, EAAMO 2021)

ARMMAN: 1 Million beneficiaries

Khushibaby, India

Govt of India "Kilkari": 25 Million

Helpmum, Nigeria

Outline: Four Projects

Public Health

- Restless bandits: Maternal & child care
- Social networks: HIV prevention
- Agent-based modeling: COVID-19 dynamics

Conservation

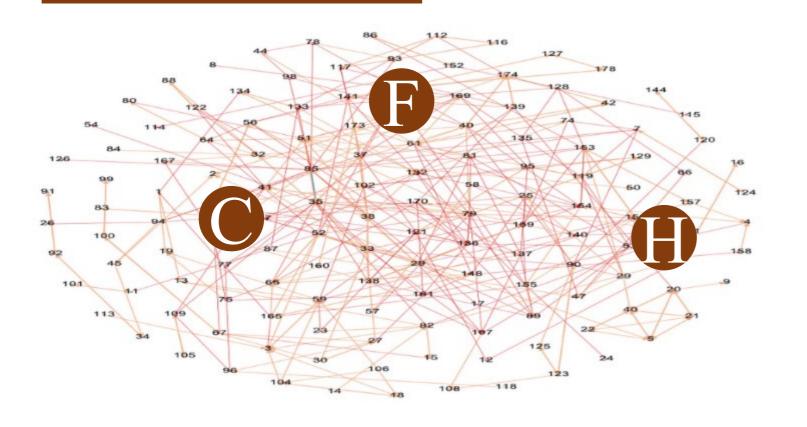
Game theory, behavior modeling: Poaching prevention

Information dissemination & behavior change Optimizing Limited Intervention (Social Worker) Resources

Prevent HIV in youth experiencing homelessness: HIV 10x housed population

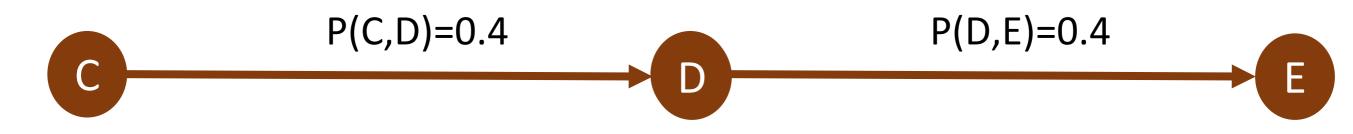
- Shelters: Limited number of peer leaders to spread HIV information in social networks
- "Real" face-to-face interactions; not Facebook etc

Influence Maximization in Social Networks



Select peer leader nodes to Maximize Expected Number of Influenced Nodes

Independent cascade model: Propagation probability



Influence Maximization in Social Networks Three Key Research Challenges

Lesson #4:

Lack of data & uncertainty is a key feature of AI for social impact

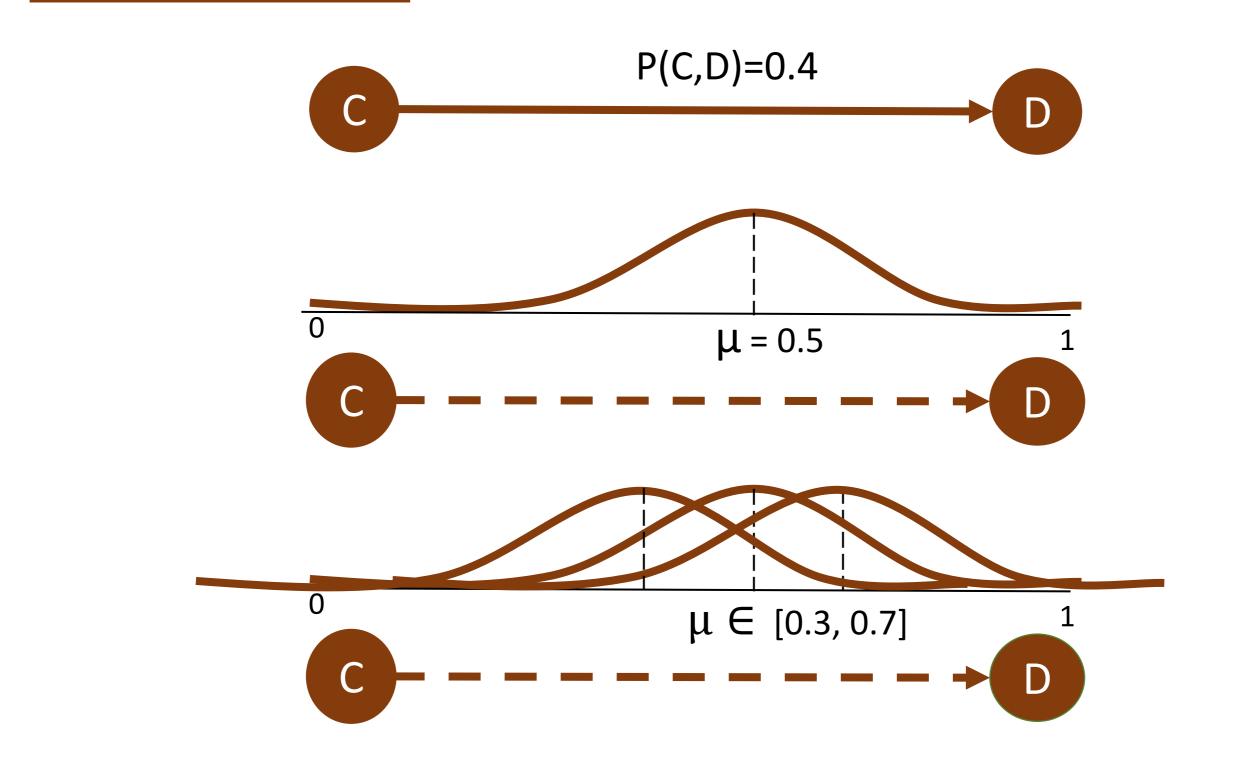
Uncertainty in propagation probability over edges

