Multiagent reasoning for social impact: Results from deployments for public health and conservation

MILIND TAMBE

Director, Ctr for Research on Computation & Society

Harvard University

Director "Al for Social Good"

Google Research India

@MilindTambe_Al

Al & Multiagent Systems Research for Social Impact

Public Health

Conservation

Public Safety and Security

Optimize Our Limited Intervention Resources

Lesson #1: Achieving Social Impact and Al Innovation Go hand-in-hand

Social
Networks &
Bandits

Public Health

Multiagent Systems Research

Green security games

Conservation

Stackelberg security games Public Safety & Security

Lesson #2:

Partnerships with Communities, NGOs (non-profits) crucial

Empower non-profits to use AI tools; avoid being gatekeepers to AI4SI technology

Wildlife

Conservation

Lesson #3:

Data-to-deployment pipeline; beyond improving algorithms

Lesson #3:

Data-to-deployment pipeline; beyond improving algorithms

Field test & deployment: Social impact is a key objective

Outline: Four Projects

Public Health

- Social networks: HIV prevention
- > Restless bandits: Maternal & child care
- Agent-based modeling: COVID-19 dynamics

Conservation

- Game theory, behavior modeling: Poaching prevention
- Cover papers from 2017-now [AAMAS, AAAI, IJCAI, NeurIPS...]
- Focus on real world results; more simulations in papers
- PhD students & postdocs highlighted

Information dissemination & behavior change Optimizing Limited Intervention (Social Worker) Resources

Prevent HIV in youth experiencing homelessness: HIV 10x housed population

- > Shelters: Limited number of peer leaders to spread HIV information in social networks
- "Real" face-to-face interactions; not Facebook etc

Influence Maximization in Social Networks

Select peer leader nodes to Maximize Expected Number of Influenced Nodes

Independent cascade model: Propagation probability

P(C,D)=0.4 P(D,E)=0.4 E

Influence Maximization in Social Networks Three Key Research Challenges

Lesson #4: Research challenges in AI for social impact?

Lack of data & uncertainty is a key feature of AI for social impact

- Uncertainty in propagation probability over edges
- Multi-step dynamic policies to handle peer leader "no shows"
- ➤ Unknown social network, limited query budget to uncover network

Sketch some ways we solve these problems

Challenge 1: Uncertainty in Real-world Physical Social Networks

Robust Influence Maximization

(AAMAS 2017)

Worst case parameters: a zero-sum game against nature

$$\max_{x \in \Delta^{|P|}} \min_{\mu, \sigma} \sum x_p \frac{(Outcome(p))}{OPT(\mu, \sigma)}$$

Algorithm

Choose Peer Leaders $p \in P$ generating mixed strategy " $x \in \Delta^{|P|}$ "

VS

Nature

Chooses parameters μ,σ

HEALER Algorithm Robust Influence Maximization

Wilder

(AAMAS 2017)

Date: 12/10/2022

Theorem: Converge with approximation guarantees

Equilibrium strategy despite exponential strategy spaces: Double oracle

Influencer's oracle

\	Params #1	Params #2
Policy #1	0.8, -0.8	0.3, -0.3
Policy #2	0.7, -0.7	0.5, -0.5
Policy #3	0.6, -0.6	0.4, -0.4

	Params #1	Params #2	Params #3
Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4
Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6
Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7

Nature's oracle

13

Challenge 3: Sampling Networks: Exploratory Influence Maximization (AAAI 2018)

Wilder

Theorem: For community-structured graphs(*), sampling algorithm obtains a constantfactor approximation to the optimal influence spread using polylog(n) queries.

- Query 15% of nodes in the population
- Output *K* peer leader nodes to spread influence
- Perform similar to *OPT*, best influence spread with full network

"CHANGE" with Homeless Youth

(IJCAI 2018)

Yadav

Wilder

CHANGE

- 750 youth study with Prof. Eric Rice
- CHANGE vs Degree centrality vs Control
- Actual reduction in HIV risk behaviors?

Results of 750 Youth Study [with Prof. Eric Rice] Actual reduction in HIV RISK Behavior?

