Al for social impact: Results from deployments for public health and conservation

MILIND TAMBE

Director, Ctr for Research on Computation & Society Harvard University

Director "AI for Social Good" Google Research India

@MilindTambe_Al

Google Research

AI & Multiagent Systems Research for Social Impact

Public Health

Conservation

Public Safety and Security

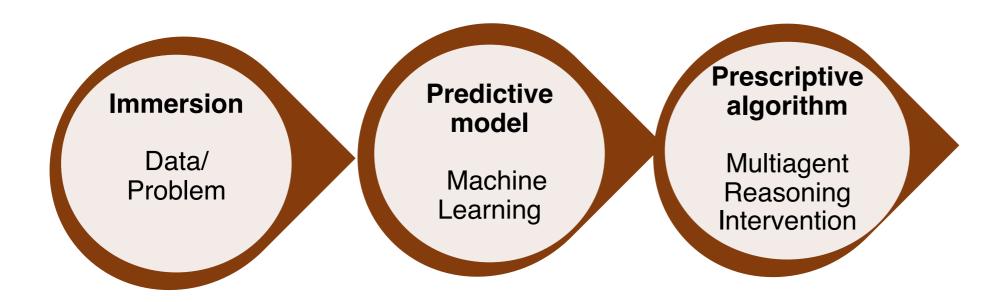
Optimize Our Limited Intervention Resources

Lesson #1: Achieving Social Impact and Al Innovation Go hand-in-hand

Lesson #2: Partnerships with Communities, NGOs (non-profits) crucial

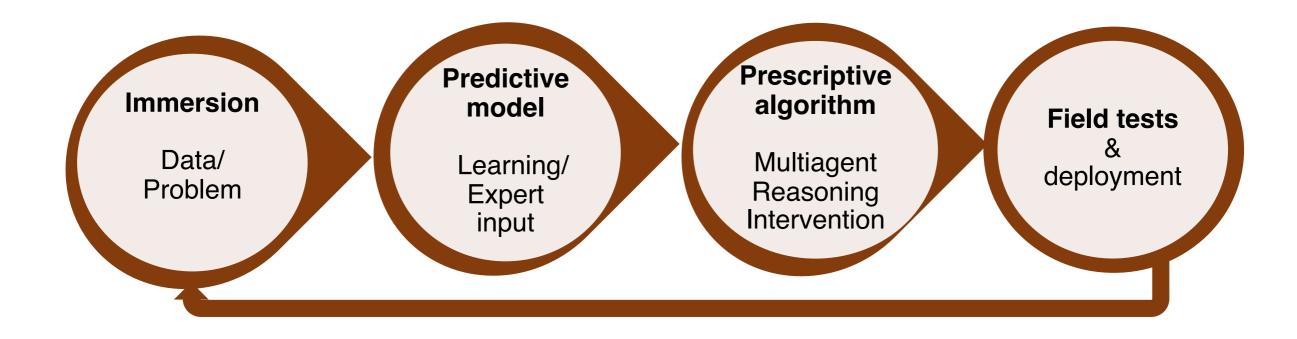
Empower non-profits to use AI tools; avoid being gatekeepers to AI4SI technology

Lesson #3: Data-to-deployment pipeline; beyond improving algorithms



Lesson #3: Full data-to-deployment pipeline; beyond improving algorithms

Field test & deployment: Social impact is a key objective



Outline: Four Projects

Public Health

- Restless bandits: Maternal & child care
- Social networks: HIV prevention
- > Agent-based modeling: COVID-19 dynamics

Conservation

- *Game theory, behavior modeling: Poaching prevention*
- Cover papers from 2017-now [AAMAS, AAAI, IJCAI, NeurIPS...]
- Focus on real world results; more simulations in papers
- PhD students & postdocs highlighted

Maternal & Child Care in India: ARMMAN

- Woman dies in childbirth every 15 min
- 4 of 10 children too thin/short
- 2 children under age 5 die every minute

Dr. Aparna Hegde Founder, ARMMAN

Pregnancy is not a disease. Childhood is not an ailment. Dying due to a natural life event is not acceptable.

26 Million beneficiaries (mothers); 19 states in India; 97 hospitals...

mMitra Health Program Adherence: Maternal & Child Care in India

mMitra: Weekly 2 minute automated message to new/expecting moms

mMitra: Significant benefits 2.2 million women enrolled

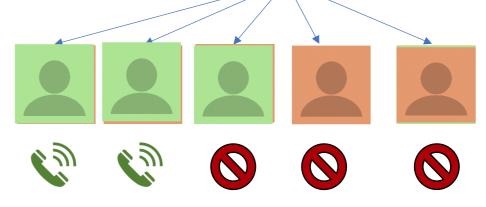
> Unfortunately, significant fraction 30-40% may become low-listeners

> Limited intervention resources: Service call to small number of beneficiaries

Intervention Scheduling with Limited Resources: Motivating Restless Bandits

Example:

- > Large number N beneficiaries: 200000
- Choose K=4000 for service call per week?
- > Maximize health messages listened to



Intervention Scheduling with Limited Resources: Motivating Restless Bandits

Example:

- Large number N beneficiaries: 200000
- ➤ Which K=4000 for service call per week?
- Maximize number of messages listened to

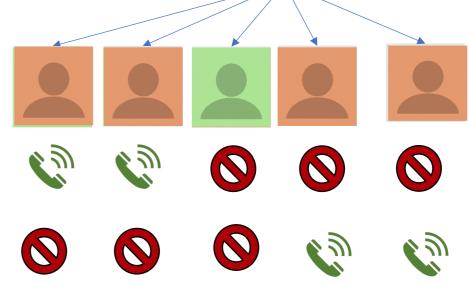
Challenges:

- Call may not change beneficiary state
- Beneficiary may change state on their own
- Prioritize 4000 beneficiaries per week