Multi-step dynamic policies to handle peer leader "no shows"

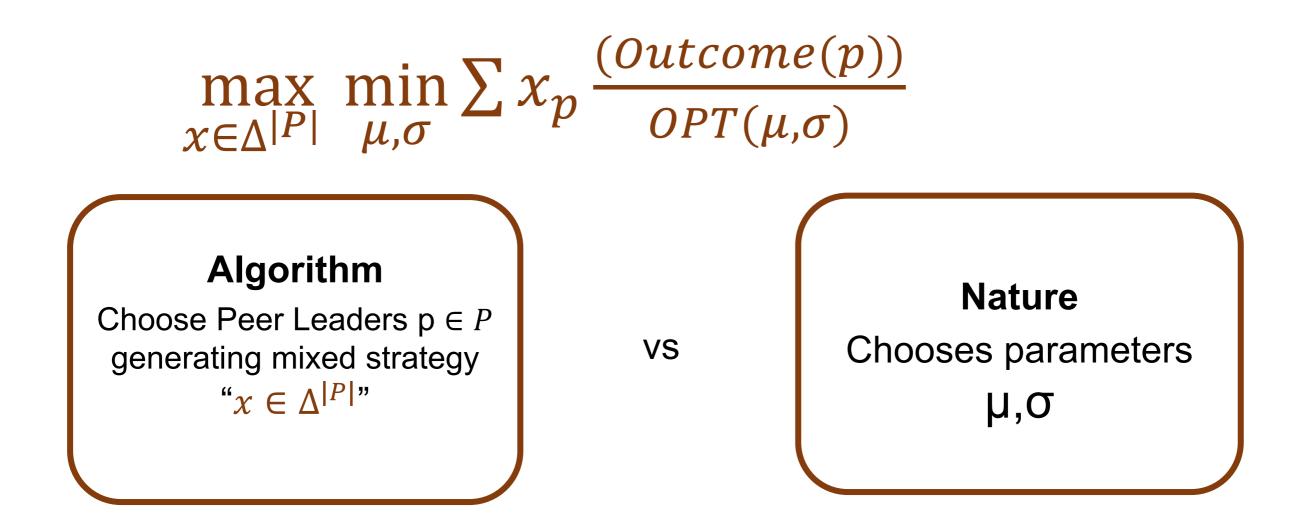
> Unknown social network, limited query budget to uncover network

Sketch some ways we solve these problems

Challenge 1: Uncertainty in Real-world Physical Social Networks



Worst case parameters: a zero-sum game against nature



Double Oracle for Robust Influence Maximization (AAMAS 2017)

Theorem: Converge with approximation guarantees

Requires innovations in oracles

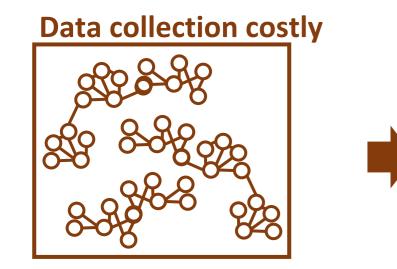
		Params #1	Params #2	Params #3		Influencer's oracle			
Influencer	Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4		V	Params #1	Params #2	
lue	Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6	\Box	Policy #1	0.8, -0.8	0.3, -0.3	
	Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7		Policy #2	0.7, -0.7	0.5, -0.5	
			4	$\mathbf{\mathcal{F}}_{\mathbf{a}}$		Policy #3	0.6, -0.6	0.4, -0.4	
	Nature's oracle					Π		I	1
		Params #1	Params #2	Params #3					
	Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4					
	Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6					
9/15/202	Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7					

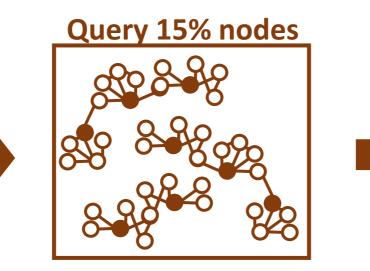
Nature

Date: 9

Challenge 3: Sampling Networks: Exploratory Influence Maximization (AAAI 2018)

Theorem: For community-structured graphs(*), sampling algorithm obtains a constant-factor approximation to the optimal influence spread using polylog(n) queries.





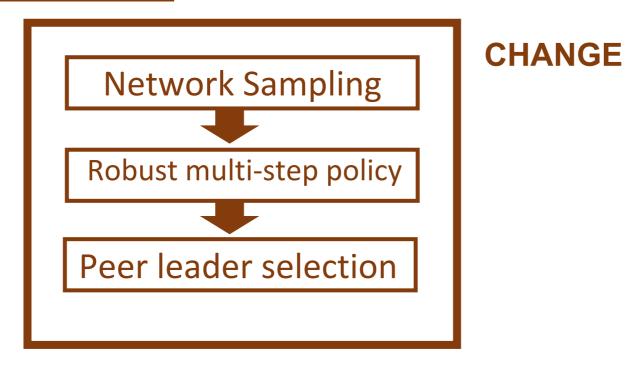
Sampling Algorithm Sample node randomly & estimate size of its community; Choose seeds from largest K communities

- Query 15% of nodes in the population
- Output *K* peer leader nodes to spread influence
- Perform similar to *OPT*, best influence spread with full network

"CHANGE" with Homeless Youth (IJCAI 2018)

