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Abstract

A growing body of work in game theory extends the tradi-
tional Stackelberg game to settings with one leader and mul-
tiple followers who play a Nash equilibrium. Standard ap-
proaches for computing equilibria in these games reformu-
late the followers’ best response as constraints in the leader’s
optimization problem. These reformulation approaches can
sometimes be effective, but make limiting assumptions on
the followers’ objectives and the equilibrium reached by fol-
lowers, e.g., uniqueness, optimism, or pessimism. To over-
come these limitations, we run gradient descent to update
the leader’s strategy by differentiating through the equilib-
rium reached by followers. Our approach generalizes to any
stochastic equilibrium selection procedure that chooses from
multiple equilibria, where we compute the stochastic gradient
by back-propagating through a sampled Nash equilibrium us-
ing the solution to a partial differential equation to establish
the unbiasedness of the stochastic gradient. Using the unbi-
ased gradient estimate, we implement the gradient-based ap-
proach to solve three Stackelberg problems with multiple fol-
lowers. Our approach consistently outperforms existing base-
lines to achieve higher utility for the leader.

Introduction
Stackelberg games are commonly adopted in many real-
world applications, including security (Jiang et al. 2013;
Gan et al. 2020), wildlife conservation (Fang et al. 2016),
and commercial decisions made by firms (Naghizadeh and
Liu 2014; Aussel et al. 2020; Zhang et al. 2016). Moreover,
many realistic settings involve a single leader with multi-
ple self-interested followers such as wildlife conservation
efforts with a central coordinator and a team of defend-
ers (Gan, Elkind, and Wooldridge 2018; Gan et al. 2020); re-
source management in energy (Aussel et al. 2020) with sup-
pliers, aggregators, and end users; or security problems with
a central insurer and a set of vulnerable agents (Naghizadeh
and Liu 2014; Johnson, Böhme, and Grossklags 2011). Solv-
ing Stackelberg games with multiple followers is challeng-
ing in general (Basilico, Coniglio, and Gatti 2017; Coniglio,
Gatti, and Marchesi 2020). Previous work often reformu-
lates the followers’ best response as stationary and com-
plementarity constraints in the leader’s optimization (Shi,
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Zhang, and Lu 2005; Basilico et al. 2020; Basilico, Coniglio,
and Gatti 2017; Coniglio, Gatti, and Marchesi 2020; Calvete
and Galé 2007), casting the entire Stackelberg problem as a
single optimization problem. This reformulation approach
has achieved significant success in problems with linear or
quadratic objectives, assuming a unique equilibrium or a
specific equilibrium concept, e.g., followers’ optimistic or
pessimistic choice of equilibrium (Hu and Fukushima 2011;
Basilico et al. 2020; Basilico, Coniglio, and Gatti 2017). The
reformulation approach thoroughly exploits the structure of
objectives and equilibrium to conquer the computation chal-
lenge. However, when these conditions are not met, refor-
mulation approach may get trapped in low-quality solutions.

In this paper, we propose an end-to-end gradient descent
approach to solve multi-follower Stackelberg games. Specif-
ically, we run gradient descent by back-propagating through
a sampled Nash equilibrium reached by followers to up-
date the leader’s strategy. Our approach overcomes weak-
nesses of reformulation approaches as (i) we decouple the
leader’s optimization problem from the followers’, casting it
as a learning problem to be solved by end-to-end gradient
descent through the followers’ equilibrium; and (ii) back-
propagating through a sampled Nash equilibrium enables us
to work with arbitrary equilibrium selection procedures and
multiple equilibria.

In short, we make several contributions. First, we provide
a procedure for differentiating through a Nash equilibrium
assuming uniqueness (later we relax the assumption). Be-
cause each follower must simultaneously best respond to
every other follower, the Karush–Kuhn–Tucker (KKT) con-
ditions (Kuhn and Tucker 2014) for each follower must be
simultaneously satisfied. We can thus differentiate through
the system of KKT conditions and apply the implicit func-
tion theorem to obtain the gradient. Second, we relax the
uniqueness assumption and extend our approach to an arbi-
trary, potentially stochastic, equilibrium selection oracle. We
first show that given a stochastic equilibrium selection pro-
cedure, using optimistic or pessimistic assumptions to solve
Stackelberg games with stochastic equilibria can yield pay-
off to the leader that is arbitrarily worse than optimal. To
address the issue of multiple equilibria and stochastic equi-
libria, we formally characterize stochastic equilibria with a
concept we call equilibrium flow, defined by a partial differ-
ential equation. The equilibrium flow ensures the stochas-



tic gradient computed from the sampled Nash equilibrium
is unbiased, allowing us to run stochastic gradient descent to
differentiate through the stochastic equilibrium. We also dis-
cuss how to compute the equilibrium flow either from KKT
conditions under certain sufficient conditions or by solv-
ing the partial differential equation. This paper is the first
to guarantee that the gradient computed from an arbitrary
stochastic equilibrium sampled from multiple equilibria is a
differentiable, unbiased sample. Third, to address the chal-
lenge that the feasibility of the leader’s strategy may depend
on the equilibrium reached by the followers (e.g., when a
subsidy paid to the followers is conditional on their actions
as in (Rotemberg 2019; Mortensen and Pissarides 2001)),
we use an augmented Lagrangian method to convert the con-
strained optimization problem into an unconstrained one.
The Lagrangian method combined with our unbiased Nash
equilibrium gradient estimate enables us to run stochastic
gradient descent to optimize the leader’s payoff while also
satisfying the equilibrium-dependent constraints.

We conduct experiments to evaluate our approach in three
different multi-follower Stackelberg games: normal-form
games with a leader offering subsidies to followers, Stack-
elberg security games with a planner coordinating multiple
defenders, and cyber insurance games with an insurer and
multiple customers. Across all three examples, the leader’s
strategy space is constrained by a budget constraint that
depends on the equilibrium reached by the followers. Our
gradient-based method provides a significantly higher pay-
off to the leader evaluated at equilibrium, compared to ex-
isting approaches which fail to optimize the leader’s util-
ity and often produce large constraint violations. These re-
sults, combined with our theoretical contributions, demon-
strate the strength of our end-to-end gradient descent algo-
rithm in solving Stackelberg games with multiple followers.

Related Work
Stackelberg models with multiple followers Multi-
follower Stackelberg problems have received a lot of atten-
tion in domains with a hierarchical leader-follower struc-
ture (Nakamura 2015; Zhang et al. 2016; Liu 1998; So-
lis, Clempner, and Poznyak 2016; Sinha et al. 2014). Al-
though single-follower normal-form Stackelberg games can
be solved in polynomial time (Korzhyk, Conitzer, and Parr
2010; Blum et al. 2019), the problem becomes NP-hard
when multiple followers are present, even when the equilib-
rium is assumed to be either optimistic or pessimistic (Basil-
ico et al. 2020; Coniglio, Gatti, and Marchesi 2020). Ex-
isting approaches (Basilico et al. 2020; Aussel et al. 2020)
primarily leverage the leader-follower structure in a bilevel
optimization formulation (Colson, Marcotte, and Savard
2007), which can be solved by reformulating the followers’
best response into non-convex stationary and complementar-
ity constraints in the leader’s optimization problem (Sinha,
Soun, and Deb 2019). Various optimization techniques, in-
cluding branch-and-bound (Coniglio, Gatti, and Marchesi
2020) and mixed-integer programs (Basilico et al. 2020),
are adopted to solve the reformulated problems. However,
these reformulation approaches highly rely on well-behaved
problem structure, which may encounter large mixed integer

non-linear programs when the followers have non-quadratic
objectives. Additionally, these approaches mostly assume
uniqueness of equilibrium or a specific equilibrium con-
cept, e.g., optimistic or pessimistic, which may not be fea-
sible (Gan, Elkind, and Wooldridge 2018). Previous work
on the stochastic equilibrium drawn from multiple equilibria
in Stackelberg problems (Lina and Jacqueline 1996) mainly
focuses on the existence of an optimal solution, while our
work focuses on actually solving the Stackelberg problems
to identify the best action for the leader.