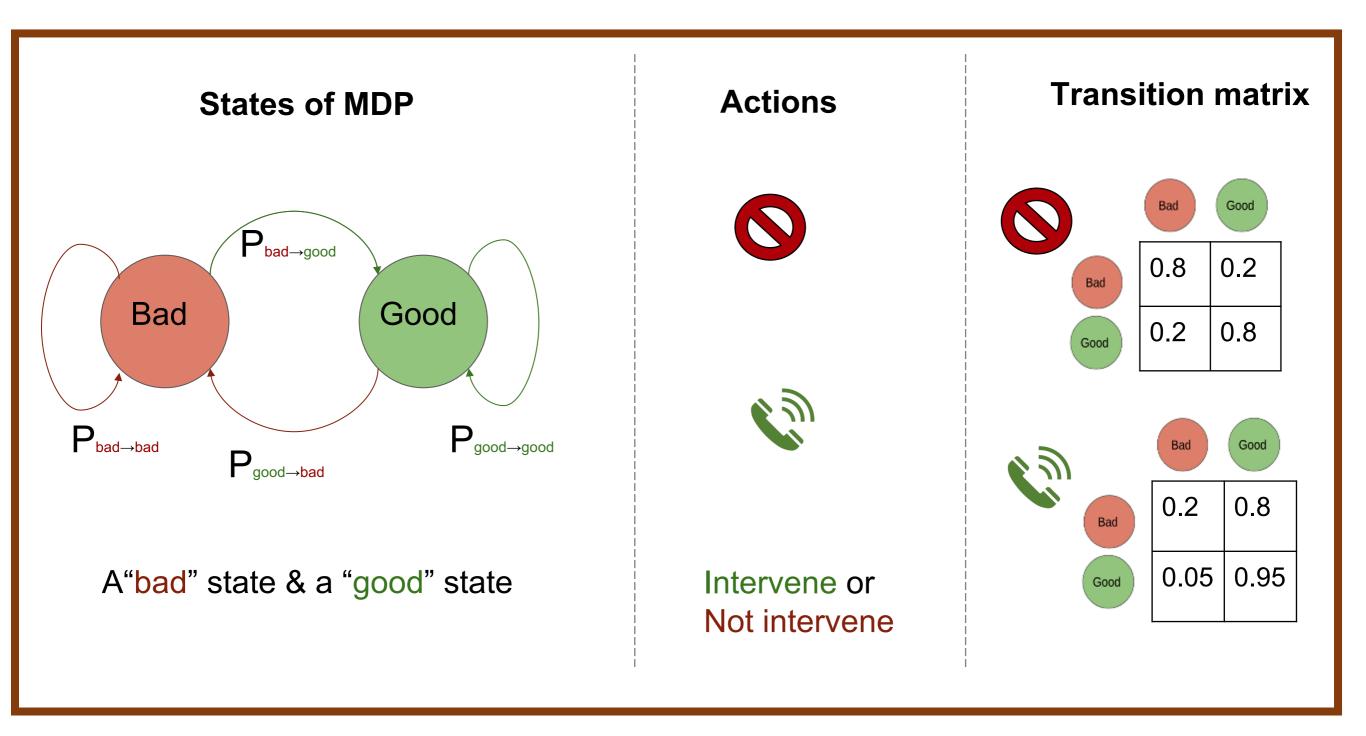
Restless bandit: K of N arms per week

Photo Credit: IntraHealth International (CC BY-NC-SA 3.0 via

11

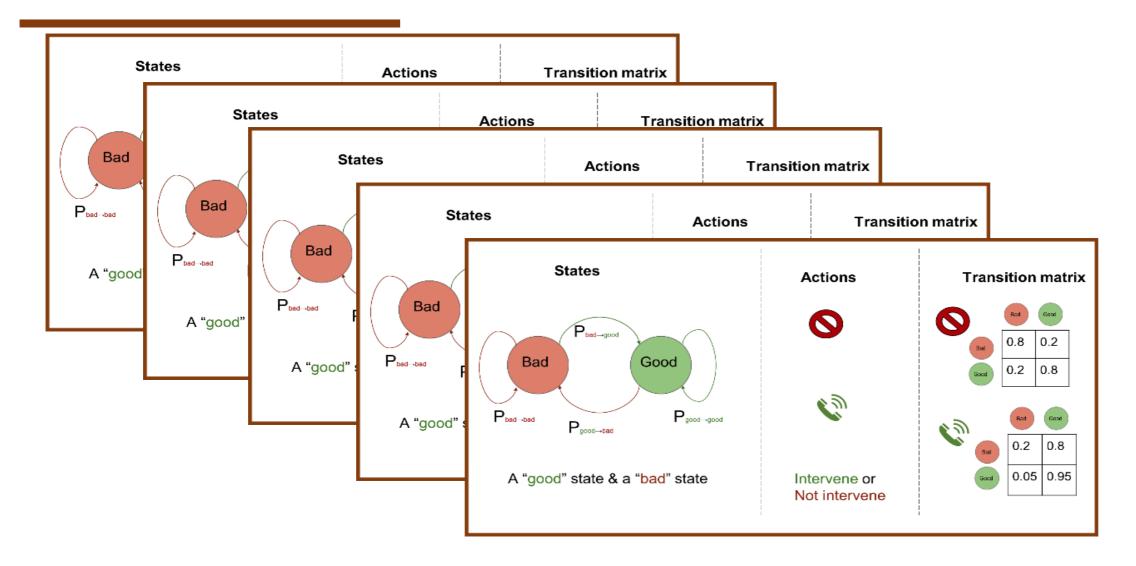


Restless Bandits Model: Each Arm is an MDP Each Arm Models a Beneficiary



Restless Bandits Model Whittle Index: Efficiently Select K out of N Beneficiaries

Taneja Mate

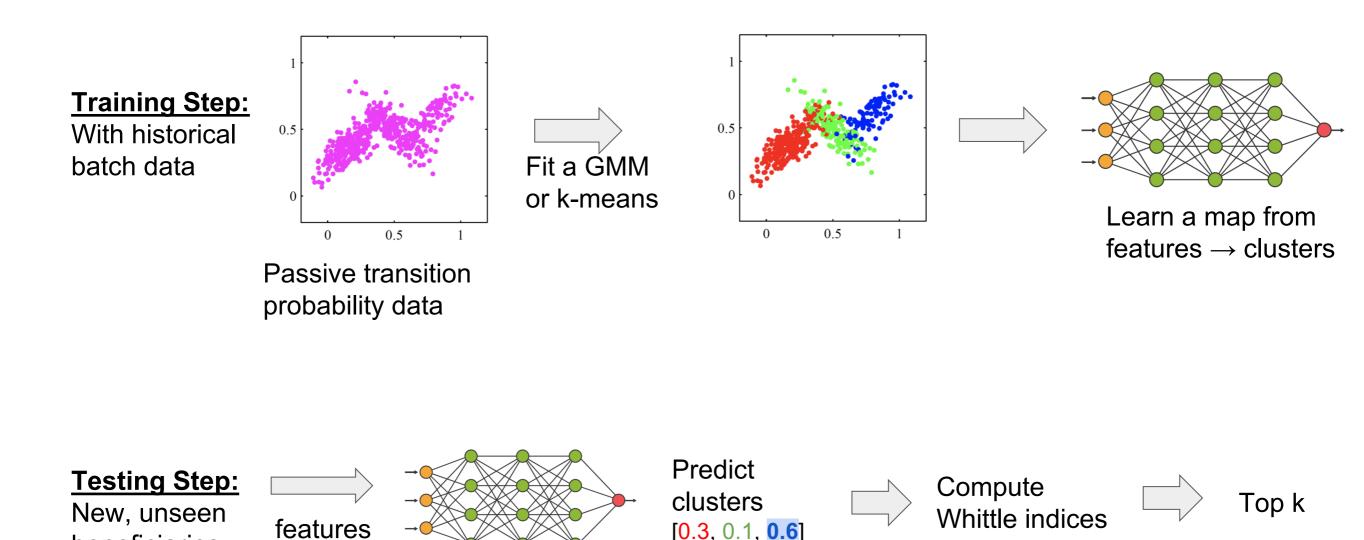


Compute Whittle index for current state of each arm: Computes benefit of intervention Choose top K arms by benefit Use (Qian et al 2016) algorithm

$$W(s) = INF_{\gamma} \{ \gamma \colon Q_{\gamma}(s, \mathbb{O}) = Q_{\gamma}(s, \mathbb{O}) \}$$

Key Research Challenge Unknown Transition Probabilities

- **Limited previous beneficiary data:** features *f* + engagement sequence {(s, a, s'), ... }
- Clustering compensates for lack of data, also speeds up Whittle index computation \succ



[0.3, 0.1, **0.6**]

Date: 4/1/22

beneficiaries

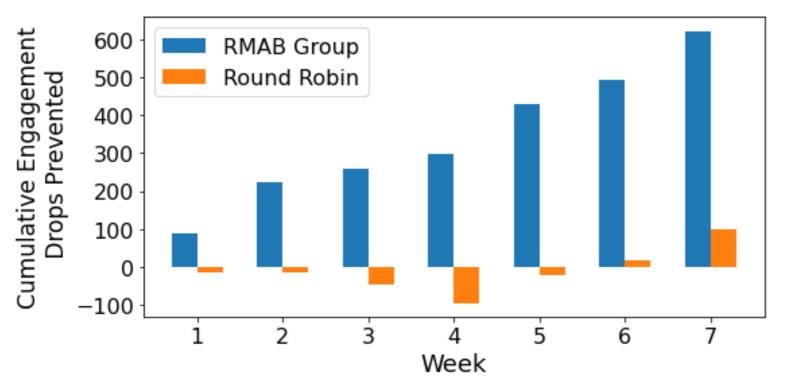
Results of 23000 Beneficiary Field Study (AAAI 2022)

Mate

First large-scale application: restless multiarmed bandits (RMAB) for public health

- > 7667 beneficiaries per group: RMAB, Round-robin, Current-Standard-of-Care (CSOC)
- Pulled 225 arms/week for seven weeks

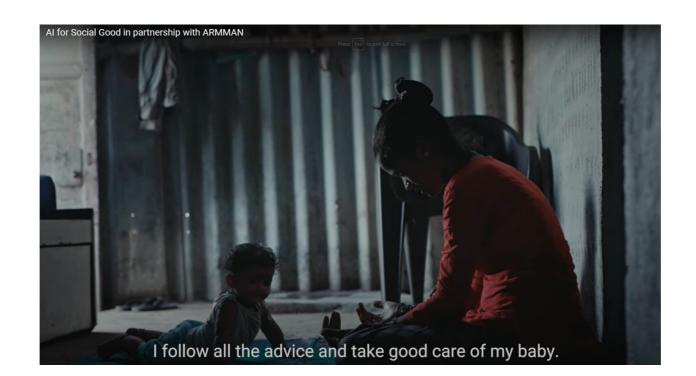
- How many more health messages listened to \succ over Current-Std-of-Care (CSOC) group
- Statistical significance: linear regression model



	RMAB vs CSOC	RR vs CSOC	RMAB vs RR
% reduction in cumula- tive engagement drops	32.0%	5.2%	28.3%
p-value	0.044*	0.740	0.098^{\dagger}

ARMMAN Feedback Youtube: "AI for Social Good in partnership with ARMMAN"

"We are able to reach out to more and more women each week, and get them back into the fold and save lives, because of AI" – Dr Aparna Hegde



"I follow all the advice and take good care of my baby"

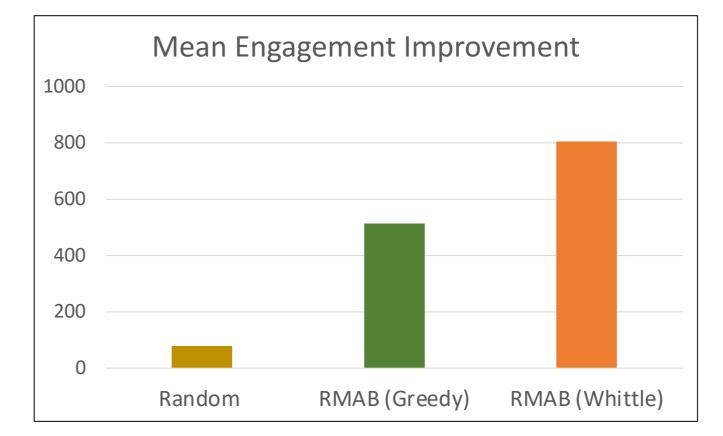
Transitioning Software to ARMMAN

Assist 1 Million beneficiaries by 2023

Next Steps: Simulation Comparison: Other Benchmarks

- 7667 beneficiaries per group:
 RMAB-Whittle vs RMAB-Greedy
 Current-Standard-of-Care (CSOC)
- Pulled 225 arms/week for seven weeks

