Al for Public Health & Conservation: Learning & Planning in the Data to Deployment Pipeline

MILIND TAMBE

Director, Ctr for Research on Computation & Society

Harvard University

Director "Al for Social Good"

Google Research India

@MilindTambe_Al

Al & Multiagent Systems Research for Social Impact

Public Health

Conservation

Public Safety and Security

Key Research Challenge

Optimize Our Limited Intervention Resources

Optimizing Limited Intervention Resources

Green security games

Conservation

Google Research Bangalore Al for Social Good

Public Health

Conservation

Three Common Themes

Multiagent systems, Data-to-deployment pipeline, Interdisciplinary partnerships

Three Common Themes

Multiagent systems, Data-to-deployment pipeline, Interdisciplinary partnerships

Field test & deployment: Social impact is a key objective

Lack of data is a norm: Must be part of project strategy

Three Common Themes

Multiagent systems, Data-to-deployment pipeline, Interdisciplinary partnerships

Empower non-profits to use AI tools; avoid being gatekeepers to AI4SI technology

Outline

Public Health

- ➤ Health program adherence: ML & Bandits
- COVID-19: Agent-based modeling

Conservation

- Cover papers from 2017-now [AAMAS, AAAI, IJCAI, NeurIPS...]
- PhD students & postdocs highlighted

Information dissemination & behavior change Optimizing Limited Intervention (Social Worker) Resources

Preventing HIV in homeless youth: Rates of HIV 10 times housed population

- > Shelters: Limited number of peer leaders to spread HIV information in social networks
- "Real" face-to-face interactions; not Facebook etc

10

Influence Maximization in Social Networks

Given:

- Social network Graph G
- Choose K "peer leader" nodes
- Assume: Independent cascade model of information spread

Objective:

Maximize expected number of influenced nodes

Influence Maximization in Social Networks Three Key Challenges Combined Together

- > Uncertainty in propagation probability over edges
- > Multi-step dynamic policies to handle peer leader "no shows"
- > Unknown social network, limited query budget to SAMPLE network

Challenge 1: Uncertainty in Real-world Physical Social Networks

Robust Influence Maximization

(AAMAS 2017)

Worst case parameters: a zero-sum game against nature

$$\max_{x \in \Delta^{|P|}} \min_{\mu, \sigma} \sum x_p \frac{(Outcome(p))}{OPT(\mu, \sigma)}$$

Algorithm

Choose Peer Leaders $p \in P$ generating mixed strategy " $x \in \Delta^{|P|}$ "

VS

Nature

Chooses parameters μ,σ

HEALER Algorithm Robust Influence Maximization

Policy #3

Date: 11/19/2020

0.6, -0.6

(AAMAS 2017)

Theorem: Converge with approximation guarantees

Equilibrium strategy despite exponential strategy spaces: Double oracle

Nature Influencer's oracle Params #1 Params #2 Params #3 Influencer Params #1 Params #2 Policy #1 0.3, -0.30.4, -0.40.8, -0.8Policy #1 0.8, -0.80.3, -0.30.6, -0.6Policy #2 0.7, -0.70.5, -0.50.7, -0.7 Policy #2 0.5, -0.50.4, -0.40.7, -0.7 Policy #3 0.6, -0.60.6, -0.6 0.4, -0.4 Policy #3 Nature's oracle Params #1 Params #2 Params #3 0.4, -0.4Policy #1 0.8, -0.80.3, -0.30.6, -0.6 0.5, -0.5Policy #2 0.7, -0.7

0.7, -0.7

0.4, -0.4

Challenge 2: POMDPs for Multi-step Policy

(AAMAS 2018a)

Partition POMDPs:

Exploit community structure

Challenge 3: Sampling to avoid Data Collection Bottleneck (AAAI 2018)

Wilder

Theorem: For community-structured graphs(*), sampling algorithm obtains a constantfactor approximation to the optimal influence spread using polylog(n) queries.