Yadav

Wilder

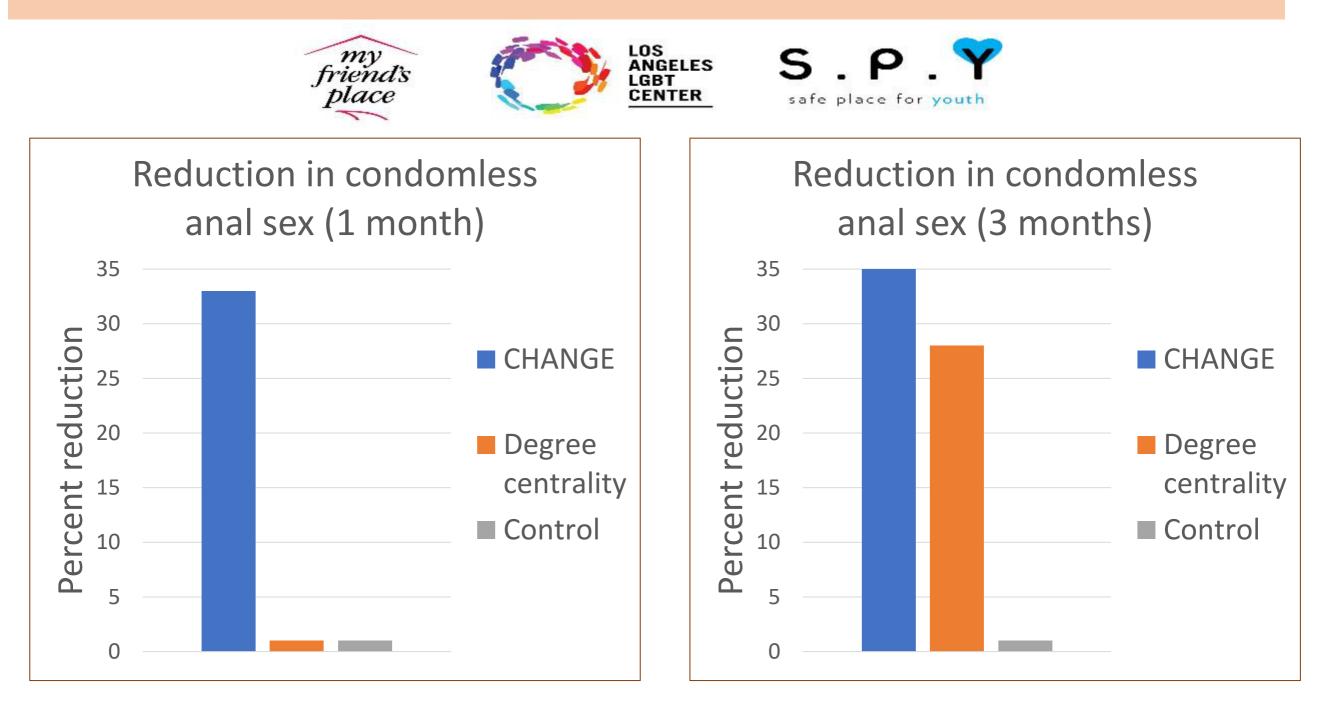


- 750 youth study with Prof. Eric Rice
- CHANGE vs Degree centrality vs Control •
- Actual reduction in HIV risk behaviors? •

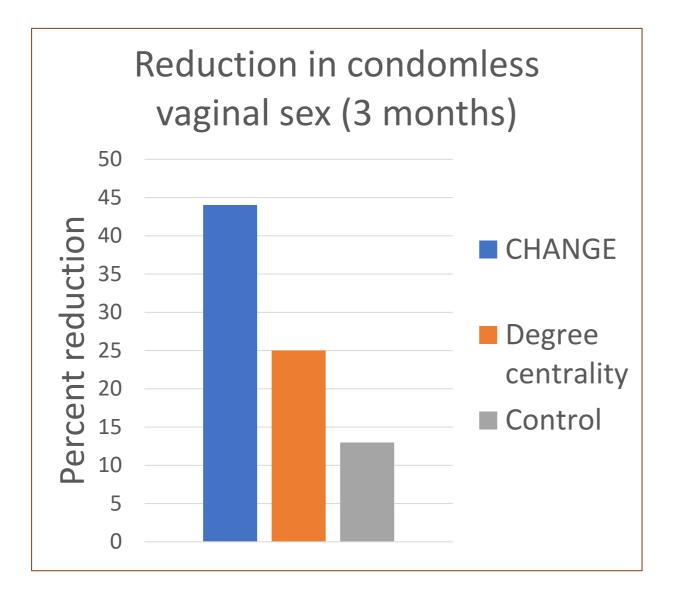
Results of 750 Youth Study [with Prof. Eric Rice] Actual reduction in HIV RISK Behavior?