- How many more health messages listened to over Current-Std-of-Care (CSOC) group
- Statistical significance

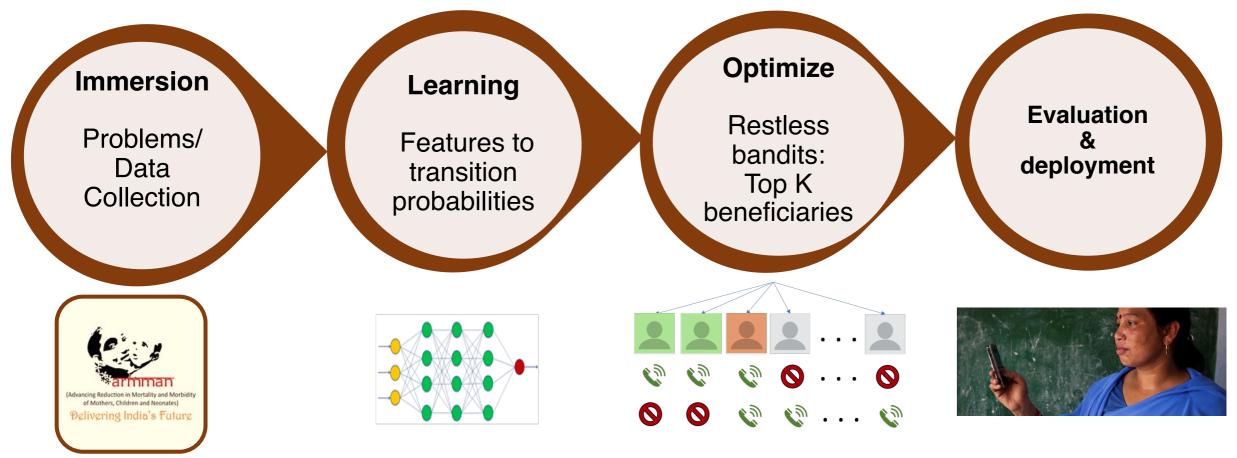


Next Steps: Decision-focused Learning in Restless Bandits

(AAMAS2020, NeurIPS 2020, NeurIPS 2021)

Data-to-deployment pipeline:

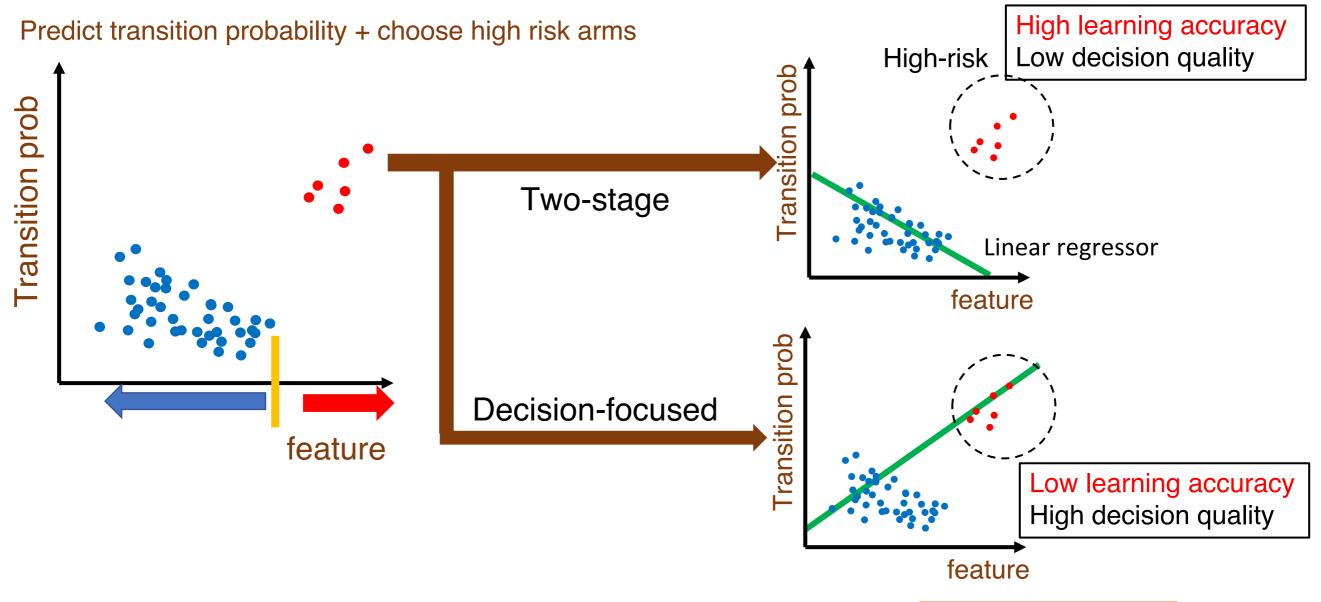
- **TWO STAGES**: Maximize learning accuracy, then maximize decision quality
- Maximizing learning accuracy ≠ Maximizing decision quality



Next Steps: Decision-focused Learning in Restless Bandits

(AAMAS2020, NeurIPS 2020, NeurIPS 2021)

- Maximizing learning accuracy ≠ Maximizing decision quality
- Decision-focused learning: Modify loss function to directly maximize decision quality

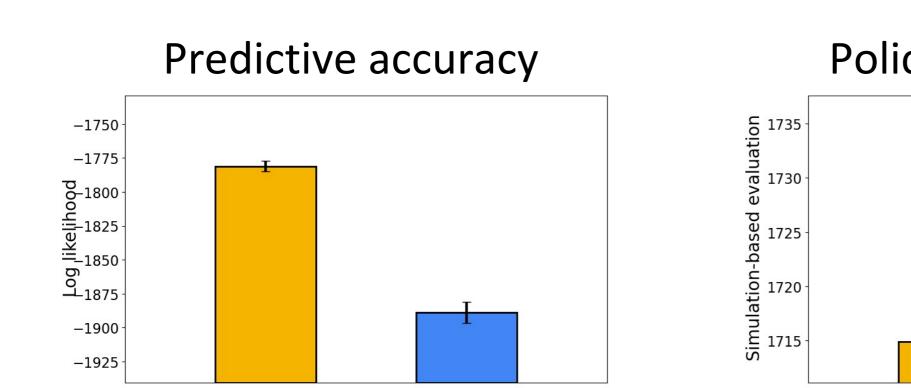


Predictive accuracy -1750-1775po-1800 1825 1825 1850 1875

two-stage : $\frac{\partial \text{ MDP accuracy}}{\partial \text{ model}}$

Date: 4/1/22

Decision-focused learning: ARMMAN RMAB results (simulations)

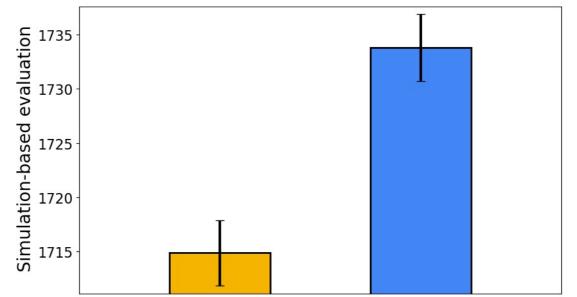


Next Steps: Decision-focused Learning in Restless Bandits

(AAMAS2020, NeurIPS 2020, NeurIPS 2021)

Policy performance

decision-focused : $\frac{\partial \text{ quality}}{\partial \text{ MDP}} \frac{\partial \text{ MDP}}{\partial \text{ model}}$

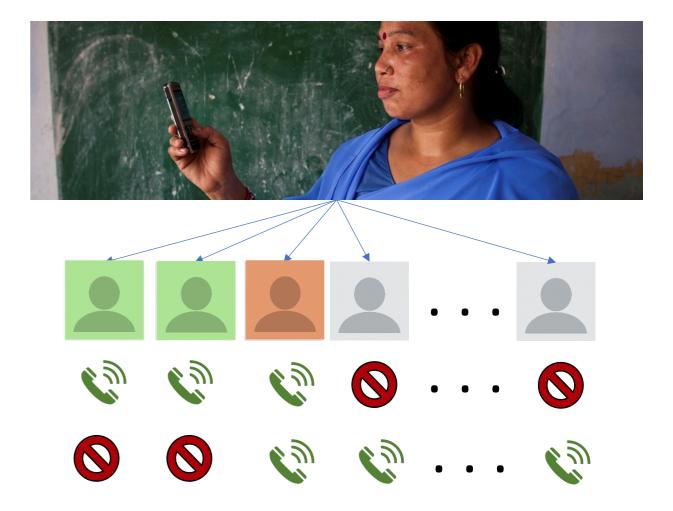


21

Next steps: Adherence Monitoring for Preventing Tuberculosis in India (KDD 2019)

Tuberculosis (TB): ~500,000 deaths/year, ~3M infected in India

TB Treatment 6 months of pills ever well



> Which patients to call? Challenge of partial observability

Date: 4/1/22

Collapsing Bandits: Restless Bandits with Partial Observability

(NeurIPS 2020)

Theorem (Whittle Index): Collapsing bandits are Indexable if threshold policies are optimal.