- Input: total number of nodes, *n*
- Query upto query budget
- Output *K* peer leader nodes to spread influence
- Perform similar to *OPT*, best influence spread with full network

"Sampling-HEALER" Pilot tests with 230 Homeless Youth

Wilder

Sampling-HEALER

I Observe peer leaders present/absent

12 peer leaders

npling HEALER	HEALER	HEALER+	DEGREE CENTRALITY
mpled Network)	(Full Network)	(Full Network)	(Full Network)
60 youth	62 youth	56 youth	

Date: 11/19/2020

(IJCAI 2018)

Results: Pilot Studies

(Journal of Society of Social Work & Research 2018)

Yadav Wilder

Results of 750 Youth Study [with Prof. Eric Rice] Actual Change in Behavior?

(Under submission)

First large-scale application of influence maximization for public health

Results of 750 Youth Study [with Prof. Eric Rice]

What our collaborators are saying:

Next steps: Data to Deployment Pipeline Using an RL agent?

(with B. Ravindran & team, AAMAS 2020)

Network Family	Improve %	
Rural	23.76	
Animal	26.6	
Retweet	19.7	
Homeless	7.91	

Fairness in Reasoning with Social Networks: Suicide Prevention via Gatekeeper Selection

(NeurIPS 2019, IJCAI 2019)

Robust graph covering with gatekeepers, maximize worst case coverage

Disparity in coverage across racial groups

Maxmin fairness:

 $\min_{c \in C} u_c(A) \ge \gamma$

Y: Max of minimum utility for any community

Diversity constraints:

 $u_c(A) \geq U_c$

 U_c : Utility if # gatekeepers allocated proportional

to size of community

Outline

Public Health

- > Information dissemination & behavior change: Social networks
- ➤ Health program adherence: Passive via ML vs Active via bandits
- COVID-19: Agent-based modeling

Conservation

Health Program Adherence Maternal & Child Care in India

(Under submission)

India: Woman dies in childbirth every 15 min; 4 of 10 children too thin/short

- ARMMAN: 18 Million women enrolled, 160000 health workers...
- > mMitra: Weekly call to new/expectant moms; friendly 3 minute messages about health
- > mMitra: Significant benefits shown; 2.2 million women enrolled
- Unfortunately, significant fraction low-listeners or drop-outs

Passive Adherence Monitoring Maternal & Child Care in India

(with B Ravindran IIT Madras)

Predict beneficiaries likely to drop out: Allows ARMMAN to focus intervention

- Neural networks for prediction: Extensive tests with past data
- Results of pilot with 18000 beneficiaries: High precision, recall, accuracy
- Prediction software deployed: helps 300,000 beneficiaries in mMitra

ARMMAN Pilot

- > 18000 Beneficiaries
 - Nov & Dec 2019
 - Test: Jan-April 2020

Passive Adherence Monitoring Preventing Tuberculosis in India (KDD 2019)

Tuberculosis (TB): ~500,000 deaths/year, ~3M infected in India

- ➤ Non-adherence to TB Treatment: Digital adherence tracking via daily phone calls
- > Intervene before patients miss dose
- Predict adherence risk from phone call patterns?
- Results from Mumbai, India: 15,000 patients, 1.5 million phone calls

Date: 11/19/2020 28

Intervention Reasoning: Active Adherence Monitoring

Intervention Scheduling with Scarce Data: Active Adherence Monitoring

Mate

Killian

Health worker intervention

Call patients: Track, improve adherence

Challenge:

(NeurIPS 2020)

- Large number of patients (N)
- Which 'k' patients to call?