(AAAI 2021, Journal of AIDS/JAIDS 2021)

First large-scale application of influence maximization for public health

Results of 750 Youth Study [with Prof. Eric Rice]

*Statistical significance results in AAAI'21, JAIDS'21

12/10/2021

What our collaborators are saying:

12/10/2021

Next Steps: Fairness in Influence Maximization

(NeurIPS 2019, IJCAI 2019, AAAI 2021)

Influence spread may cause disparity

Maxmin fairness:

NeurIPS2019

 $\min_{c \in C} u_c(A) \ge \gamma$

Y: Max of minimum utility for any community

Diversity constraints: IJCAI2019

 $u_c(A) \geq U_c$

U_c: Constraint from cooperative game theory

*Inequity aversion:*AAAI 2021

$$W_{\alpha}(u(A))$$

Controls fairness tradeoff; policymaker has choice

Next steps: Reinforcement Learning (RL)

(AAMAS 2021 with IIT-Madras, UAI 2021)

RL for network sampling

Network Family	Improve %	
Rural	23.76	
Animal	26.6	
Retweet	19.7	
Homeless	7.91	

RL speeds up Influence Maximization (RL4IM): RL4IM comparable performance to CHANGE, but negligible runtime

Outline

Public Health

- Social networks: HIV prevention
- Restless bandits: Maternal & child care
- Agent-based modeling: COVID-19 dynamics

Conservation

> Game theory, behavior modeling: Poaching prevention

Motivating Restless Bandits Health Program Adherence: Maternal & Child Care in India

Woman dies in childbirth every 15 min; 4 of 10 children too thin/short

25 Million women

Weekly 2 minute
AUTOMATED MESAGE
to new/expecting moms

mMitra: Significant benefits 2.2 million women enrolled

- ➤ Unfortunately, significant fraction 30-40% may become low-listeners
- > Limited intervention resources: Service call to small number of beneficiaries

Intervention Scheduling with Limited Resources: Motivating Restless Bandits

Example:

- Large number N beneficiaries: 200000
- Choose K=4000 for service call per week?
- Maximize health messages listened to

Intervention Scheduling with Limited Resources: Motivating Restless Bandits

Example:

- Large number N beneficiaries: 200000
- Which K=4000 for service call per week?
- Maximize number of messages listened to

Challenges:

- Call may not change beneficiary state
- Beneficiary may change state on their own
- Prioritize 4000 beneficiaries per week

Restless bandit: K of N arms per week

Photo Credit: IntraHealth International (CC BY-NC-SA 3.0 via

Restless Bandits Model: Each Arm is an MDP Each Arm Models a Beneficiary

Restless Bandits Model Whittle Index: Efficiently Select K out of N Beneficiaries

Compute Whittle index for current state of each arm: Computes benefit of intervention Choose top K arms by benefit Use (Qian et al 2016) algorithm

$$W(s) = INF_{\gamma} \{ \gamma \colon Q_{\gamma}(s,) = Q_{\gamma}(s,) \}$$

Key Research Challenge Unknown Transition Probabilities

probability data

Mate

27

- > Limited previous beneficiary data: features f + engagement sequence {(s, a, s'), ...}
- > Clustering compensates for lack of data, also speeds up Whittle index computation

Results of 23000 Beneficiary Field Study

(Under submission)

First large-scale application: restless multiarmed bandits (RMAB) for public health

- > 7667 beneficiaries per group: RMAB, Round-robin, Current-Standard-of-Care (CSOC)
- Pulled 225 arms/week for seven weeks

- How many more health messages listened to over Current-Std-of-Care (CSOC) group
- Statistical significance: linear regression model

	RMAB vs CSOC	RR vs CSOC	RMAB vs RR
% reduction in cumula- tive engagement drops	32.0%	5.2%	28.3%
p-value	0.044*	0.740	0.098^{\dagger}

New 100,000 Beneficiary Study

Transitioning software to ARMMAN

ARMMAN Feedback

Youtube: "Al for Social Good in partnership with ARMMAN"

"We are able to reach out to more and more women each week, and get them back into the fold and save lives, because of AI" – Dr Aparna Hegde

"I follow all the advice and take good care of my baby"

Next steps: Adherence Monitoring for Preventing Tuberculosis in India

Killian

(KDD 2019)

Tuberculosis (TB): ~500,000 deaths/year, ~3M infected in India

TB Treatment
6 months of pills
everwell

Which patients to call? Challenge of partial observability

Collapsing Bandits: Restless Bandits with Partial Observability

(NeurIPS 2020)

Theorem (Whittle Index): Collapsing bandits are Indexable if threshold policies are optimal.