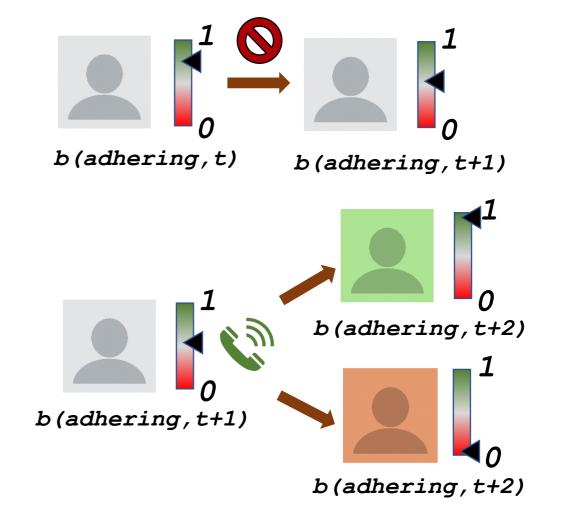
When arm not played (patient not called)

- > No observation
- Instead, compute belief of adherence

When arm played: Uncertainty collapse

> Observe current state

> Exploit "collapsing" for fast algorithm: Fixed number of belief states

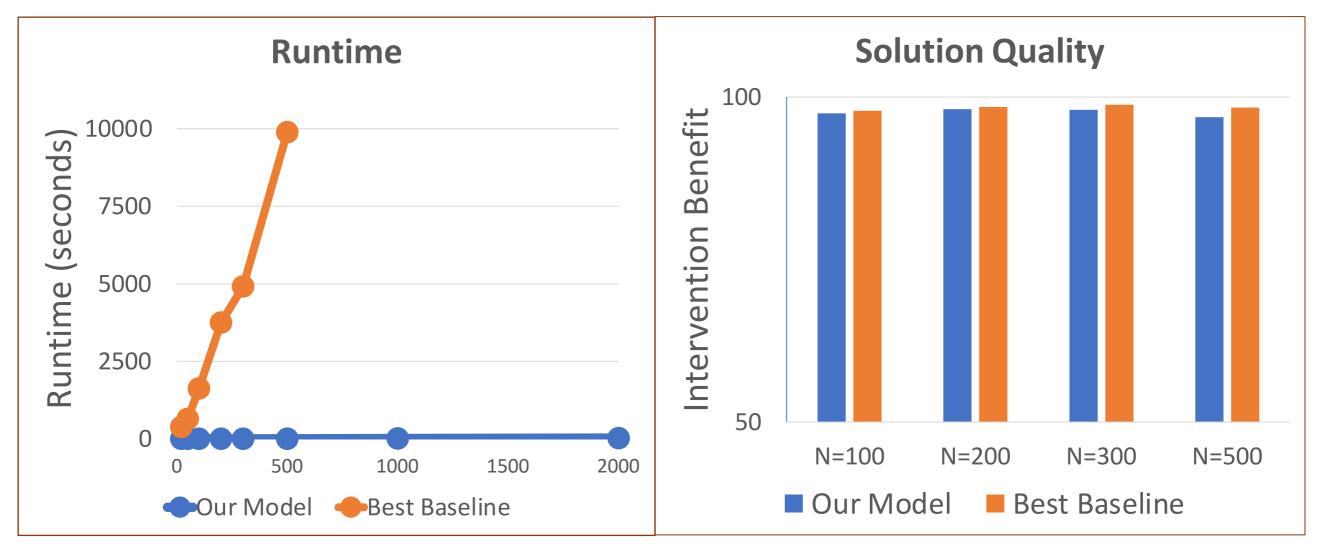


New Fast Algorithm: Collapsing Bandits for Partial Observability

(NeurIPS 2020, AAMAS 2022)

Killian

- Orders of magnitude speedup with little solution quality loss
- **ORANGE** = Best baseline
- **Blue** = Our model \succ



Next Steps in Restless Bandits

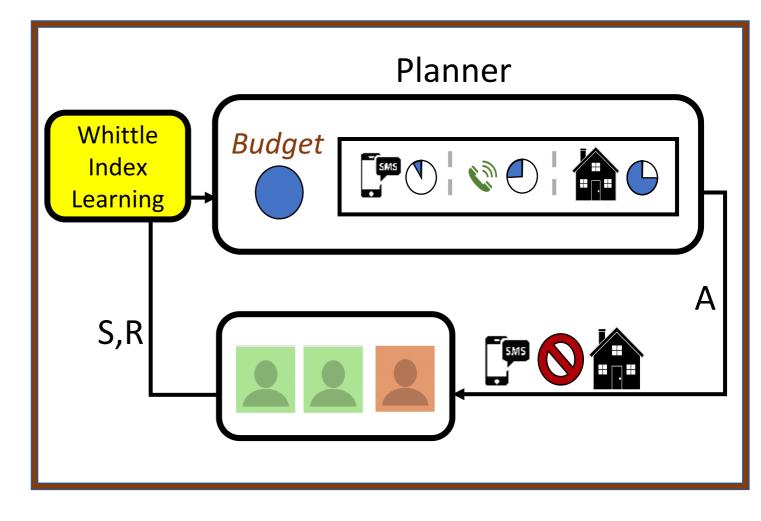
(AAMAS 2021a, KDD 2021, IJCAI 2021, AAMAS 2021b)

Online learning with multiple actions (no past data):

Policies: index Q-Learning

Fast Planning

- Risk aware restless bandits
- Robust restless bandits



Mate Biswas

Killian

Outline: Four Projects

Public Health

- > Restless bandits: Maternal & child care
- Social networks: HIV prevention
- > Agent-based modeling: COVID-19 dynamics

Conservation

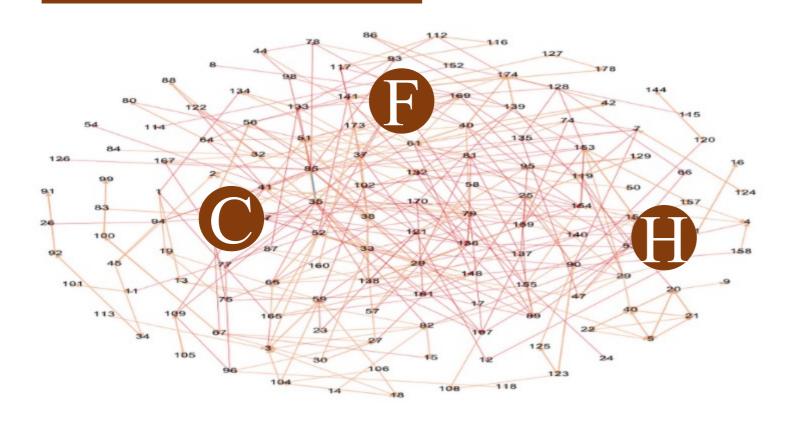
Game theory, behavior modeling: Poaching prevention

Information dissemination & behavior change Optimizing Limited Intervention (Social Worker) Resources

Prevent HIV in youth experiencing homelessness: HIV 10x housed population

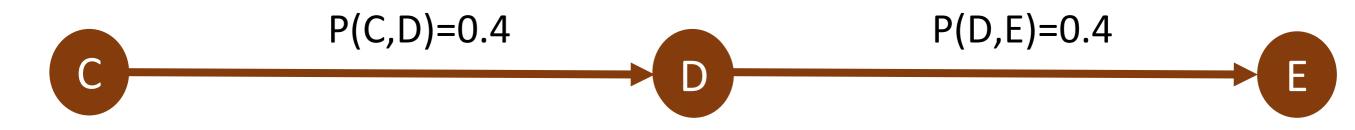
- Shelters: Limited number of peer leaders to spread HIV information in social networks
- "Real" face-to-face interactions; not Facebook etc

Influence Maximization in Social Networks



Select peer leader nodes to Maximize Expected Number of Influenced Nodes

Independent cascade model: Propagation probability



Lesson #4: Research challenges in AI for social impact?