Approach:

Date: 11/19/2020

Adherence Restless Bandits

Intervention Scheduling with Scarce Data: Adherence Restless Bandits(A-RMAB)

(NeurIPS 2020)

Mate Killian

Restless multiarmed bandits (RMAB)

Adherence RMAB (A-RMAB):

- Each arm (patient): binary latent state {0, 1}
- 0= not-adhering; 1= adhering

Patient state may be not observed:

Belief state (i.e., probability) of adherence

Intervention Scheduling with Scarce Data: Adherence Restless Bandits(A-RMAB)

When arm not played

- No observation
- Instead, compute belief of adherence

When arm is played

- Observe current state
- Higher chance of adhering next round

Could convert into a giant POMDP & solve: but inefficient

Adherence Restless Bandits(A-RMAB): Whittle Index

Performance guarantee requires A-RMAB to be indexable

Theorem 1: A-RMAB Indexable if threshold policies are optimal.

➤ Threshold policies: Forward Threshold
Call → Belief of adherence below threshold → Call

Exploiting threshold policies allow for a fast algorithm

Intervention Scheduling with Scarce Data: Adherence Restless Bandits(A-RMAB)

- Orders of magnitude speedup with no solution quality loss
- ORANGE = Best baseline
- Blue = Our model

Outline

Public Health

- > Information dissemination & behavior change: Social networks
- Health program adherence: Passive via ML vs Active via bandits
- COVID-19: Agent-based modeling

Conservation

COVID-19: Agent-based Simulation Model

(Proceedings National Academy of Sciences, 2020)

Agent-based model:

- Families
- Co-morbidities
- Age
- Testing
- Contact tracing

COVID Testing Policy: Accuracy vs Ease

Wilder

(Science Advances, 2020)

- Range of tests entering market, varying sensitivity/cost: Quantity vs Quality?
 - qRT-PCR ("gold standard"): Detect viral concentration of 10³/mL, \$50-100
 - RT-LAMP: **10**⁵/mL, \$5-30
 - Antigen strip ("Less sensitive"): 10⁶/mL, \$3-5

Test sensitivity is secondary to turnaround time & frequency for COVID-19 surveillance

COVID Testing Policy: Impact

- WHO guidance reference
- Covered in NYT, WaPo, Time, The Atlantic, The Hill, etc.
- Allowed epi collaborators to advocate to FDA/CDC

Outline

Public Health

Conservation

- > Protect wildlife, forests, fisheries: Game-focused learning
- > Integrating real time data for protection: Signaling games

Protecting Conservation Areas: Green Security Games

(IJCAI 2015)

Fang

From Stackelberg Security Games to Green Security Games

(IJCAI 2015)

- > Stackelberg security games (SSG)
- With boundedly rational poachers
- Learn adversary response model at targets "i"

	Area1	Area2
Area1	4, -3	-1, 1
Area2	-5, 5	2, -1

Learning Adversary Response Model: Uncertainty in Observations

Nguyen Gholami

PAWS: First Pilot in the Field

(AAMAS 2017)

Two 9-sq.km areas, infrequent patrols

- 1 elephant snare roll
- 10 Antelope snares

PAWS Predicted High vs Low Risk Areas: 3 National Parks, 24 areas each, 6 months (ECML PKDD 2017, ICDE 2020)

Xu

Gholami

Queen Elizabeth **National Park**

Murchison **Falls National** Park

Srepok Wildlife **Sanctuary**

Snares per patrolled sq. KM

Snares per patrolled sq. KM

Snares per patrolled sq. KM

PAWS Real-world Deployment Cambodia: Srepok Wildlife Sanctuary (ICDE 2020)

Χι

521 snares/month our tests

VS

101 snares/month 2018

Previous Stage-by-Stage Method: Make Prediction as Accurate as Possible Then Plan

Perrault

Game-Focused Learning: End-to-End Method Builds on Decision-focused Learning

(AAAI 2019, AAAI 2020)