In contrast, our approach solves the Stackelberg problem
by differentiating through the equilibrium reached by fol-
lowers to run gradient descent in the leader’s problem. Our
approach also applies to any stochastic equilibrium drawn
from multiple equilibria by establishing the unbiasedness of
the gradient computed from a sampled equilibrium using a
partial differential equation.

Differentiable optimization When there is only a sin-
gle follower optimizing his utility function, differentiat-
ing through a Nash equilibrium reduces to the framework
of differentiable optimization (Pirnay, López-Negrete, and
Biegler 2012; Amos and Kolter 2017; Agrawal et al. 2019;
Bai, Kolter, and Koltun 2019). When there are two fol-
lowers with conflicting objectives (zero-sum), differentiat-
ing through a Nash equilibrium reduces to a differentiable
minimax formulation (Ling, Fang, and Kolter 2018, 2019).
Lastly, when there are multiple followers, Li et al. (2020)
follow the sensitivity analysis and variational inequalities
(VIs) literature (Mertikopoulos and Zhou 2019; Ui 2016;
Dafermos 1988; Parise and Ozdaglar 2019) to express a
unique Nash equilibrium as a fixed-point to the projection
operator in VIs to differentiate through the equilibrium. Li
et al. (2021) further extend the same approach to structured
hierarchical games. Nonetheless, these approaches rely on
the uniqueness of Nash equilibrium. In contrast, our ap-
proach generalizes to multiple equilibria.

Stackelberg Games With a Single Leader and
Multiple Followers

In this paper, we consider a Stackelberg game composed
of one leader and n followers. The leader first chooses a
strategy π ∈ Π that she announces, then the followers ob-
serve the leader’s strategy and respond accordingly. When
the leader’s strategy π is determined, the followers form
an n-player simultaneous game with n followers, where
the i-th follower minimizes his own objective function
fi(xi, x−i, π), which depends on his own action xi ∈ Xi,
other followers’ actions x−i ∈ X−i, and the leader’s strategy
π ∈ Π . We assume that each strategy space is characterized
by linear constraints: Xi = {xi | Aixi = bi, Gixi ≤ hi}.
We also assume perfect information—all the followers know
other followers’ utility functions and strategy spaces.

Nash Equilibria
We call x∗ = {x∗1, x∗2, . . . , x∗n} a Nash equilibrium if no fol-
lower has an incentive to deviate from their current strategy,



n-player simultaneous move game
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Figure 1: Given leader’s strategy π, followers respond to
the leader’s strategy and reach a Nash equilibrium x∗.
The leader’s payoff and the constraint depend on both the
leader’s strategy π and the equilibrium x∗.

where we assume each follower minimizes1 his objective:

∀i : fi(x∗i , x∗−i, π) ≤ fi(xi, x∗−i, π) ∀xi ∈ Xi. (1)

As shown in Figure 1, when the leader’s strategy π is chosen
and passed to an n-player game composed of all followers,
we assume the followers converge to a Nash equilibrium x∗.

In the first section, we assume there is a unique Nash equi-
librium returned by an oracle x∗ = O(π). We later gener-
alize to the case where there are multiple equilibria with a
stochastic equilibrium selection oracle which randomly out-
puts an equilibrium x ∼ O(π) drawn from a distribution
with probability density function p(·, π) : X → R≥0.

Leader’s Optimization Problem
When the leader chooses a strategy π and all the follow-
ers reach an equilibrium x∗, the leader receives a payoff
f(x∗, π) and a constraint value g(x∗, π). The goal of the
Stackelberg leader is to choose an optimal π to maximize
her utility while satisfying the constraint.
Definition 1 (Stackelberg problems with multiple follow-
ers and unique Nash equilibrium). The leader chooses a
strategy π to maximize her utility function f subject to con-
straints g evaluated at the unique equilibrium x∗ induced by
an equilibrium oracle O, i.e.,:

maxπ f(x
∗, π) s.t. x∗ = O(π), g(x∗, π) ≤ 0. (2)

This problem is hard because the objective f(x∗, π) de-
pends on the Nash equilibrium x∗ reached by the follow-
ers. Moreover, notice that the feasibility constraint g(x∗, π)
also depends on the equilibrium, which creates a compli-
cated feasible region for the leader’s strategy π.

Gradient Descent Approach
To solve the leader’s optimization problem, we propose to
run gradient descent to optimize the leader’s objective. This
requires us to compute the following gradient:

df(x∗, π)

dπ
= fπ(x

∗, π) + fx(x
∗, π) · dx

∗

dπ
. (3)

The terms fπ, fx above are easy to compute since the pay-
off function f is explicitly given. The main challenge is
to compute dx∗

dπ because it requires estimating how the Nash
equilibrium x∗ reached by followers responds to any change
in the leader’s strategy π.

1We use minimization formulation to align with the convention
in convex optimization. In our experiments, examples of maximiza-
tion problems are used, but the same approach applies.

Gradient of Unique Nash Equilibrium
In this section, we assume a unique Nash equilibrium
reached by followers. Motivated by the technique proposed
by Amos and Kolter (2017), we show how to differentiate
through multiple KKT conditions to derive the derivative of
a Nash equilibrium.

Differentiating Through KKT Conditions
Given the leader’s strategy π, we express the KKT condi-
tions of follower i with dual variables λ∗i and ν∗i by: ∇xifi(x

∗
i , x
∗
−i, π) +G>i λ

∗
i +A>i ν

∗
i = 0

Diag(λ∗i )(Gix
∗
i − hi) = 0

Aix
∗
i = bi.

(4)

We want to estimate the impact of π on the resulting Nash
equilibrium x∗. Supposing the objective functions fi ∈ C2

are twice-differentiable, we can compute the total derivative
of the the KKT system in Equation 4 written in matrix form: ∇2

xixi
fi ∇2

x−ixi
fi G>i A>i

Diag(λ∗i )Gi 0 Diag(Gix∗i−hi) 0
Ai 0 0 0


 dx

∗
i

dx∗−i
dλ∗i
dν∗i


=

−∇2
πxi

fidπ − dG>i λ∗i − dA>i ν∗i
−Diag(λ∗i )(dGix

∗
i − dhi)

dbi − dAix∗i

 .
Since we assume the constraint matrices are constant,

dGi, dhi, dAi, dbi can be ignored. We concatenate the linear
system for every follower i and move dπ to the denominator: ∇xF G> A>

Diag(λ∗)G Diag(Gx∗−h) 0
A 0 0

dx∗dπdλ∗
dπ
dν∗

dπ

=[−∇πF0
0

]
(5)

where F = [(∇x1
f1)
>, . . . , (∇xn

fn)
>]> is a col-

umn vector, and G = Diag(G1, G2, . . . , Gn), A =
Diag(A1, A2, . . . , An) are the diagonalized placement of a
list of matrices. In particular, the KKT matrix on the left-
hand side of Equation 5 matches the sensitivity analysis
of Nash equilibria using variational inequalities (Facchinei,
Kanzow, and Sagratella 2014; Dafermos 1988).
Proposition 1. When the Nash equilibrium is unique and
the KKT matrix in Equation 5 is invertible, the implicit func-
tion theorem holds and dx∗

dπ can be uniquely determined by
Equation 5.