Lack of data & uncertainty is a key feature of AI for social impact

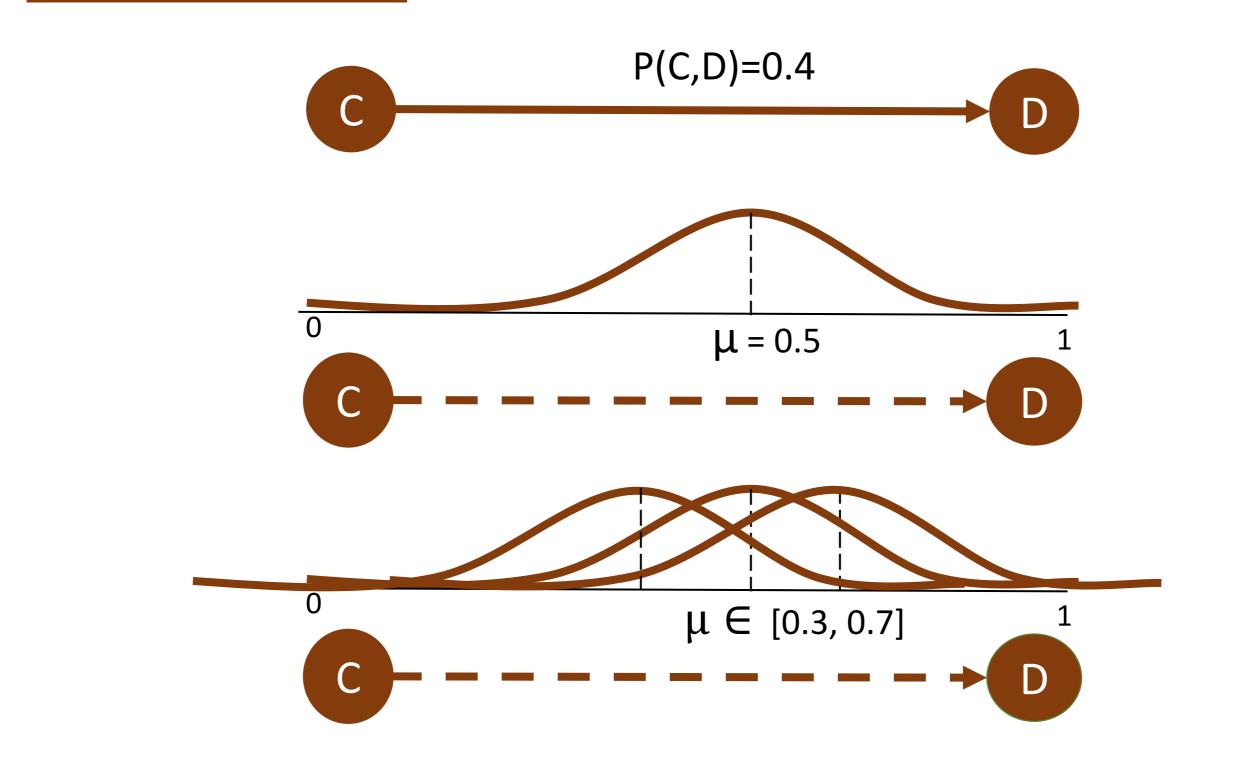
Uncertainty in propagation probability over edges

Multi-step dynamic policies to handle peer leader "no shows"

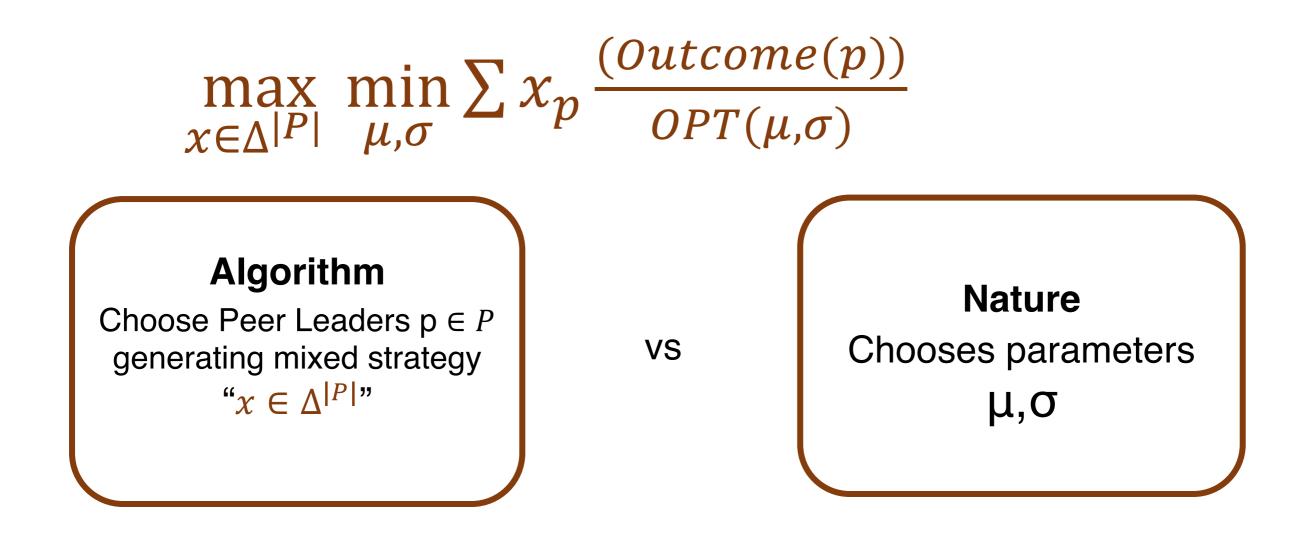
> Unknown social network, limited query budget to uncover network

Sketch some ways we solve these problems

Challenge 1: Uncertainty in Real-world Physical Social Networks



Worst case parameters: a zero-sum game against nature



HEALER Algorithm Robust Influence Maximization

(AAMAS 2017)

Theorem: Converge with approximation guarantees

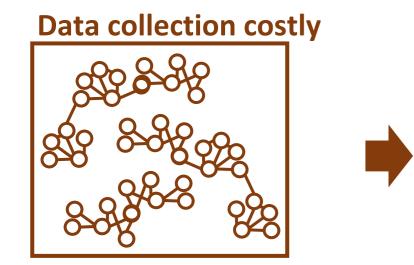
Equilibrium strategy despite exponential strategy spaces: Double oracle

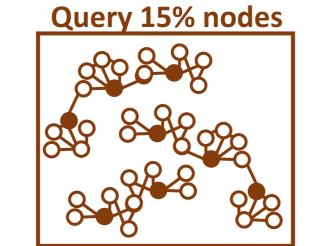
		Params #1	Params #2	Params #3		Influencer's oracle			
Influence	Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4		X	Params #1	Params #2	
	Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6		Policy #1	0.8, -0.8	0.3, -0.3	
	Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7		Policy #2	0.7, -0.7	0.5, -0.5	
[$\mathbf{\mathcal{F}}$		Policy #3	0.6, -0.6	0.4, -0.4	
	Nature's oracle				_	Π			-
		Params #1	Params #2	Params #3					
	Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4					
	Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6					
4/1/22	Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7					

Nature

Challenge 3: Sampling Networks: Exploratory Influence Maximization (AAAI 2018)

Theorem: For community-structured graphs(*), sampling algorithm obtains a constant-factor approximation to the optimal influence spread using polylog(n) queries.



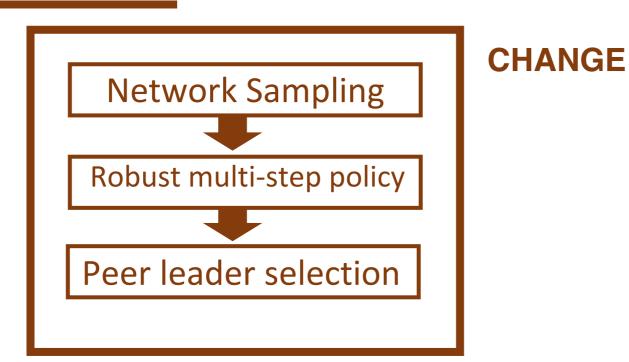


Sampling Algorithm Sample node randomly & estimate size of its community; Choose seeds from largest K communities

- Query 15% of nodes in the population
- Output *K* peer leader nodes to spread influence
- Perform similar to *OPT*, best influence spread with full network

"CHANGE" with Homeless Youth (IJCAI 2018)

Wilder

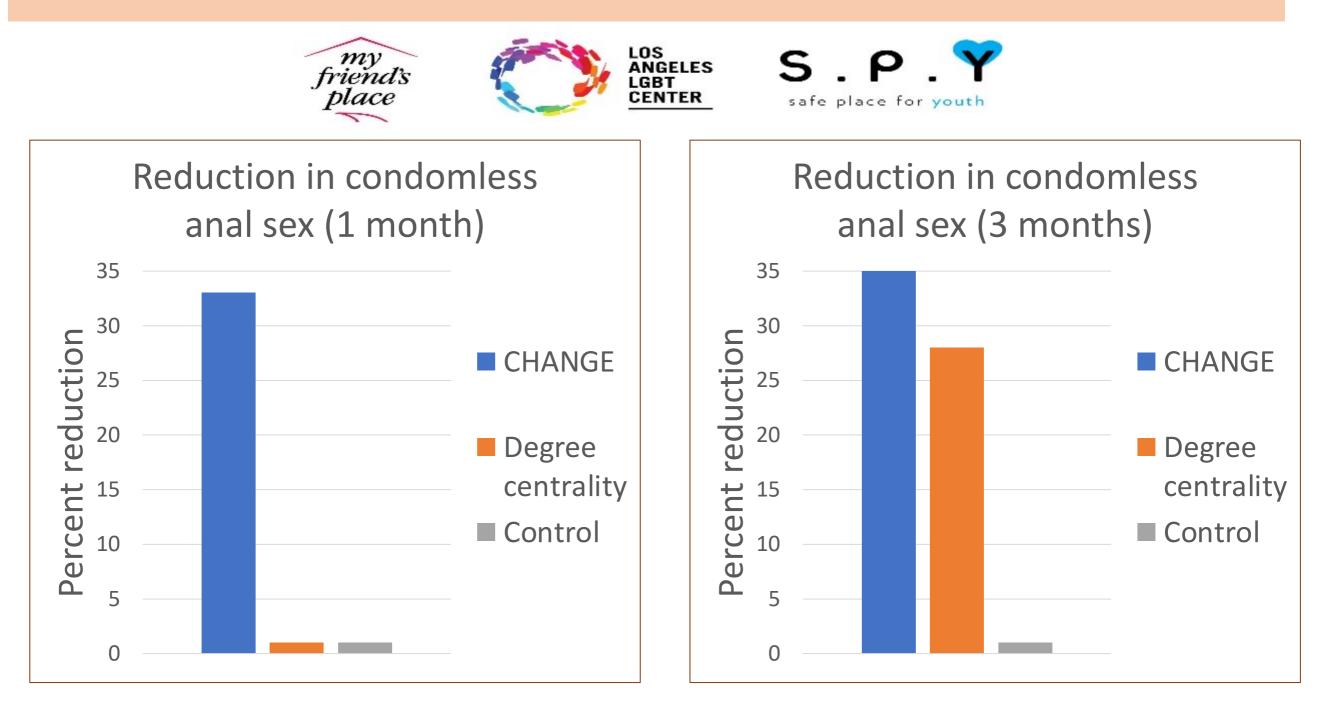


- 750 youth study with Prof. Eric Rice
- CHANGE vs Degree centrality vs Control
- Actual reduction in HIV risk behaviors?