Perrault

ult Wilder

Maximize defender's expected utility

$$\sum (1 - p_i(\hat{q})) q_{\text{empirical}}$$

Game-Focused Learning: Comparison to Two-Stage

Perrault

PAWS Goes Global

Xu

The Dual Mandate

Xu

exploitation

1

Data-rich parks: build predictive models to plan patrols

Data-scarce parks: conduct patrols to detect illegal activity and improve the predictive model

[Gholami et al., AAMAS-18, Xu et al., ICDE-20]

exploration

LIZARD: Multiarmed Bandit Lipschitz Arms with Reward Decomposability

Xu

Theorem: Given N targets, Lipschitz constant L, and time horizon T, the regret bound of the LIZARD algorithm is $Reg(T) \le O\left(L^{\frac{4}{3}}NT^{\frac{2}{3}}(\log T)^{\frac{1}{3}}\right)$:

- Input: N Targets with features, T Time Horizon
- Stochastic adversary, who places snares at targets
- Patrolling algorithm: Specify patrol effort in each target up to budget B
- Reduce regret wrt *OPT*, optimal patrol effort, for capturing snares

Lizard exploits decomposability, smoothness, monotonicity

Green Security Games: Integrating Real-Time "SPOT" Information (IAAI 2018)

Bondi

Goal: automatically find poachers

Drone Used to Inform Rangers

- Xu
- Bondi
- \triangleright Prob(ranger arrives) = 0.3 [poacher may not be stopped]
- Deceptive signaling to indicate ranger is arriving

Drone Used to Inform Rangers

- Xu
- Bondi

- \triangleright Prob(ranger arrives) = 0.3 [poacher may not be stopped]
- Deceptive signaling to indicate ranger is arriving

Drone Used to Inform Rangers

- Xu
- Bondi
- \triangleright Prob(ranger arrives) = 0.3 [poacher may not be stopped]
- Deceptive signaling to indicate ranger is arriving
- Must be strategic in deceptive signaling

Exploiting Informational Advantage Defender Knows Pure & Mixed Strategy

(AAAI 2018, AAAI 2020)

Si-G Model: Stackelberg Security Games with Optimal Deceptive Signaling

> Poacher best interest to "believe signal" even if know 50% defender deception

PAWS GOES GLOBAL with SMART platform!!

Protect Wildlife 800 National Parks Around the Globe

Also: Protect Forests, Fisheries...

Future: Al for Social Impact (Al4SG or Al4SI)

Achieving social impact & Al innovation go hand in hand

Data to deployment: Not just improving algorithms, new AI4SI evaluation

Important to step out of the lab and into the field

Embrace interdisciplinary research -- social work, conservation

Lack of data is the norm, a feature; part of the project strategy

Empower non-profits to use AI tools; avoid being gatekeepers to AI4SI tech

Key Collaborators on Papers Referenced

(In the order papers referenced)

- Eric Rice (USC)
- Nicole Immorlica (MSR)
- Yair Zick (UMASS, Amherst)
- Balaraman Ravindran (IIT-Madras)
- Amit Sharma (MSR)
- Maia Majumder (Harvard)

- Michael Mina (Harvard)
- Daniel Larremore (Colorado)
- Andy Plumptre (Cambridge)
- Rohit Singh (WWF)
- Phebe Vayanos (USC)
- Bistra Dilkina (USC)

Collaborate to realize Al's tremendous potential to Improving society & fighting social injustice

@MilindTambe_Al

• The END

Another View:

Previous Two-Stage Method: Gradient Descent

Max accuracy gradient descent:

$$\frac{\partial accuracy}{\partial weights} = \frac{\partial prediction}{\partial weights} \frac{\partial accuracy}{\partial prediction}$$

Another View:

Game-Focused Learning: End-to-End Method

Game-focused gradient descent:

$$\frac{\partial \text{obj(decision)}}{\partial \text{weights}} = \frac{\partial \text{prediction}}{\partial \text{weights}} \frac{\partial \text{decision}}{\partial \text{prediction}} \frac{\partial \text{obj(decision)}}{\partial \text{decision}}$$