Proposition 1 ensures the sufficient conditions for apply-
ing Equation 5 to compute dx∗

dπ . Under these sufficient con-
ditions, we can compute Equation 3 using Equation 5.

Gradient of Stochastic Equilibrium
In the previous section, we showed how to compute the gra-
dient of a Nash equilibrium when the equilibrium is unique.
However, this can be restrictive because Stackelberg games
with multiple followers often have multiple equilibria that
the followers can stochastically reach one. For example,
both selfish routing games in the traffic setting (Roughgar-
den 2004) and security games with multiple defenders (Gan,
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Figure 2: Payoff matrices from Theorem 1 where the leader has 3 strategies. Follower payoffs for each strategy in (a)–(c) where
both followers receive the same payoff; leader payoffs in (d).

Elkind, and Wooldridge 2018) can have multiple equilibria
that are reached in multiple independent runs.

In this section, we first demonstrate the importance of
stochastic equilibrium by showing that optimizing over op-
timistic or pessimistic equilibrium could lead to arbitrarily
bad leader’s payoff under the stochastic setting. Second, we
generalize our gradient computation to the case with multi-
ple equilibria, allowing the equilibrium oracle O to stochas-
tically return a sample equilibrium from a distribution of
multiple equilibria. Lastly, we discuss how to compute the
gradient of different types of equilibria and its limitation.

Importance of Stochastic Equilibrium
When the equilibrium oracle is stochastic, our Stackelberg
problem becomes a stochastic optimization problem:

Definition 2 (Stackelberg problems with multiple followers
and stochastic Nash equilibria). The leader chooses a strat-
egy π to optimize her expected utility and satisfy the con-
straints in expectation under a given stochastic equilibrium
oracle O:

max
π

E
x∗∼O(π)

f(x∗, π) s.t. E
x∗∼O(π)

g(x∗, π) ≤ 0. (6)

In particular, we show that if we ignore the stochasticity
of equilibria by simply assuming optimistic or pessimistic
equilibria, the leader’s expected payoff can be arbitrarily
worse than the optimal one.

Theorem 1. Assuming the followers stochastically reach a
Nash equilibrium drawn from a distribution over all equi-
libria, solving a Stackelberg game under the assumptions of
optimistic or pessimistic equilibrium can give the leader ex-
pected payoff that is arbitrarily worse than the optimal one.

Proof. We consider a Stackelberg game with one leader and
two followers (row and column player) with no constraint.
The leader can choose 3 different strategies, each corre-
sponding to a payoff matrix in Figure 2(a)–2(c), where both
followers receive the same payoff in the entry when they
choose the corresponding row and column. In each payoff
matrix, there are three pure Nash equilibria; we assume the
followers reach any of them uniformly at random. After the
followers reach a Nash equilibrium, the leader receives the
corresponding entry in the payoff matrix in Figure 2(d).

Under the optimistic assumption, the leader would choose
strategy 1, expecting followers to break the tie in favor of
the leader, yielding payoff C. Instead, the three followers
select a Nash equilibria uniformly at random, yielding ex-
pected payoff C+0−C

3 = 0. Under the pessimistic assump-

tion, the leader chooses strategy 2, anticipating and receiv-
ing an expected payoff of zero. Under the correct stochas-
tic assumption, she chooses strategy 3 with expected payoff
C−ε+C−ε−ε

3 = 2
3C− ε� 0, which can be arbitrarily higher

than the optimistic or pessimistic payoff when C →∞.

Theorem 1 justifies why we need to work on stochastic
equilibrium when the equilibrium is drawn stochastically in
Definition 2. In the following section, we show how to apply
gradient descent to optimize the leader’s payoff by differen-
tiating through followers’ equilibria with a stochastic oracle.

Equilibrium Flow and Unbiased Gradient Estimate
Our goal is to compute the gradient of the objective in Equa-
tion 6: d

dπ Ex∗∼O(π) f(x
∗, π). However, since the distribu-

tion of the oracle O(π) can also depend on π, we cannot
easily exchange the gradient operator into the expectation.

To address the dependency of the oracle O(π) on π, we
use p(x, π) to represent the probability density function of
the oracle x ∼ O(π) for every π. We want to study how
the oracle distribution changes as the leader’s strategy π
changes, which we denote by equilibrium flow as defined
by the following partial differential equation:
Definition 3 (Equilibrium Flow). We call v(x, π) the equi-
librium flow of the oracleO with probability density function
p(x, π) if v(x, π) satisfies the following equation:

∂

∂π
p(x, π) = −∇x · (p(x, π)v(x, π)). (7)

This differential equation is similar to many differen-
tial equations of various conservation laws, where v(x, π)
serves as a velocity term to characterize the movement of
equilibria. In the following theorem, we use the equilibrium
flow v(x, π) to address the dependency of O(π) on π.
Theorem 2. If v(x∗, π) is the equilibrium flow of the
stochastic equilibrium oracle O(π), we have:

d

dπ
Ex∗∼O(π) f(x

∗, π)

=Ex∗∼O(π) [fπ(x
∗, π) + fx(x

∗, π) · v(x∗, π)] . (8)
Proof sketch. To compute the derivative on the left-hand
side, we can expand the expectation by:

d

dπ
Ex∗∼O(π) f(x

∗, π) =
d

dπ

ˆ
f(x, π)p(x, π)dx

=

ˆ
p(x, π)

∂

∂π
f(x, π)+f(x, π)

∂

∂π
p(x, π)dx

= Ex∗∼O(π) fπ(x
∗, π) +

ˆ
f(x, π)

∂

∂π
p(x, π)dx. (9)



We substitute the term ∂
∂πp = −∇x · (p · v) by the defini-

tion of equilibrium flow, and apply integration by parts and
Stokes’ theorem2 to the right-hand side of Equation 9 to get
Equation 8. More details can be found in the appendix.

Theorem 2 extends the derivative of Nash equilibrium
to the case of stochastic equilibrium randomly drawn from
multiple equilibria. Specifically, Equation 9 offers an effi-
cient unbiased gradient estimate by sampling an equilibrium
from the stochastic oracle to compute the right-hand side of
Equation 9. Theorem 2 also matches to Equation 3, where
the role of equilibrium flow v(x∗, π) coincides with the role
of dx

∗

dπ in Equation 3.

How to Determine Equilibrium Flow
The only remaining question is how to determine the equi-
librium flow. Given the leader’s strategy π, there are two
types of equilibria: (i) isolated equilibria and (ii) non-
isolated equilibria. We first show that the solution to Equa-
tion 5 matches the equilibrium flow for every equilibrium in
case (i) when the probability of sampling the equilibrium is
locally fixed.