(AAAI 2021, Journal of AIDS/JAIDS 2021)

First large-scale application of influence maximization for public health

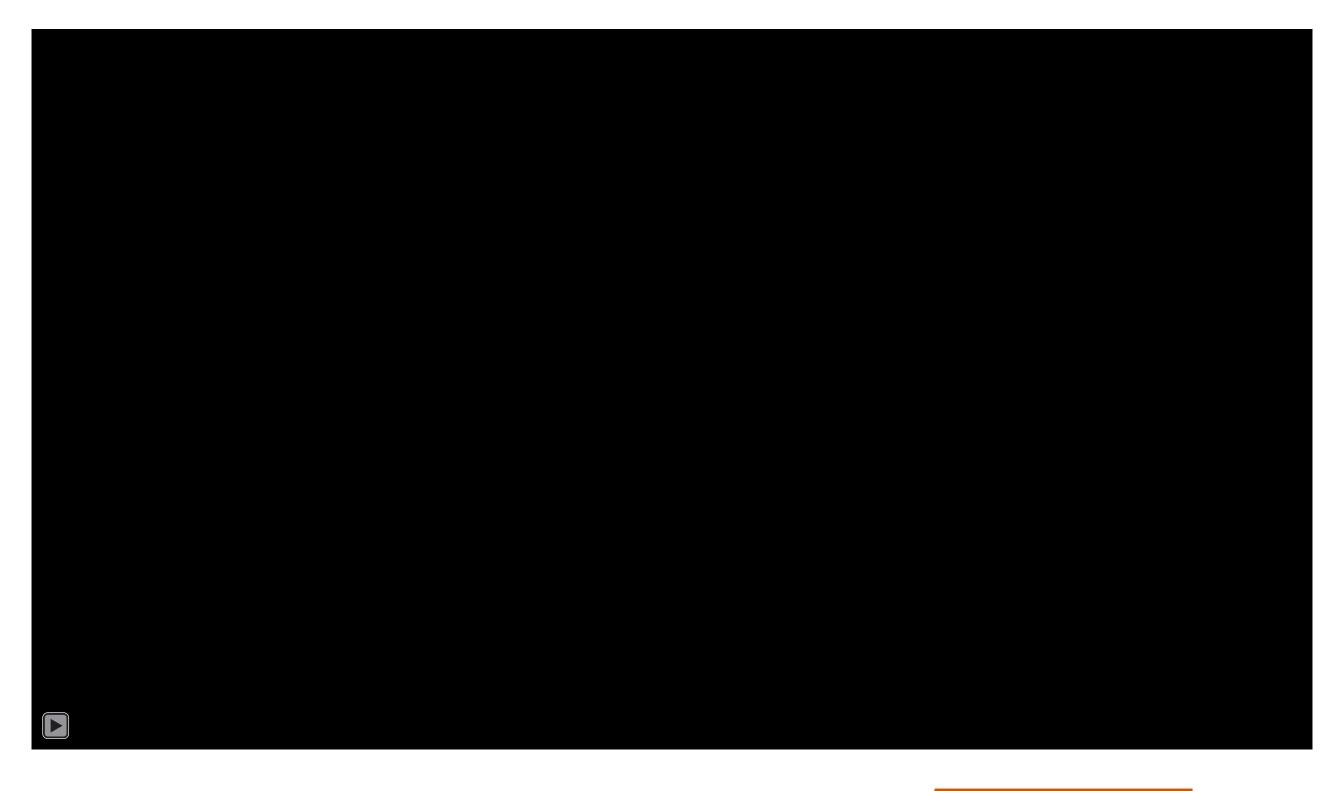


Results of 750 Youth Study [with Prof. Eric Rice]



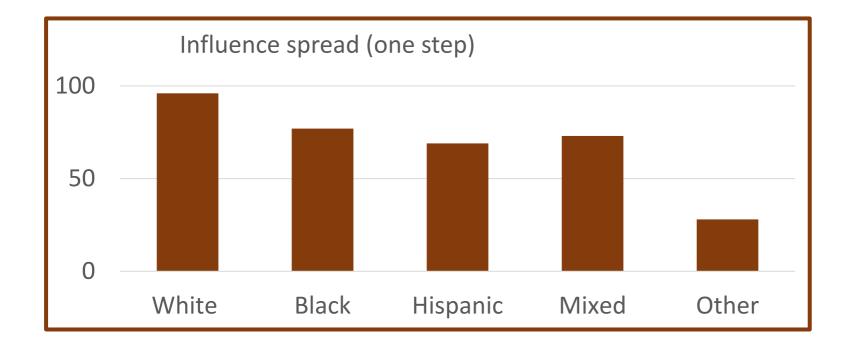
*Statistical significance results in AAAI'21, JAIDS'21

What our collaborators are saying:



Next Steps: Fairness in Influence Maximization

(NeurIPS 2019, IJCAI 2019, AAAI 2021)



Influence spread may cause disparity

 $\min_{c\in C} u_c(A) \geq \gamma$ Maxmin fairness: NeurIPS2019 $u_c(A) \geq U_c$ Diversity constraints: **IJCAI2019** Inequity aversion: $W_{\alpha}(u(A))$ AAAI 2021

Y: Max of minimum utility for any community

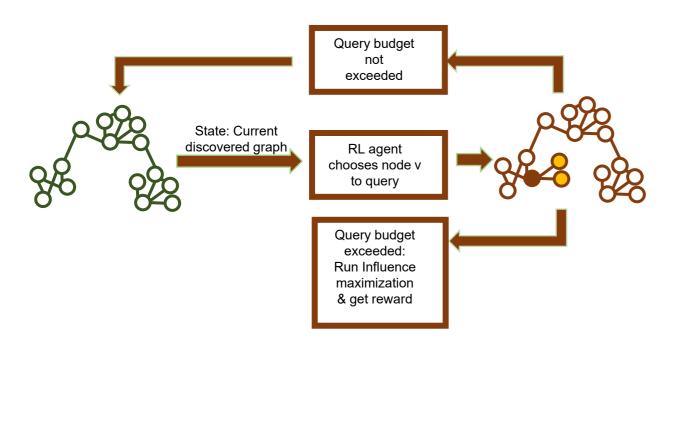
 U_{c} : Constraint from cooperative game theory