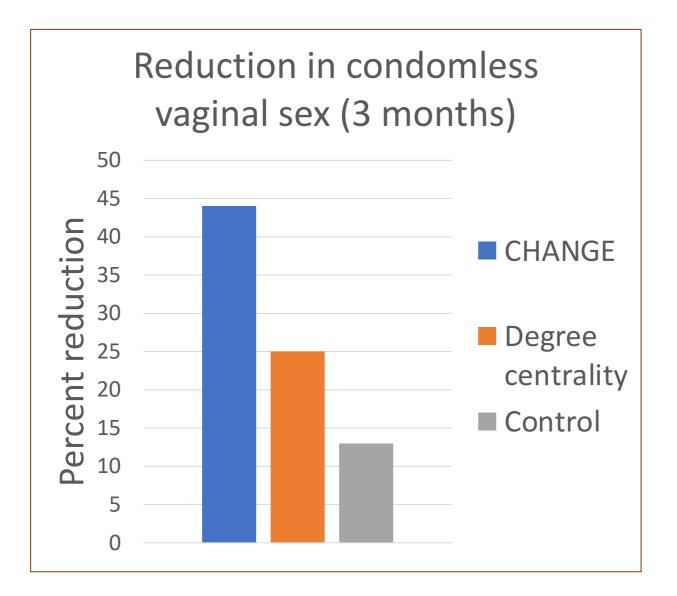
Results of 750 Youth Study [with Prof. Eric Rice] Actual reduction in HIV RISK Behavior?

(AAAI 2021, Journal of AIDS/JAIDS 2021)

First large-scale application of influence maximization for public health



Results of 750 Youth Study [with Prof. Eric Rice]

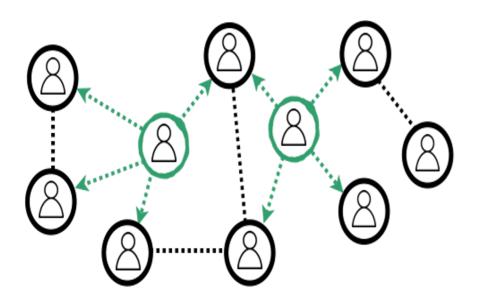


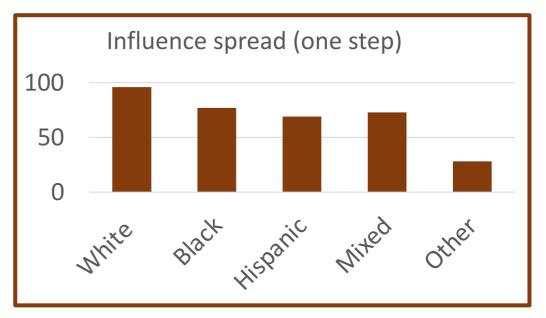
*Statistical significance results in AAAI'21, JAIDS'21

What our collaborators are saying:

Next Steps: Fairness in Influence Maximization

(NeurIPS 2019, IJCAI 2019, AAAI 2021)





Influence spread may cause disparity

Maxmin fairness: NeurIPS2019 $\min_{c\in C} u_c(A) \geq \gamma$

Diversity constraints: IJCAI2019

Inequity aversion: AAAI 2021

 $W_{\alpha}(u(A))$

 $u_c(A) \geq U_c$

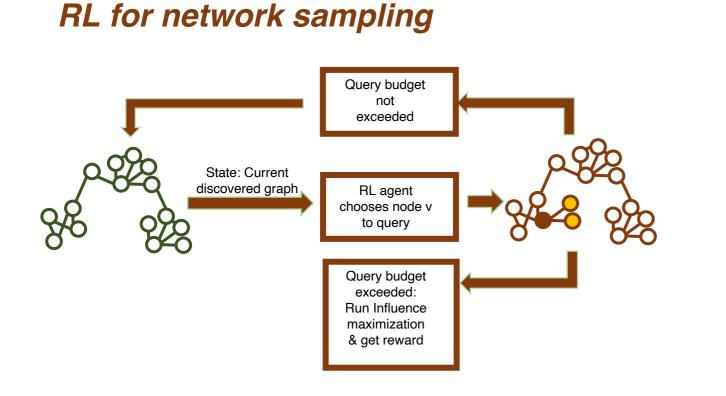
 Υ : Max of minimum utility for any community

 U_c : Constraint from cooperative game theory

 ${\it a}$ controls fairness tradeoff; policymaker has choice

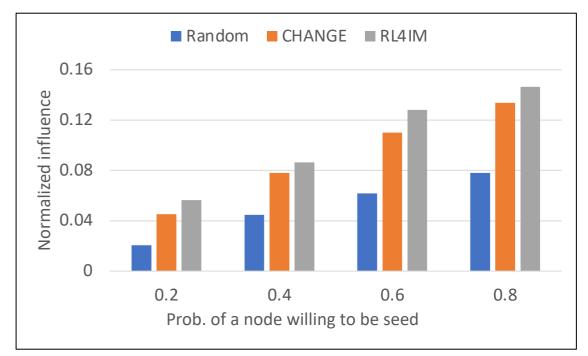
Next steps: Reinforcement Learning (RL)

(AAMAS 2021 with IIT-Madras, UAI 2021)



Network Family	Improve %
Rural	23.76
Animal	26.6
Retweet	19.7
Homeless	7.91

RL speeds up Influence Maximization (RL4IM): RL4IM comparable performance to CHANGE, but negligible runtime



COVID-19: Agent-based Simulation Model

Proceedings of the National Academy of Sciences of the United States of America

RESEARCH ARTICLE

Modeling between-population variation in COVID-19 dynamics in Hubei, Lombardy, and New York City

Bryan Wilder, ⁽¹⁾ Marie Charpignon, ⁽¹⁾ Jackson A. Killian, Han-Ching Ou, Aditya Mate, Shahin Jabbari, ⁽¹⁾ Andrew Perrault, ⁽¹⁾ Angel N. Desai, ⁽²⁾ Milind Tambe, and Maimuna S. Majumder

PNAS October 13, 2020 117 (41) 25904-25910; first published September 24, 2020; https://doi.org/10.1073/pnas.2010651117

Tracking disease outbreaks from sparse data with Bayesian inference

Bryan Wilder,¹ Michael Mina², Milind Tambe¹

¹ John A. Paulson School of Engineering and Applied Sciences, Harvard University ² T.H. Chan School of Public Health, Harvard University bwilder@g.harvard.edu, mmina@hsph.harvard.edu, milind_tambe@harvard.edu