Theorem 3. Given the leader’s strategy π and a sampled
equilibrium x, if (1) the KKT matrix at (x, π) is invertible
and (2) x is sampled with a fixed probability locally, the
solution to Equation 5 is a homogeneous solution to Equa-
tion 7 and matches the equilibrium flow v(π,x) locally.

Theorem 3 ensures that when the sampled equilibrium be-
haves like a unique equilibrium locally, the solution to Equa-
tion 5 matches the equilibrium flow of the sampled equilib-
rium. In particular, Theorem 3 does not require all equilibria
are isolated; it works as long as the sampled equilibrium sat-
isfies the sufficient conditions. In contrast, the study in mul-
tiple equilibria requires global isolation for the analysis to
work. Together with Theorem 2, we can use the solution to
Equation 5 as an unbiased equilibrium gradient estimate and
run stochastic gradient descent accordingly.

Lastly, when the sufficient conditions in Theorem 3 are
not satisfied, e.g., the KKT matrix becomes singular for any
non-isolated equilibrium, the solution to Equation 5 does not
match the equilibrium flow v(x, π). In this case, to compute
the equilibrium flow correctly, we rely on solving the partial
differential equation in Equation 7. If the probability density
function p(x, π) is explicitly given, we can directly solve
Equation 7 to derive the equilibrium flow. If the probability
density function p(x, π) is not given, we can use the empir-
ical equilibrium distribution p′(x, π) constructed from the
historical equilibrium samples of the oracle instead.

In practice, we hypothesize that even if the equilibria are
not isolated and the corresponding KKT matrices are singu-
lar, solving degenerated version of Equation 5 still serves as
a good approximation to the equilibrium flow. Therefore, we
still use the solution to Equation 5 as an approximate of the
equilibrium flow in the following sections and algorithms.

2The analysis of integration by parts and Stokes’ theorem ap-
plies to both Riemann and Lebesgue integral. Lebesgue integral is
needed when the set of equilibria forms a measure-zero set.

Algorithm 1: Augmented Lagrangian Method
1 Initialization: π = πinit, learning rate γ, multipliers
λ = λ0, slack variable s ≥ 0,K = 100

2 for iteration in {1, 2, . . . } do
3 Define the objective to be Lagrangian L(π, s;λ)

defined in Equation 10
4 Compute a sampled gradient of L by sampling

x∗ ∼ O(π). Compute dx∗

dπ by Equation 5
5 Update π = π − γ(∂L∂π + ∂L

∂x∗
dx∗

dπ ),
s = max{s− γ ∂L∂s ,0}

6 if iteration is a multiple of K then
7 Update λ = λ− µ(g(x∗, π) + s)

8 Return: leader’s strategy π

Gradient-Based Algorithm and Augmented
Lagrangian Method

To solve both the optimization problems in Definition 1
and Definition 2, we implement our algorithm with
(i) stochastic gradient descent with unbiased gradient ac-
cess, and (ii) augmented Lagrangian method to handle the
equilibrium-dependent constraints. We use the relaxation al-
gorithm (Uryasev and Rubinstein 1994) as our equilibrium
oracle O. The relaxation algorithm is a classic equilibrium
finding algorithm that iteratively updates agents’ strategies
by best responding to other agents’ strategies until conver-
gence with guarantees (Krawczyk and Uryasev 2000).

Since the leader’s strategy π is constrained by the
followers’ response, we adopt an augmented Lagrangian
method (Bertsekas 2014) to convert the constrained problem
to an unconstrained one with a Lagrangian objective. We in-
troduce a slack variable s ≥ 0 to convert inequality con-
straints into equality constraints Ex∗∼O(π) g(x

∗, π)+s = 0.
Thus, the penalized Lagrangian can be written as:

L(π,s;λ)=−Ex∗∼O(π)f(x
∗,π) + λ>(Ex∗∼O(π) g(x

∗,π)+s)

+
µ

2

∥∥Ex∗∼O(π) g(x
∗,π)+s

∥∥2 . (10)

We run gradient descent on the minimization problem of the
penalized Lagrangian L(π, s;λ) and update the Lagrangian
multipliers λ every fixed number of iterations, as described
in Algorithm 1. The stochastic Stackelberg problem with
multiple followers can be solved by running stochastic gra-
dient descent with augmented Lagrangian methods, where
Theorem 2 ensures the unbiasedness of the stochastic gradi-
ent estimate under the conditions in Theorem 3.

Example Applications
We briefly describe three different Stackelberg games with
one leader and multiple self-interested followers. Specifi-
cally, normal-form games with risk penalty has a unique
Nash equilibrium, while other examples can have multiple.

Coordination in Normal-Form Games
A normal-form game (NFG) is composed of n follower
players each with a payoff matrix Ui ∈ Rm1×···×mn for all



i∈ [n], where the i-th player hasmi available pure strategies.
The set of all feasible mixed strategies of player i is xi ∈
Xi = {x ∈ [0, 1]mi | 1>x = 1}. On the other hand, the
leader can offer non-negative subsidies πi ∈ Rm1×···×mn

≥0 to
each player i to reward specific combinations of pure strate-
gies. The subsidy scheme is used to control the payoff matrix
and incentivize the players to change their strategies.

Once the subsidy scheme π is determined, each player i
chooses a strategy xi and receives the expected payoffUi(x)
and subsidy πi(x), subtracting a penalty term H(xi) =∑
j xij log xij , the Gibbs entropy of the chosen strategy xi

to represent the risk aversion of player i. Since the follow-
ers’ objectives are concave, the risk aversion model yields
a unique Nash equilibrium, which is known to be quantal
response equilibrium (QRE) (McKelvey and Palfrey 1995;
Ling, Fang, and Kolter 2018). Lastly, the leader’s payoff
is given by the social welfare across all players, which is
the summation of the expected payoffs without subsidies:∑
i∈[n] Ui(x). The subsidy scheme is subject to a budget

constraint B on the total subsidy paid to all players.

Security Games with Multiple Defenders
Stackelberg security games (SSGs) model a defender pro-
tecting a set of targets T from being attacked. We consider
a scenario with a leader coordinator and n non-cooperative
follower defenders each patrolling a subset Ti ⊆ T of the
targets (Gan, Elkind, and Wooldridge 2018). Each defender i
can determine the patrol effort spent on protecting the desig-
nated targets. We use 0 ≤ xi,t ≤ 1 to denote the effort spent
on target t ∈ Ti and the total effort is upper bounded by
bi. Defender i only receives a penalty Ui,t < 0 when target
t ∈ Ti in her protected region is attacked but unprotected by
all defenders, and 0 otherwise.

Because the defenders are independent, the patrol strate-
gies x can overlap, leading to a multiplicative unprotected
probability

∏
i(1 − xi,t) of target t. Given the unprotected

probabilities, attacks occur under a distribution p ∈ R|T |,
where the distribution p is a function of the unprotected
probabilities defined by a quantal response model. To en-
courage collaboration, the leader coordinator can selectively
provide reimbursement πi,t ≥ 0 to alleviate defender i’s loss
when target t is attacked but unprotected, which encourages
the defender to focus on protecting specific regions, reduc-
ing wasted effort on overlapping patrols. The leader’s goal
is to protect all targets, where the leader’s objective is the
total return across over all targets

∑
t∈T Utpt

∏
i(1 − xi,t).