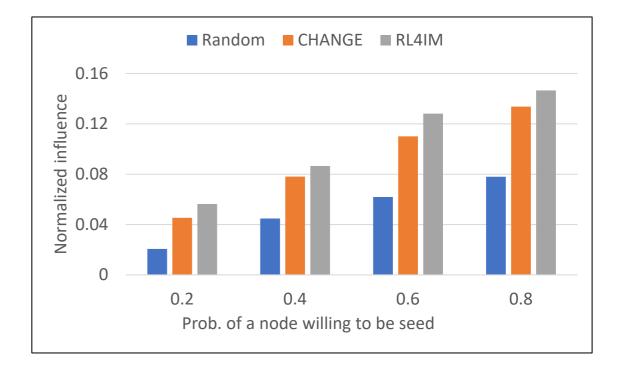
 α controls fairness tradeoff; policymaker has choice

Next steps: Reinforcement Learning (RL)

(AAMAS 2021 with IIT-Madras, UAI 2021)

RL for network sampling





RL speeds up Influence Maximization (RL4IM): RL4IM comparable performance to CHANGE, but negligible runtime

54

Chen

Outline

Public Health

- Social networks: HIV prevention
- Restless bandits: Maternal & child care
 - Agent-based modeling: COVID-19 dynamics

Conservation

Game theory, behavior modeling: Poaching prevention

COVID-19: Agent-based Simulation Model

Proceedings of the National Academy of Sciences of the United States of America

RESEARCH ARTICLE

Modeling between-population variation in COVID-19 dynamics in Hubei, Lombardy, and New York City

Bryan Wilder, (1) Marie Charpignon, (1) Jackson A. Killian, Han-Ching Ou, Aditya Mate, Shahin Jabbari, (1) Andrew Perrault, (1) Angel N. Desai, (2) Milind Tambe, and Maimuna S. Majumder

PNAS October 13, 2020 117 (41) 25904-25910; first published September 24, 2020; https://doi.org/10.1073/pnas.2010651117

Tracking disease outbreaks from sparse data with Bayesian inference

Bryan Wilder,¹ Michael Mina², Milind Tambe¹

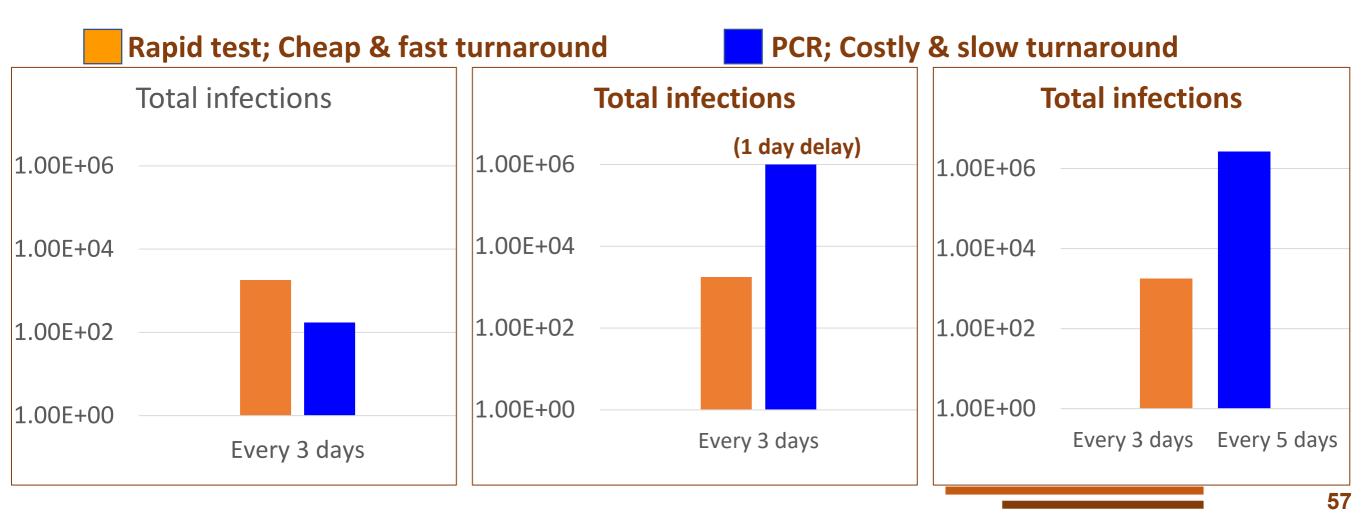
¹ John A. Paulson School of Engineering and Applied Sciences, Harvard University ² T.H. Chan School of Public Health, Harvard University bwilder@g.harvard.edu, mmina@hsph.harvard.edu, milind_tambe@harvard.edu

COVID Testing Policy: Accuracy vs Ease

(Science Advances, 2020) with Prof. Michael Mina

- Tests varying sensitivity/cost: which one to use?
 - qRT-PCR ("gold standard"): Detect viral concentration of **10³**/mL, \$50-100
 - Antigen strip ("rapid tests"): **10⁶**/mL, \$3-5

Rapid turnaround time & frequency more critical than sensitivity for COVID-19 surveillance



COVID Testing Policy: Impact

- Covered in NYT, WaPo, Time, The Atlantic, The Hill, etc
- Allowed epi collaborators to advocate to FDA/CDC

Outline

Public Health

- Social networks: HIV prevention
- Restless bandits: Maternal & child care
- > Agent-based modeling: COVID-19 dynamics