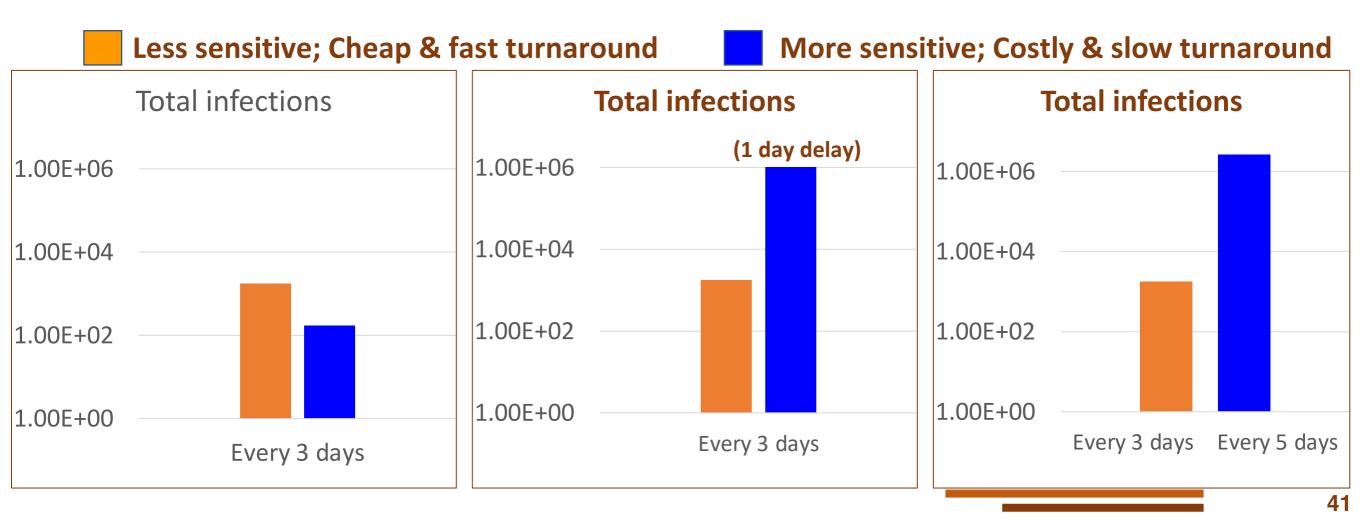
COVID Testing Policy: Accuracy vs Ease

(Science Advances, 2020) with Prof. Michael Mina

Wilder

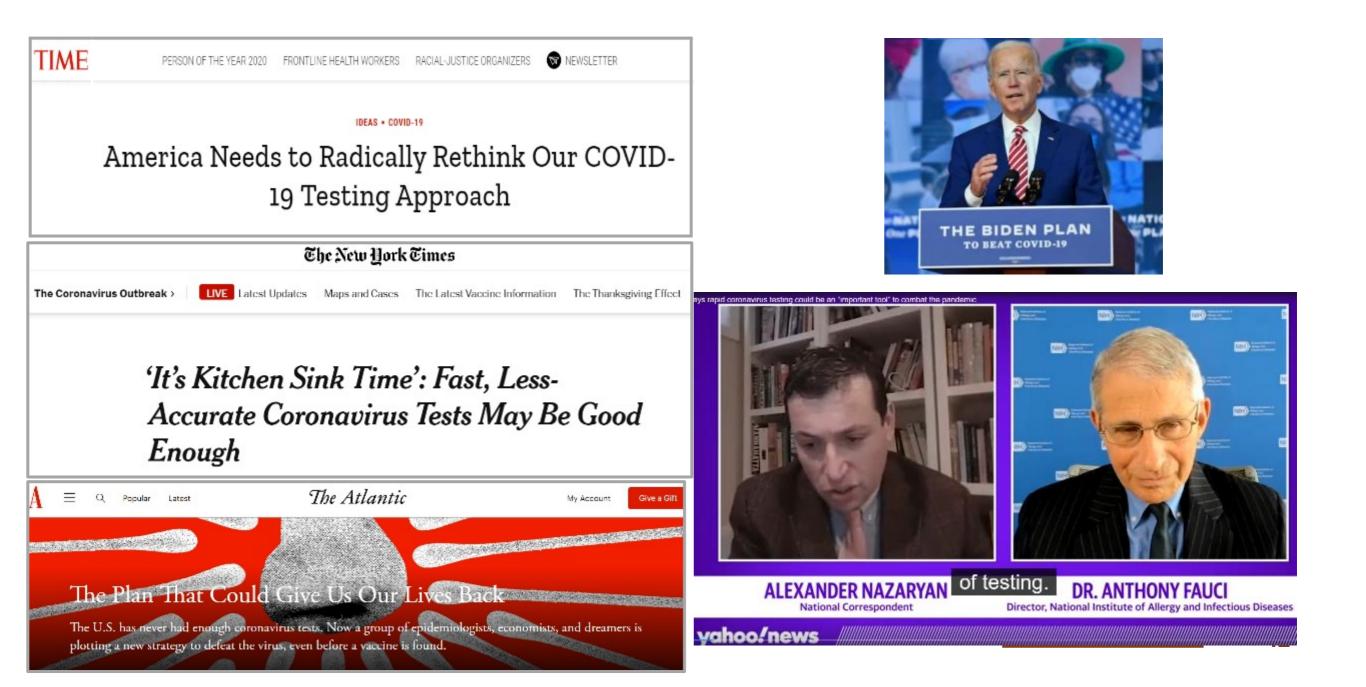
- Tests varying sensitivity/cost: which one to use?
 - qRT-PCR ("gold standard"): Detect viral concentration of **10³**/mL, \$50-100
 - Antigen strip ("Less sensitive"): **10⁶**/mL, \$3-5

Rapid turnaround time & frequency more critical than sensitivity for COVID-19 surveillance



COVID Testing Policy: Impact

- Covered in NYT, WaPo, Time, The Atlantic, The Hill, etc
- Allowed epi collaborators to advocate to FDA/CDC



Outline

Public Health

- Social networks: HIV prevention
- > Restless bandits: Maternal & child care
- > Agent-based modeling: COVID-19 dynamics

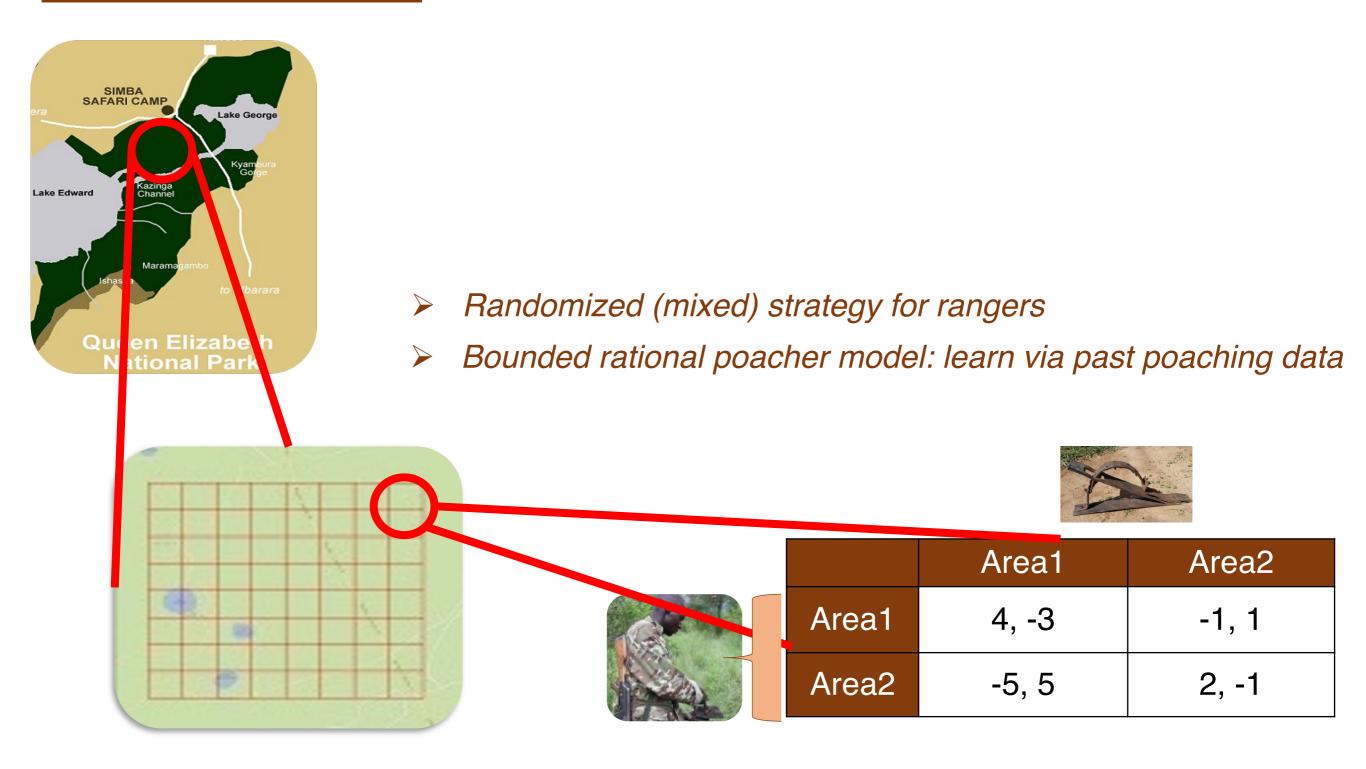
Conservation

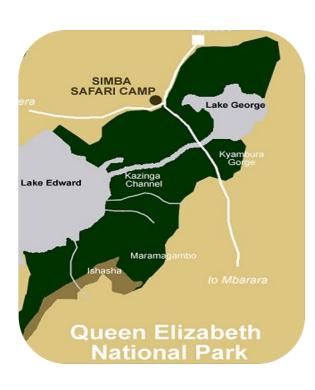
Game theory, behavior modeling: Poaching prevention

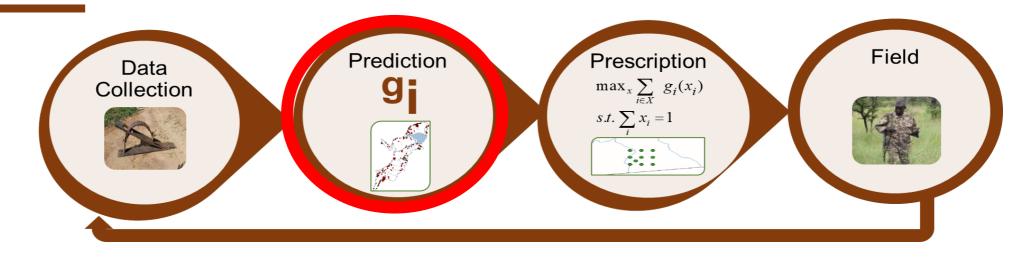
Patrols to Reduce Snaring in Wildlife Parks