Lastly, the reimbursement scheme π must satisfy a budget
constraint B on the total paid reimbursement.

Cyber Insurance Games With Multiple Customers
We adopt the cyber insurance model proposed by
Naghizadeh et al. (2014) and Johnson et al. (2011) to study
how agents in an interconnected cyber security network
make decisions, where agents’ decisions jointly affect each
other’s risk. There are n agents (followers) facing malicious
cyberattacks. Each agent i can deploy an effort of protec-
tion xi ∈ R≥0 to his computer system, where investing
in protection incurs a linear cost cixi. Given the efforts x

spent by all the agents, the joint protection of agent i is∑n
j=1 wijxj with an interconnected effect parameterized by

weights W = {wij}i,j∈[n]. The probability of being at-
tacked is modeled by σ(−

∑n
j=1 wijxj + Li), where σ is

the sigmoid function and Li refers to the value of agent i.
The Stackelberg leader is an external insurer who can cus-

tomize insurance plans to influence agents’ protection deci-
sions. The leader can set an insurance plan π = {Ii, ρi}i∈[n]
to agent i, where ρi is the premium paid by agent i to re-
ceive compensation Ii when attacked. Under the insurance
plans and the interconnected effect, agents selfishly deter-
mine their effort spent on the protection x to maximize their
payoff. On the other hand, the leader’s objective is the to-
tal premium subtracting the compensation paid, while the
constraints on the feasible insurance plans are the individ-
ual rationality of each customer, i.e., the compensation and
premium must incentivize agents to purchase the insurance
plan by making the payoff with insurance no worse than the
payoff without. These constraints restrict the premium and
compensation offered by the insurer.

Experiments and Discussion
We compare our gradient-based Algorithm 1 (gradient)
against various baselines in the three settings described
above. In each experiment, we execute 30 independent runs
(100 runs for SSGs) under different randomly generated in-
stances. We run Algorithm 1 with learning rate γ = 0.01
for 5,000 gradient steps and update the Lagrange multipli-
ers every K = 100 iterations. Our gradient-based method
completes in about an hour across all settings—refer to the
appendix for more details.

Baselines We compare against several baselines that can
solve the stochastic Stackelberg problem with multiple
followers with equilibrium-dependent objective and con-
straints. In particular, given the non-convexity of agents’
objective functions, SSGs and cyber insurance games can
have multiple, stochastic equilibria. Our first baseline is the
leader’s initial strategy π0, which is a naive all-zero strat-
egy in all three settings. Blackbox optimization baselines in-
clude sequential least squares programming (SLSQP) (Kraft
et al. 1988) and the trust-region method (Conn, Gould, and
Toint 2000), where the equilibrium encoded in the optimiza-
tion problem is treated as a blackbox that needs to be re-
peatedly queried. Reformulation-based algorithm (Basil-
ico et al. 2020; Aussel et al. 2020) is the state-of-the-art
method to solve Stackelberg games with multiple follow-
ers. This approach reformulates the followers’ equilibrium
conditions into non-linear complementary constraints as a
mathematical program with equilibrium constraints (Luo,
Pang, and Ralph 1996), then solves the problem using
branch-and-bound and mixed integer non-linear program-
ming (we use a commercial solver, Knitro (Nocedal 2006)).
The reformulation-based approach cannot handle arbitrary
stochastic equilibria but can handle optimistic or pessimistic
equilibria. We implement the optimistic version of the re-
formulation as our baseline, which could potentially suffer
from a performance drop as exemplified in Theorem 1.
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Figure 3: We plot the solution quality of the Stackelberg problems with multiple followers. In all three domains, our gradient-
based method achieves significantly higher objective than all other approaches. In NFGs and SSGs, the baselines cannot mean-
ingfully improve upon the default strategy of the leader’s initialization due to the high dimensionality of the parameter π; in
cyber insurance games, SLSQP and reformulation both make some progress but still mostly with lower utility.
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Figure 4: We plot the average budget constraint violation. Our gradient-based approach maintains low violation across all
settings. SLSQP produces no violation in the first two domains because it fails to provide any meaningful improvement against
the leader’s initialization. Other baselines violate constraints more (often by orders of magnitude) despite less performance
improvement.

Solution Quality
In Figure 3(a) and 3(b), we plot the leader’s objective (y-
axis) versus various budgets for the paid subsidy (x-axis).
Figure 3(c), shows the total revenue to the insurer (y-axis)
versus the risk aversion of agents (x-axis). Denoting the
number of agents by n and the number of actions per agent
by m, we have n = 3, 5, 10 and m = 10, 50, 1 in NFGs,
SSGs, and cyber insurance games, respectively.

Our optimization baselines perform poorly in Figure 3(a)
and 3(b) due to the high dimensionality of the environ-
ment parameter π in NFGs (dim(π) = nmn) and SSGs
(dim(π) = nm), respectively. In Figure 3(c), the dimension-
ality of cyber insurance games (dim(π) = 2n) is smaller,
where we can see that SLSQP and reformulation-based ap-
proaches start making some progress, but still less than our
gradient-based approach. The main reason that blackbox
methods do not work is due to the expensive computation of
numerical gradient estimates. On the other hand, reformu-
lation method fails to handle the mixed-integer non-linear
programming problem reformulated from followers’ best re-
sponse and the constraints within a day.

Constraint Violation
In Figure 4, we provide the average constraint violation
across different settings. Blackbox optimization algorithms
either become stuck at the initial point due to the inex-
act numerical gradient estimate or create large constraint
violations due to the complexity of equilibrium-dependent

constraints. The reformulation approach also creates large
constraint violations due to the difficulty of handling large
number of non-convex followers’ constraints under high-
dimensional leader’s strategy. In comparison, our method
can handle equilibrium-dependent constraints by using an
augmented Lagrangian method with an ability to tighten the
budget constraint violation under a tolerance as shown. Al-
though Figure 4 only plots the budget constraint violation, in
our algorithm, we enforce that the equilibrium oracle runs
until the equilibrium constraint violation is within a small
tolerance 10−6, whereas other algorithms sometimes fail to
satisfy such equilibrium constraints.

Conclusion
In this paper, we present a gradient-based approach to solve
Stackelberg games with multiple followers by differentiat-
ing through followers’ equilibrium to update the leader’s
strategy. Our approach generalizes to stochastic gradient de-
scent when the equilibrium reached by followers is stochas-
tically chosen from multiple equilibria. We establish the un-
biasedness of the stochastic gradient by the equilibrium flow
derived from a partial differential equation. To our knowl-
edge, this work is the first to establish the unbiasedness of
gradient computed from stochastic sample of multiple equi-
libria. Empirically, we implement our gradient-based algo-
rithm on three different examples, where our method out-
performs existing optimization and reformulation baselines.
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Implementation Details
We implement a differentiable PyTorch module to compute
a sample of the followers’ equilibria. The module takes the
leader’s strategy as input and outputs a Nash equilibrium
computed in the forward pass using the relaxation algorithm.
We use a random initialization to run the relaxation algo-
rithm, which can reach to different equilibria depending on
different initialization. Given the sampled equilibrium x∗

computed in the forward pass, the backward pass is im-
plemented by PyTorch autograd to compute all the second-
order derivatives to express Equation 5. The backward pass
solves the linear system in Equation 5 analytically to derive
dx∗

dπ as an approximate of the equilibrium flow.
This PyTorch module is used in all three examples in our

experiment. The implementation is flexible as we just need
to adjust the followers’ objectives and constraints, the re-
laxation algorithm and the gradient computation all directly
apply.