When arm not played (patient not called)

- No observation
- Instead, compute belief of adherence

When arm played: Uncertainty collapse

Observe current state

Exploit "collapsing" for fast algorithm: Fixed number of belief states

New Fast Algorithm: Collapsing Bandits for Partial Observability

- Orders of magnitude speedup with little solution quality loss
- ORANGE = Best baseline
- Blue = Our model

Next Steps: Decision-focused Learning in Restless Bandits (AAMAS2020, NeurIPS 2020, NeurIPS 2021)

Wang

Data-to-deployment pipeline:

- TWO STAGES: Maximize learning accuracy, then maximize decision quality
- Maximizing learning accuracy ≠ Maximizing decision quality

Next Steps: Decision-focused Learning in Restless Bandits

(AAMAS2020, NeurIPS 2020, NeurIPS 2021)

- Maximizing learning accuracy ≠ Maximizing decision quality
- Decision-focused learning: Modify loss function to directly maximize decision quality

Next Steps:

Decision-focused Learning in Restless Bandits

(AAMAS2020, NeurIPS 2020, NeurIPS 2021) Wang

- Maximizing learning accuracy ≠ Maximizing decision quality
- Decision-focused learning: Modify loss function to directly maximize decision quality
- Working on ARMMAN

Solution two-stage :
$$\frac{\partial \text{ MDP accuracy}}{\partial \text{ model}}$$

Next Steps in Restless Bandits

(AAMAS 2021a, KDD 2021, IJCAI 2021, AAMAS 2021b)

Biswas

Online learning with multiple actions (no past data):

Policies: index Q-Learning

Fast Planning

- Risk aware restless bandits
- Robust restless bandits

COVID-19: Agent-based Simulation Model

Wilder

RESEARCH ARTICLE

Modeling between-population variation in COVID-19 dynamics in Hubei, Lombardy, and New York City

PNAS October 13, 2020 117 (41) 25904-25910; first published September 24, 2020; https://doi.org/10.1073/pnas.2010651117

Tracking disease outbreaks from sparse data with Bayesian inference

Bryan Wilder, Michael Mina, Milind Tambe

John A. Paulson School of Engineering and Applied Sciences, Harvard University ² T.H. Chan School of Public Health, Harvard University bwilder@g.harvard.edu, mmina@hsph.harvard.edu, milind_tambe@harvard.edu

COVID Testing Policy: Accuracy vs Ease

(Science Advances, 2020) with Prof. Michael Mina

- Tests varying sensitivity/cost: which one to use?
 - qRT-PCR ("gold standard"): Detect viral concentration of 10³/mL, \$50-100
 - Antigen strip ("Less sensitive"): 10⁶/mL, \$3-5

Rapid turnaround time & frequency more critical than sensitivity for COVID-19 surveillance

More sensitive; Costly & slow turnaround

COVID Testing Policy: Impact

- Covered in NYT, WaPo, Time, The Atlantic, The Hill, etc.
- Allowed epi collaborators to advocate to FDA/CDC

Outline

Public Health

- Social networks: HIV prevention
- Restless bandits: Maternal & child care
- > Agent-based modeling: COVID-19 dynamics

Conservation

Game theory, behavior modeling: Poaching prevention

Patrols to Reduce Snaring in Wildlife Parks

Snare or Trap Wire snares

41

Date: 12/10/2021

42

Date: 12/10/2021

43

Bounded rational poacher model: learn via past poaching data

	Area1	Area2
Area1	4, -3	-1, 1
Area2	-5, 5	2, -1

Learning Adversary Response Model: Uncertainty in Observations

Nguyen Gholami

PAWS: First Pilot in the Field

(AAMAS 2017)