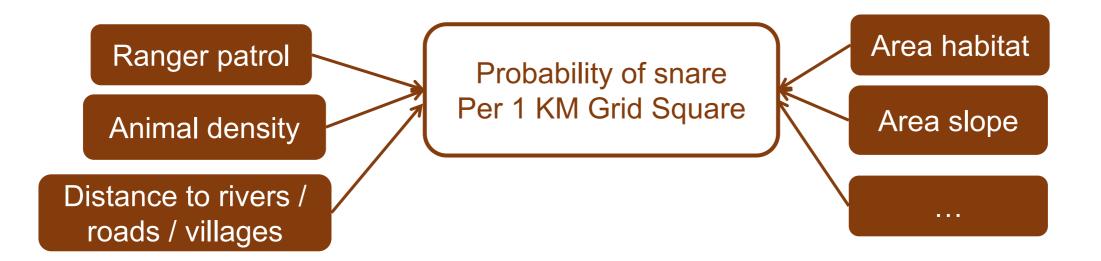
Conservation

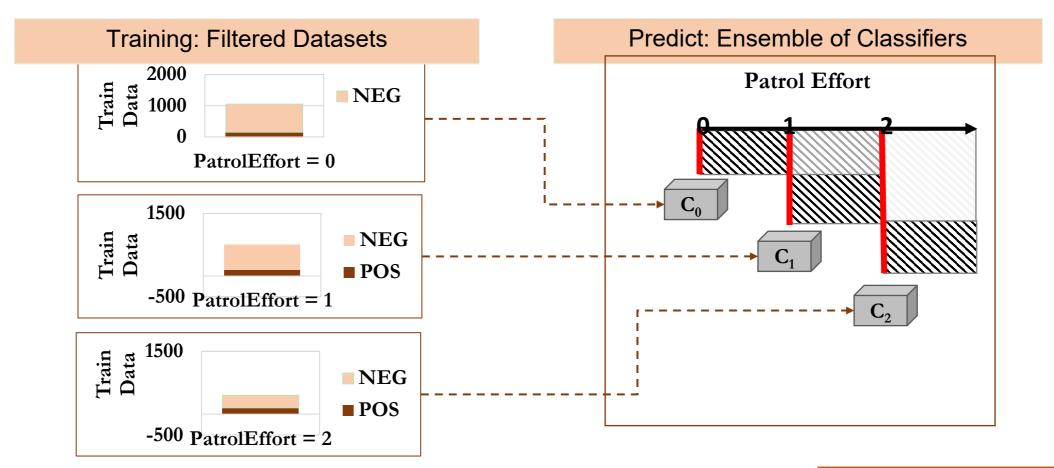
Game theory, behavior modeling: Poaching prevention

Patrols to Reduce Snaring in Wildlife Parks



Learning Adversary Response Model: Uncertainty in Observations



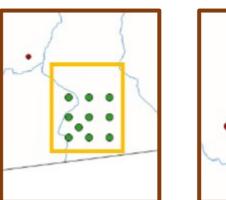


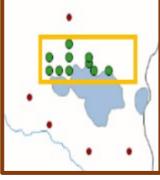
PAWS: First Pilot in the Field (AAMAS 2017)