Proofs of Theorem 2 and Theorem 3
Theorem 2. If v(x∗, π) is the equilibrium flow of the
stochastic equilibrium oracle O(π), we have:

d

dπ
Ex∗∼O(π) f(x

∗, π)

=Ex∗∼O(π) [fπ(x
∗, π) + fx(x

∗, π) · v(x∗, π)] . (8)
Proof. To compute the derivative on the left-hand side, we
have to first expand the expectation because the equilibrium
distribution is dependent on the environment parameter π:

d

dπ
E

x∼O(π)
f(x, π)

=
d

dπ

ˆ
x∈X

f(x, π)p(x, π)dx

=

ˆ
x∈X

(
p(x, π)

∂

∂π
f(x, π) + f(x, π)

∂

∂π
p(x, π)

)
dx

= E
x∼O(π)

fπ(x, π) +

ˆ
x∈X

f(x, π)
∂

∂π
p(x, π)dx (11)

We further define Φ(x, π) = p(x, π)v(x, π). By the equi-
librium flow definition in Equation 7, we have

∂

∂π
p(x, π) = −∇x · Φ(x, π)

Therefore, the later term in Equation 11 can be computed
by integration by parts and Stokes’ theorem:ˆ

x∈X
f(x, π)

∂

∂π
p(x, π)dx

=−
ˆ
x∈X

f(x, π)∇x · Φ(x, π)dx

=−
ˆ
x∈X
∇x · (f(x, π)Φ(x, π))dx

+

ˆ
x∈X

fx(x, π)Φ(x, π)dx

=−
˛
∂X

f(x, π)Φ(x, π)dS +

ˆ
x∈X

fx(x, π)Φ(x, π)dx

Therefore, we have

d

dπ
E

x∼O(π)
f(x, π)

= E
x∼O(π)

fπ(x, π) +

ˆ
x∈X

f(x, π)
∂

∂π
p(x, π)dx

= E
x∼O(π)

fπ(x, π)−
˛
∂X

f(x, π)Φ(x, π)dS

+

ˆ
x∈X

fx(x, π)Φ(x, π)dx

= E
x∼O(π)

fπ(x, π)−
˛
∂X

f(x, π)p(x, π)v(x, π)dS

+

ˆ
x∈X

fx(x, π)p(x, π)v(x, π)dx

= E
x∼O(π)

[fπ(x, π) + fx(x, π)v(x, π)]

where the term
¸
∂X f(x, π)p(x, π)v(x, π)dS = 0 because

p(x, π) = 0 at the boundary ∂X . This concludes the proof
of Theorem 2.

Notice that in the proof of Theorem 2, we only use inte-
gration by parts and Stokes’ theorem, where both of them
apply to Riemann integral and Lebesgue integral. Thus, the
proof of Theorem 2 also works for any measure zero jumps
in the probability density function.

Theorem 3. Given the leader’s strategy π and a sampled
equilibrium x, if (1) the KKT matrix at (x, π) is invertible
and (2) x is sampled with a fixed probability locally, the
solution to Equation 5 is a homogeneous solution to Equa-
tion 7 and matches the equilibrium flow v(π,x) locally.

Proof. Since the KKT conditions hold for all equilibria, the
given π and x must satisfy KKT (x, π) = 0. The KKT ma-
trix in Equation 5 is given by ∂KKT

∂x , the Jacobian matrix of
the function KKT (x, π) with respect to x. If the KKT ma-
trix is invertible, by implicit function theorem, there exists
an open set U containing π such that there exists a unique
continuously differentiable function h : U → X such that
h(π) = x and KKT (h(π′), π′) = 0 for all π′ ∈ U . More-
over, the analysis in Equation 5 applies, where dh(π)

dπ = dx
dπ

matches the solution of Equation 5.
Lastly, the condition that the equilibrium x is sam-

pled with a fixed probability density c locally implies
the corresponding probability density function must satisfy
p(x′, π′) = c1KKT(x′,π′)=0 = c1x′=h(π′) for all π′ ∈ U in
an open set locally3.

Now we can verify whether p(x′, π′) and v(x′, π′) =
dh(π′)
dπ (independent of x′) satisfy the partial differential

equation of equilibrium flow as defined in Definition 3. We

3We can choose the smaller subset U such that both the implicit
function theorem and the locally fixed probability c both hold.



first compute the left-hand side of Equation 7 by:

∂

∂π
p(x′, π′) =

∂

∂π
c1x′=h(π′)

= cδx′=h(π′)
dh(π′)

dπ
(12)

where Equation 12 is derived by fixing x′, the derivative of
a jump function 1x′=h(π′) is a Dirac delta function located

at x′ = h(π′) multiplied by a Jacobian term dh(π′)
dπ .

We can also compute the right-hand side of Equation 7
by:

∇x · (p(x′, π′)v(x′, π′))

=v(x′, π′)
∂

∂x
p(x′, π′) + p(x′, π′)

∂

∂x
v(x′, π′) (13)

=
dh(π′)

dπ

∂

∂x
c1x′=h(π′)

=cδx′=h(π′)
dh(π′)

dπ
(14)

where the second term in Equation 13 is 0 because we define
v(x′, π′) = dh(π′)

dπ , which is independent of x′. Equation 14
is derived by fixing π′, the derivative of a jump function is a
Dirac delta function located at x′ = π′.

The above calculation shows that Equation 12 is identi-
cal to Equation 14, which implies the left-hand side and the
right-hand side of Equation 7 are equal. Therefore, we con-
clude that the choice of v(x′, π′) = dx′

dπ = dh(π′)
dπ is a ho-

mogeneous solution to differential equation in Equation 7
locally in π′ ∈ U . By the definition of the equilibrium flow,
v(x′, π′) = dx′

dπ is a solution to the equilibrium flow because
we can subtract the homogeneous solution and define a new
partial differential equation without region U to compute the
solution outside of U .

Limitation of Theorem 2 and Theorem 3
Although Theorem 2 always holds, the main challenge pre-
venting us from directly applying Theorem 2 is that we do
not know the equilibrium flow in advance. Given the prob-
ability density function of the equilibrium oracle, we can
compute the equilibrium flow by solving the partial differen-
tial equation in Equation 7. However, the probability density
function is generally not given.

Theorem 3 tells us that the derivative computed in Equa-
tion 5 is exactly the equilibrium flow defined by the partial
differential equation when the sampled equilibrium admits
to an invertible KKT matrix and is locally sampled with a
fixed probability. That is to say, when these conditions hold,
we can treat the equilibrium sampled from a distribution
over multiple equilibria as a unique equilibrium to differ-
entiate through as discussed in the section of unique Nash
equilibrium. These conditions are also satisfied when the
sampled equilibrium is locally stable without any discontin-
uous jump, generalizing the differentiability of unique Nash
equilibrium and globally isolated Nash equilibria to the case
with only conditions on the sampled Nash equilibrium.