Gholami

Two 9-sq.km areas, infrequent patrols

- 1 elephant snare roll
- 10 Antelope snares

PAWS Predicted High vs Low Risk Areas: 3 National Parks, 24 areas each, 6 months

Xu

Gholami

(ECML PKDD 2017, ICDE 2020)

Queen Elizabeth National Park

Murchison Falls National Park

Srepok Wildlife Sanctuary

Snares per patrolled sq. KM

Snares per patrolled sq. KM

Snares per patrolled sq. KM

PAWS Real-world Deployment Cambodia: Srepok Wildlife Sanctuary (ICDE 2020)

Xu

2019 PAWS: 521 snares/month

VS

2018: 101 snares/month

2021 PAWS

1,000 snares found in March

PAWS GOES GLOBAL with SMART platform!!

Protect Wildlife 800 National Parks Around the Globe

Xu

Do poachers get deterred by patrols?

	Area1	Area2
Area1	4, -3	-1, 1
Area2	-5, 5	2, -1

Is Adversary observing & Reacting to Patrols? YES! Adversaries deterred by patrols

Xu

Perrault

Logistic regression model

$$a_i + \gamma \cdot \texttt{past_effort} + \beta \cdot \texttt{current_effort}$$

Is Adversary observing & Reacting to Patrols? YES! Adversaries deterred by patrols

Xu

Is adversary observing & reacting to patrols? Logistic regression model

$$a_i + \gamma \cdot \texttt{past_effort} + \beta \cdot \texttt{current_effort}$$

MIRROR: Handling Uncertainty in Poacher Model Simulation Results (UAI 2021)

Worst case parameters: a zero-sum game against nature

$$\max_{x \in \Delta^{|P|}} \min_{\mu, \sigma} \sum x_p \frac{(Outcome(p))}{OPT(\mu, \sigma)}$$

Algorithm

Choose Patrol strategy $p \in P$ generating mixed strategy " $x \in \Delta^{|P|}$ "

VS

Nature

Chooses parameters of poacher model μ,σ

MIRROR: Deterrence-Based Patrol Planning Simulation Results (UAI 2021)

Xu

- Double oracle: Iteratively solve for equilibrium
- Final strategy is guaranteed to minimize max regret

Next Steps: Integrating Real-Time "SPOT" Information

Bondi

Si-G Model: Stackelberg Security Games with Optimal Deceptive Signaling

Next Steps: Data Scarce Parks

Xu

exploitation

Data-rich parks: build predictive models to plan patrols

Data-scarce parks: conduct patrols to detect illegal activity and collect data to improve the predictive model

exploration

Srepok, Cambodia
43,269 patrol observations
2013 – 2018

Royal Belum, Malaysia 824 patrol observations June – August 2018

LIZARD: Multiarmed Bandit Lipschitz Arms with Reward Decomposability (AAAI 2021)

Xu

Theorem: With time horizon T, regret bound of LIZARD is $Regret(T) \le O(T^{\frac{2}{3}})$

LIZARD algorithm exploits decomposability, smoothness, monotonicity

- Input: N targets with features, stochastic poacher places snares at targets
- Output: Patrol effort per target ≤ budget B
- Reduce regret wrt OPT, optimal patrol effort, for capturing snares

Preventing Human-Wildlife Conflict

(Joint work with P. Varakantham, WCT)

Ghosh

- Most forest areas in India are multi-use: wild animals & humans co-habit, conflict
- Our predictions used to distribute funds in Bramhapuri division, Maharashtra

Future: Al for Social Impact (Al4SI)

Achieving social impact & AI innovation go hand in hand

Empower non-profits to use AI tools; avoid being gatekeepers to AI4SI tech

Data to deployment: Not just improving algorithms

Important to integrate AI innovations in NGO normal workflow

Important to step out of the lab and into the field

Embrace interdisciplinary research -- social work, conservation

Lack of data is the norm, a feature; part of the project strategy

THANK YOU

#AlforSocialImact

@MilindTambe_Al