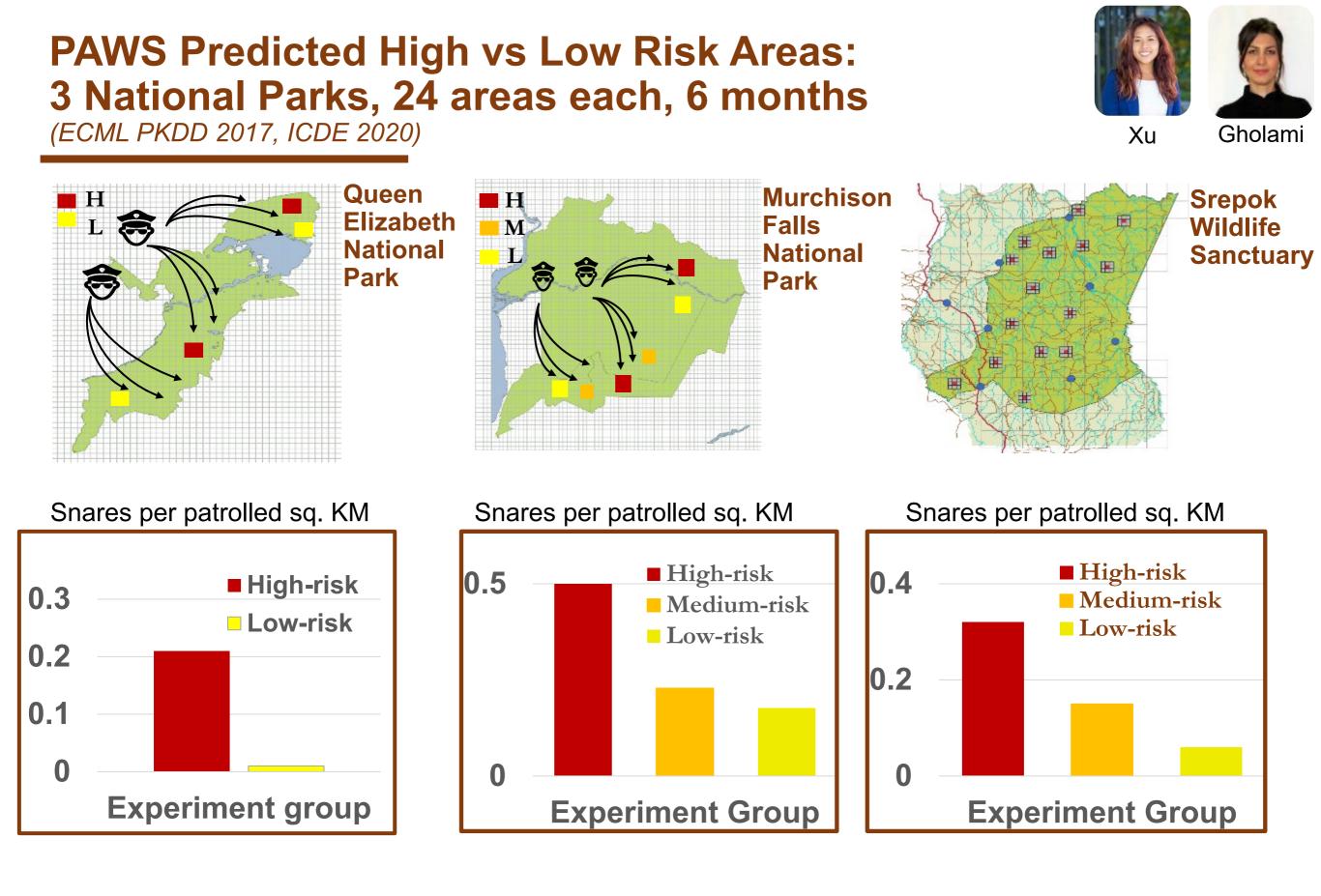
Gholami

Two 9-sq.km areas, infrequent patrols

- Poached elephant
- 1 elephant snare roll
- 10 Antelope snares







PAWS Real-world Deployment Cambodia: Srepok Wildlife Sanctuary (ICDE 2020)

Xu

2019 PAWS: 521 snares/month

VS

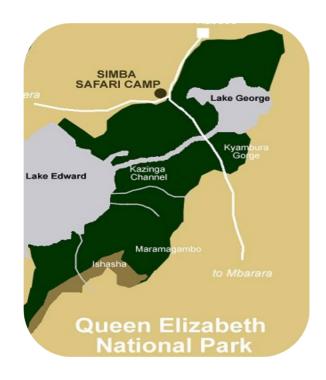
2018: 101 snares/month

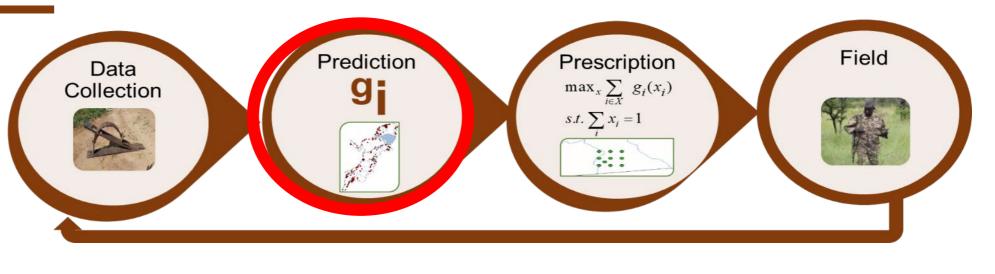
2021 PAWS

1,000 snares found in March

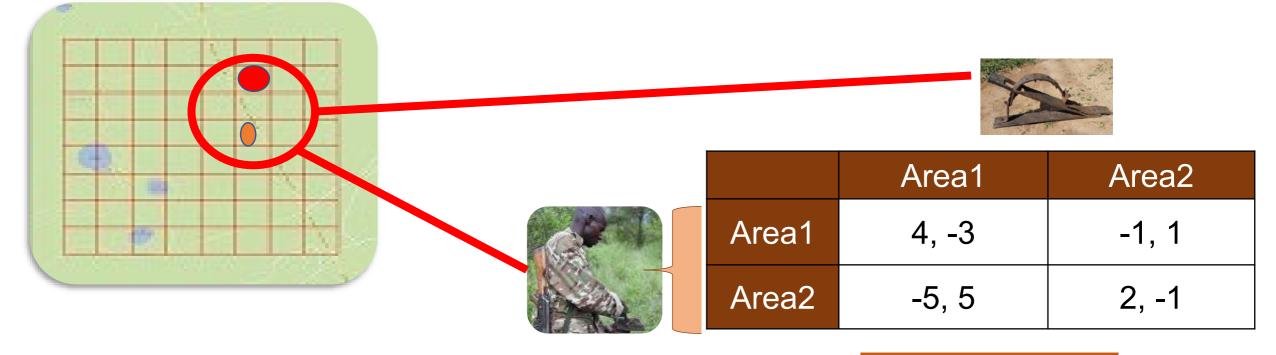
Next Steps: Stackelberg Security Games to Prescribe Randomized Patrols (UAI 2021)

Xu



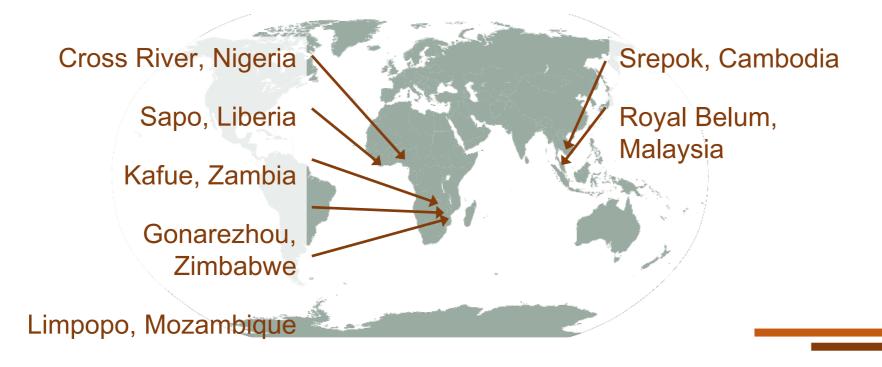


Stackelberg security game: but bounded rational poachers



PAWS GOES GLOBAL with SMART platform!!