Dimensionality and Computation Cost
Dimensionality of Control Parameters
We discuss the solution quality attained and computation
costs required by different optimization methods. To under-
stand the results, it is useful to compare the role and dimen-
sionality of the environment parameter π in each setting.

• Normal-form games: parameter π corresponds to the
non-negative subsidies provided to each follower for
each entry of its payoff matrix. We have dim(π) =
n
∏n
i=1mi = nmn, where for simplicity we setmi = m

for all i.

• Stackelberg security games: parameter π refers to the
non-negative subsidies provided to each follower at each
available target. Because each follower i can only cover
targets Ti ⊆ T , we have dim(π) =

∑n
i=1 |Ti| = nm,

where we set |Ti| = m for all i.

• Cyber insurance games: each insurance plan is com-
posed of a premium and a coverage amount. Therefore
in total, dim(π) = 2n, the smallest out of the three tasks.

Computation Cost
In Figure 5, we compare the computation cost per itera-
tion of equilibrium-finding oracle (forward) and the gra-
dient oracle (backward). Due to the hardness of the Nash
equilibrium-finding problem, no equilibrium oracle is likely
to have polynomial-time complexity in the forward pass
(computing an equilibrium). We instead focus more on
the computation cost of the backward pass (differentiating
through an equilibrium).

As we can see in Equation 5, the complexity of gradi-
ent computation is dominated by inverting the KKT ma-
trix with size L = O(nm) and the dimensionality of en-
vironment parameter π since the matrix dx∗

dπ is of size L ×
dim(π). Therefore, the complexity of the backward pass is
bounded above by O(Lα) +O(L2 dim(π)) = O(nαmα) +
O(n2m2 dim(π)) with α = 2.373.

• In Figure 5(a), the complexity is given by
O(n2m2 dim(π)) = O(n3mn+2) = O(m5) where
we set n = 3 with varied m, number of actions per
follower, shown in the x-axis.

• In Figure 5(b), the complexity is O(n2m2 dim(π)) =
O(m3) with n = 5 and varied m, number of actions per
follower, shown in the x-axis.

• In Figure 5(c), the complexity is O(n2m2 dim(π)) =
O(n3) with m = 1 and varied number of followers n
shown in the x-axis. The runtime of the forward pass
increases drastically, while the runtime of the backward
pass remains polynomial.

In all three examples, the gradient computation (backward)
has polynomial complexity and is faster than the equilib-
rium finding oracle (forward). Numerical gradient estima-
tion in gradient-free methods requires repeatedly accessing
the forward pass, which can be even more expensive than
our gradient computation.
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(a) Normal-form games with n = 3 followers
and varied m strategies per follower.

m: # of strategies per agent

ru
nt

im
e 

(s
ec

)

0

20

40

60

80

10 20 30 40 50 60 70 80 90 100

forward backward

(b) Stackelberg security games with n = 5
followers and varied m strategies per fol-
lower.
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(c) Cyber insurance games with m = 1 di-
mensional investment decision and varied n.

Figure 5: We compare the computation cost of equilibrium computation (forward) and the gradient access (backward) per
iteration. Backward pass is cheaper than forward pass in all three domains. Gradient-based method runs a forward pass and a
backward pass per iteration, while gradient-free method requires many forward passes to perform one step of local search.

Optimization Reformulation of the
Stackelberg Problems with Multiple Followers
In this section, we describe how to reformulate the leader’s
optimization problem with multiple followers involved into
an single-level optimization problem with stationary and
complementarity constraints. Notice that this reformulation
requires the assumption that all followers break ties in favor
of the leader, while our gradient-based method can deal with
arbitrary oracle access not limited to any tie-breaking rules.

Normal-Form Games with Risk Penalty

In this example, the followers’ objectives are defined by:

fi(x, π) = Ui(x) + πi(x)−H(xi)/λ, (15)

where Ui is the given payoff matrix and πi is the subsidy
provided by the leader. H is the Gibbs entropy denoting the
risk aversion penalty.

The leader’s objective and the constraint are respectively
defined by:

f(x, π) =
∑

i∈[n]
Ui(x)

g(x, π) =

(∑
i∈[n]

πi(x)

)
−B ≤ 0.

Bilevel optimization formulation we can write the fol-
lowers’ best response into the leader’s optimization prob-
lem:

max
π

f(x) =
∑

i∈[n]
Ui(x) = U(x)

s.t. xi ∈ [0, 1]mi ,1>xi = 1 ∀i ∈ [n]

xi = argmax
x∈Xi

fi(xi, x−i,π) ∀i ∈ [n]

π(x) ≤ B

where fi is defined in Equation 15. By converting the inner-
level optimization problem to its KKT conditions, we can

rewrite the optimization problem as:

min
π,x,λ,µ,ν

− f(x) = −U(x)

s.t. xi, 1>xi = 1 ∀i ∈ [n]

λi, µi ∈ Rmi

≥0, νi ∈ R ∀i ∈ [n]

λi,jxi,j = 0 ∀i ∈ [n], j ∈ [mi]

µi,j(1− xi,j) = 0 ∀i ∈ [n], j ∈ [mi]

−∇xi
fi − λi + µi + νi1 = 0 ∀i ∈ [n]

π(x) ≤ B

We add dual variables λi, µi to the inequality constraints
xi,j ≥ 0 and xi,j ≤ 1 respectively. We also add dual vari-
ables νi to the equality constraints 1>xi = 1. We can ex-
plicitly write down the gradient:

∇xi
fi(xi, x−i,π) = (Ui + πi)(x−i)−

∑
j
(1 + log xij)/λ

(16)

where λ here is a specific constant (different from the La-
grangian multipliers), which is chosen to be 1 in our imple-
mentation.

Stackelberg Security Games With Multiple
Defenders
The followers’ objectives are defined by:

fi(x, π) =
∑

t∈Ti

(Ui,t + πi,t)(1− yt)pt, (17)

where Ui,t is the loss received by defender i when target
t is successfully attacked, and πi,t is the corresponding re-
imbursement provided by the leader to remedy the loss.
We define yt := 1 −

∏
i(1 − xi,t) to denote the effec-

tive coverage of target t, representing the probability that
target t is protected under the overlapping protection pa-
trol plan x. Given the effective coverage of all targets, we
assume the attacker attacks target t with probability pt =
e−ωyt+at/(

∑
s∈T e

−ωys+as), where at ∈ R is a known at-
tractiveness value and ω ≥ 0 is a scaling constant.



The leader’s objective and constraint are respectively de-
fined by:

f(x, π) =
∑

t∈T
Ut(1− yt)pt

g(x, π) =
(∑

i,t
πi,t(1− yt)pt

)
−B ≤ 0,

where Ut < 0 is the penalty for the leader when target t is
attacked without any coverage.

Bilevel optimization formulation Similarly, we can also
write down the bilevel optimization formulation of the
Stackelberg security games with multiple defenders as:

max
π

f(x) =
∑

t∈T
Ut(1− yt)pt

s.t. xi,t ∈ [0, 1] ∀i ∈ [n], t ∈ Ti
yt, pt ∈ R ∀t ∈ T∑

t∈Ti

xi,t = bi ∀i ∈ [n]

yt = 1−
∏

i:t∈Ti

(1− xi,t) ∀t ∈ T

pt =
e−ωyt+at∑
s∈T e

−ωys+as
∀t ∈ T

xi = argmax
x∈Xi

fi(xi, x−i,π) ∀i ∈ [n]∑
i,t

(
πui,t(1−yt)pt+πci,tytpt

)
≤B

where pt is the probability that attacker will attack target t
under protect scheme x and the resulting y. The function fi
is defined in by:

fi(x, π) =
∑

t∈Ti

(Ui,t + πi,t)(1− yt)pt. (18)

This bilevel optimization problem can be reformulated
into a single level optimization problem if we assume all
the individual followers break ties (equilibria) in favor of
the leader, which is given by:

max
π,x,λ,µ,ν

∑
t∈T

Ut(1− yt)pt

s.t. xi,t ∈ [0, 1] ∀i ∈ [n], t ∈ Ti
yt, pt ∈ R ∀t ∈ T∑

t∈Ti

xi,t = bi ∀i ∈ [n]

yt = 1−
∏

i:t∈Ti

(1− xi,t) ∀t ∈ T

pt =
e−ωyt+at∑
s∈T e

−ωys+as
∀t ∈ T

λi,t, µi,t ∈ R≥0, νi ∈ R≥0 ∀i ∈ [n], t ∈ Ti
λi,txi,t = 0 ∀i ∈ [n], t ∈ Ti
µi,t(1− xi,t) = 0 ∀i ∈ [n], t ∈ Ti
−∇xi

fi − λi + µi + νi1 = 0 ∀i ∈ [n]∑
i,t

(
πui,t(1−yt)pt+πci,tytpt

)
≤B

Similarly, we add dual variables λi,t, µi,t, νi to constraints
xi,t ≥ 0, xi,t ≤ 1, and

∑
t∈Ti

xi,t = bi.

Cyber Insurance Games

The followers’ objectives are defined by:

fi(x, π) = −cixi − ρi − (Li − Ii)qi − γ|Li − Ii|
√
qi(1− qi),

(19)

where ci is the unit cost of the protection xi and Li is the
loss when the computer is attacked. The insurance plan of-
fered to agent i is denoted by (ρi, Ii), where ρi is the fixed
premium paid to enroll in the insurance plan and Ii is the
compensation received when the computer is attacked.

We assume the computer is attacked with a probability
qi, where qi = σ(−

∑n
j=1 wijxj + vLi) with σ being sig-

moid function, a matrix W = {wij > 0}i,j∈[n] to repre-
sent the interconnectedness between agents, v ≥ 0 to re-
flect the attacker’s preference over high-value targets, and
lastly it depends on the loss Li incurred by agent i when at-
tacked. This attack probability is a smooth non-convex func-
tion, which makes the reformulation approach hard and the
non-convexity can lead to multiple equilibria reached by the
followers.

The last term in Equation 19 is the risk penalty to agent i.
This term is the standard deviation of the loss received by
agent i. We assume the agent is risk averse and thus penal-
ized by a constant time of the standard deviation.

On the other hand, the leader’s objective is defined by:

f(x, π) =
∑n

i=1
−Iiqi + ρi

where the leader’s objective is simply the total revenue re-
ceived by the insurer, which includes the premium collected
from all agents and the compensation paid to all agents.

The constraints are the individual rationality of each
agent, where the customized insurance plan needs to in-
centivize the agent to purchase the insurance plan. In other
words, the compensation Ii and premium ρi must incen-
tivize agents to purchase the insurance plan by making the
payoff with insurance no worse than the payoff without.

gi(x, π) =
(
−cixi − Liqi − γLi

√
qi(1− qi)

)
− fi(x, π) ≤ 0.

Bilevel optimization reformulation The bilevel opti-
mization formulation for the cyber insurance domain with
an external insurer is given by:

max
π

f(x) =
∑n

i=1
−Iiqi + ρi

s.t. xi ∈ [0,∞) ∀i ∈ [n]

qi = σ
(
−
∑n

j=1
wijxj + vLi

)
∀i ∈ [n]

xi = arg max
x′i∈Xi

fi(x
′
i, x−i, π) ∀i ∈ [n]

−cixi−Liqi−γLi
√
qi(1−qi) ≤ fi(x, π) ∀i ∈ [n]

where fi(x, π) = −cixi − ρi − (Li − Ii)qi −
γ ‖Li − Ii‖

√
qi(1− qi).



Reformulating this bilevel problem into a single level op-
timization problem, we have:

max
π,x,λ

f(x) =
∑n

i=1
−Iiqi + ρi

s.t. xi ∈ [0,∞), λi ∈ [0,∞) ∀i ∈ [n]

qi = σ
(
−
∑n

j=1
wijxj + vLi

)
∀i ∈ [n]

xiλi = 0 ∀i ∈ [n]

−cixi−Liqi−γLi
√
qi(1−qi) ≤ fi(x, π) ∀i ∈ [n]

−∇xifi − λi = 0 ∀i ∈ [n]

with dual variables λi for the xi ≥ 0 constraint.

Experimental Setup
For reproducibility, we set the random seeds to be from 1 to
30 for NSGs and cyber insurance games, and from 1 to 100
for SSGs.

Normal-Form Games
In NFGs, we randomly generate the payoff matrix Ui ∈
Rm1×m2×···×mn of follower i with each entry of the pay-
off matrix randomly drawn from a uniform distribution
U(0, 10). We assume there are n = 3 followers. Each fol-
lower has three pure strategies to use mi = m = 3 for all i.
The risk aversion penalty constant is set to be λ = 1.

Stackelberg Security Games
In SSGs, we randomly generate the penalty Ui,t < 0 of each
defender i associated to each target t ∈ Ti ⊂ T from a uni-
form distribution Ui,t ∼ U(−10, 0). The leader’s penalty
Ut < 0 is also generated from the same uniform distribution
Ut ∼ U(−10, 0). We assume there are n = 5 followers in
total. There are |T | = 100 targets and each follower is able
to protect |Ti| = m = 50 targets randomly sampled from all
targets. Each follower can spend at most bi = 10 effort on
the available targets. The attractiveness values at used to de-
note the attacker’s preference is randomly generated from a
normal distribution at ∈ N (0, 1) with 0 mean and standard
deviation 1. The scaling constant is set to be ω = 5.

Cyber Insurance Games
In cyber insurance games, for each follower i, we gener-
ate the unit protection cost ci from a uniform distribution
ci ∼ U(5, 10) , and the incurred loss Li from a uniform
distribution Li ∼ U(50, 100). We assume there are in total
n = 10 followers. Each follower can only determine their
own investment and thus m = 1. The entry of the correla-
tion matrix W ∈ Rn×n is generated from uniform distribu-
tions Wi,j ∼ U(0, 1) if i 6= j, and Wi,j ∼ U(1, 2) if i = j
to reflect the higher dependency on the self investments. We
choose the risk aversion constant γ to be γ = 0.01.

Computing Infrastructure
All experiments except VI experiments were run on a com-
puting cluster, where each node is configured with 2 Intel
Xeon Cascade Lake CPUs, 184 GB of RAM, and 70 GB

of local scratch space. VI experiments require a Knitro li-
cense and were run on a machine with i9-7940X CPU @
3.10GHz with 14 cores and 128 GB of RAM. Within each
experiment, we did not implement parallelization, so each
experiment was purely run on a single CPU core.