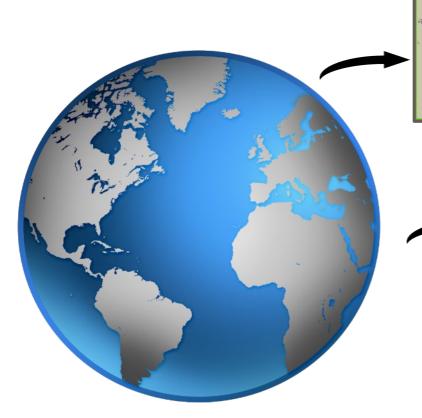
Protect Wildlife 1,000 National Parks Around the Globe

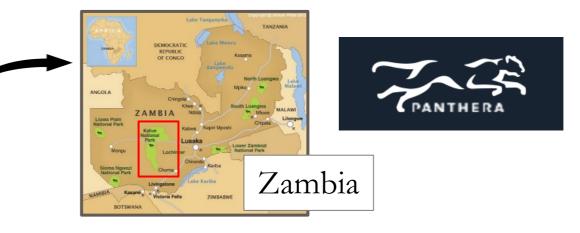


Our New Collaborators 2022

Xu

Johnson-Yu



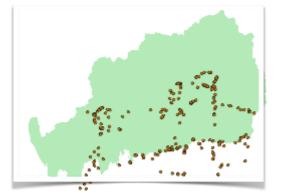


PROGRAMME

PAWS expands to Latin America Our team visits Belize to field test, August 2022

Xu Johnson-Yu

LIZARD Algorithm for Multi-armed Bandits LIpschitZ Arms with Reward Decomposability (AAAI 2021, IJCAI 2022)



Royal Belum, Malaysia 824 patrol observations June – August 2018

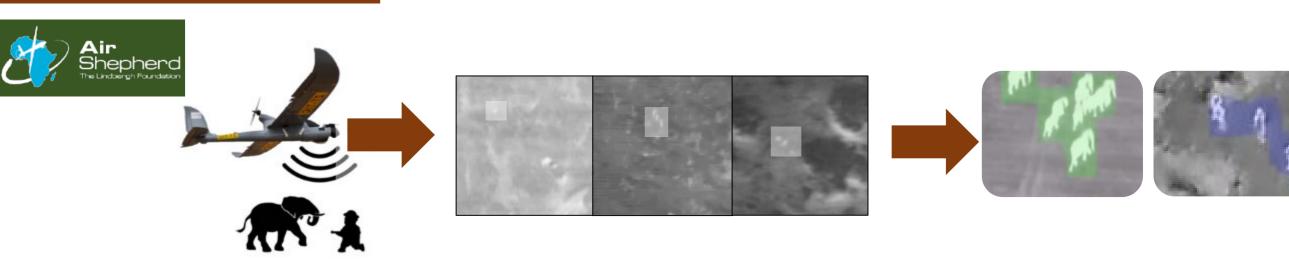
Challenge in data-scarce parks

Conduct patrols to detect illegal activity and collect data to improve predictions imploitation exploration exploration

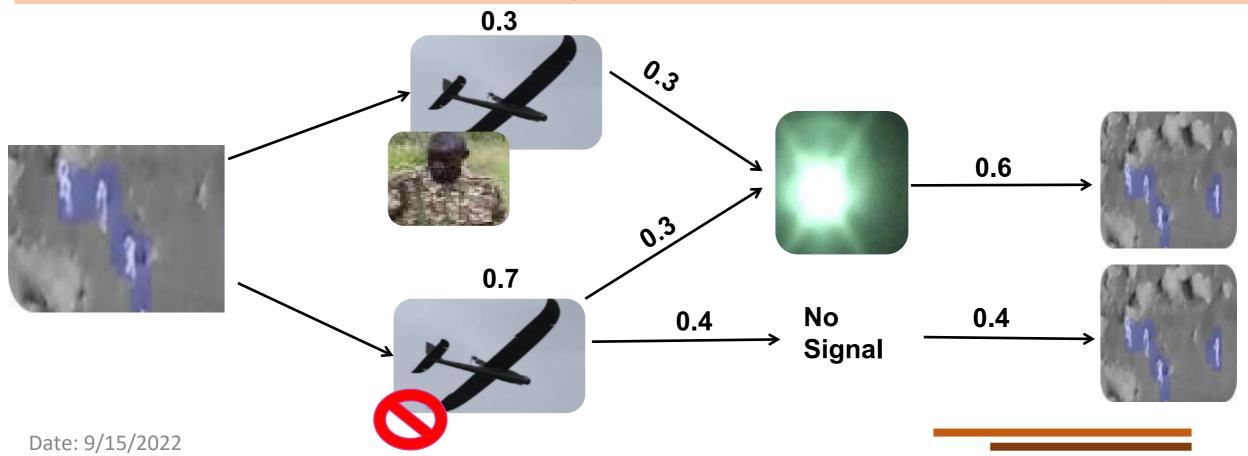
LIZARD Multiarmed bandits: ensures strong short-term performance

LIZARD exploits decomposability, smoothness, monotonicity

Next Steps: Integrating Real-Time "SPOT" Information (IAAI 2018, AAAI 2018, AAAI 2020, AAMAS 2021, IJCAI 2022)



Si-G Model: Stackelberg Security Games with Optimal Deceptive Signaling



Future: AI for Social Impact (AI4SI)

Date: 9/15/2022

Future at KDD: AI for Social Impact

Highlighted challenges & opportunities in AI for social impact: Request #AlforSocialImact track at KDD?

Milind_Tambe@Harvard.edu

milindtambe@google.com