Snare or Trap Wire snares





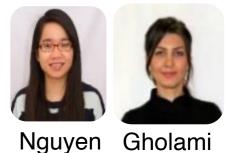


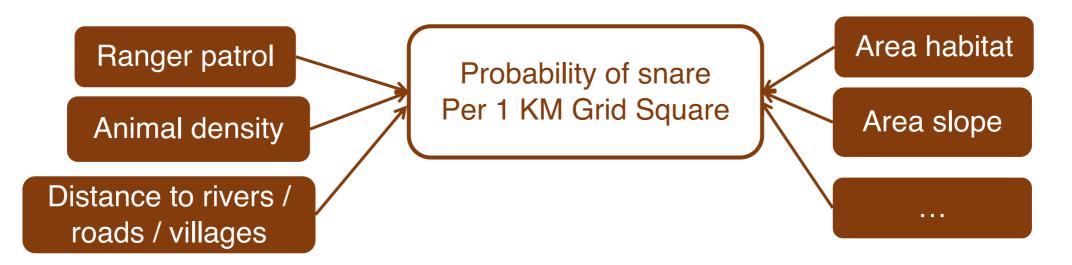


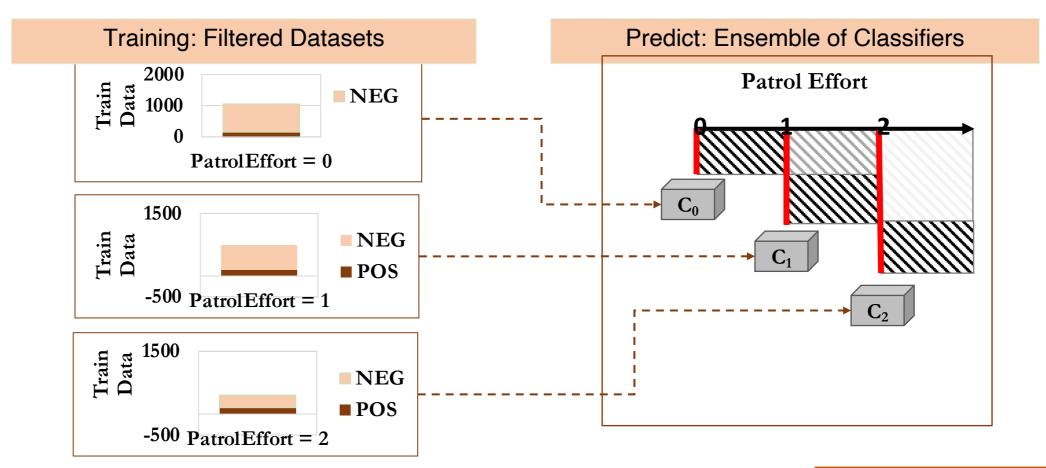
Bounded rational poacher model: learn via past poaching data

		Area1	Area2
	Area1	4, -3	-1, 1
	Area2	-5, 5	2, -1

Learning Adversary Response Model: Uncertainty in Observations





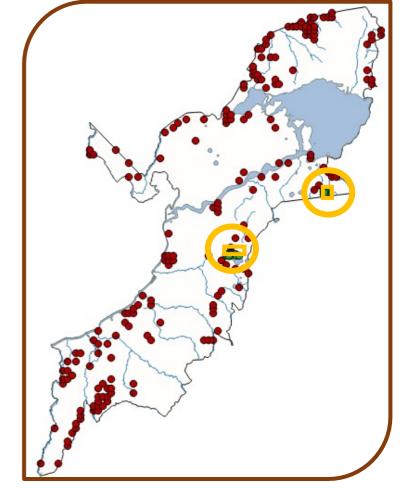


PAWS: First Pilot in the Field (AAMAS 2017)

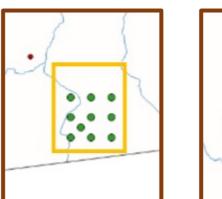
Ford

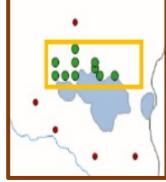
Gholami

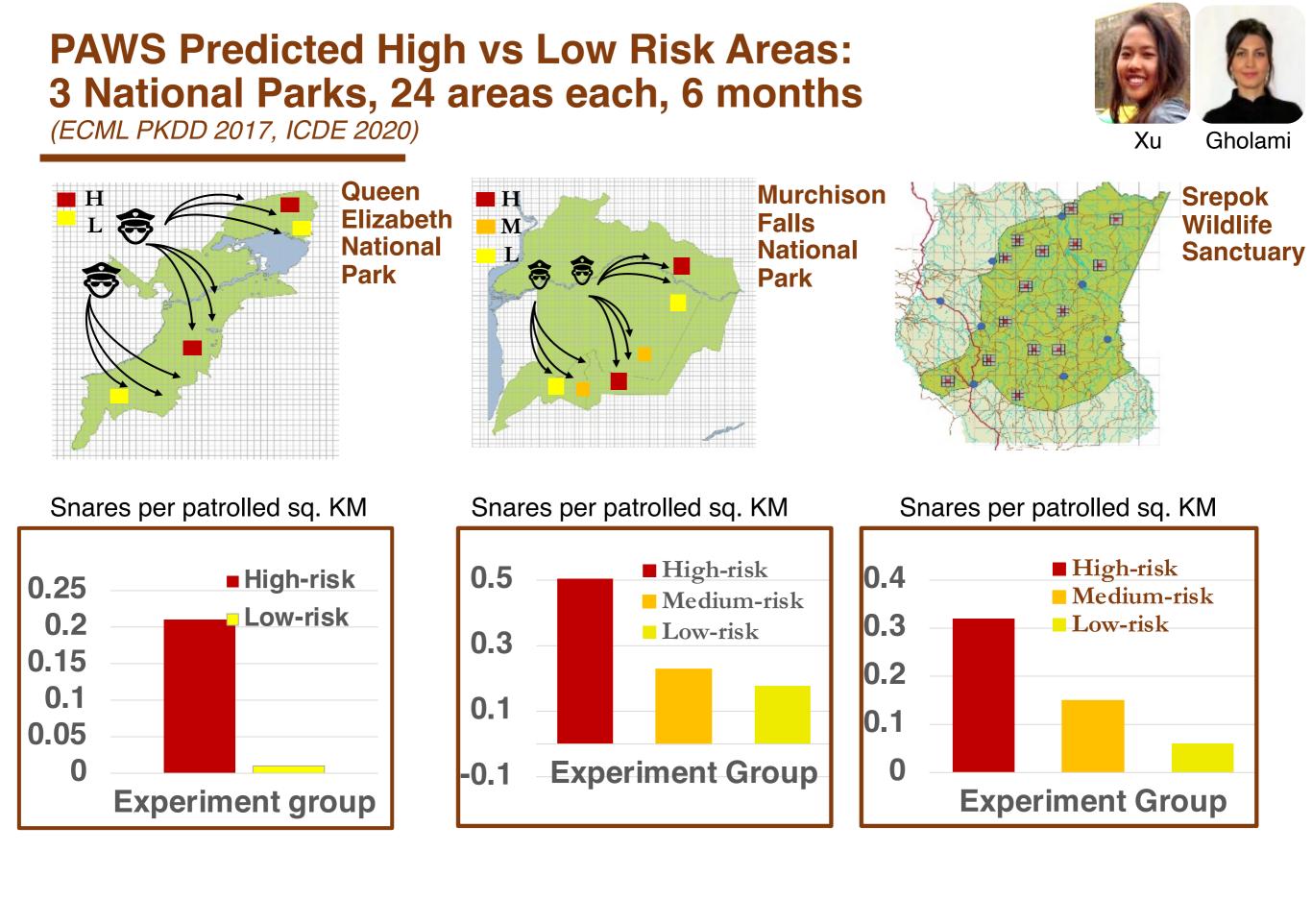
Two 9-sq.km areas, infrequent patrols



- Poached elephant
- 1 elephant snare roll
- 10 Antelope snares







PAWS Real-world Deployment Cambodia: Srepok Wildlife Sanctuary (ICDE 2020)

2019 PAWS: 521 snares/month

VS

2018: 101 snares/month

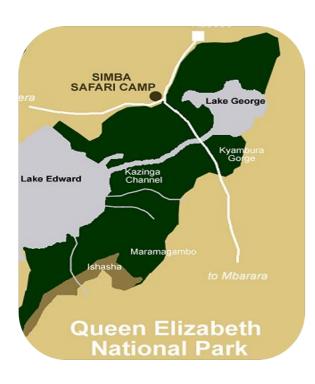
2021 PAWS

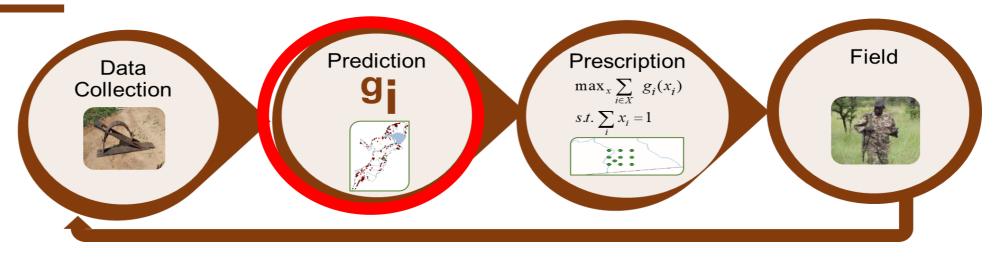
1,000 snares found in March

PAWS GOES GLOBAL with SMART platform!!

Protect Wildlife 800 National Parks Around the Globe

Cross River, Nigeria Sapo, Liberia Kafue, Zambia Gonarezhou, Zimbabwe Limpopo, Mozambique





> Do poachers get deterred by patrols?

	Area1	Area2
Area1	4, -3	-1, 1
Area2	-5, 5	2, -1

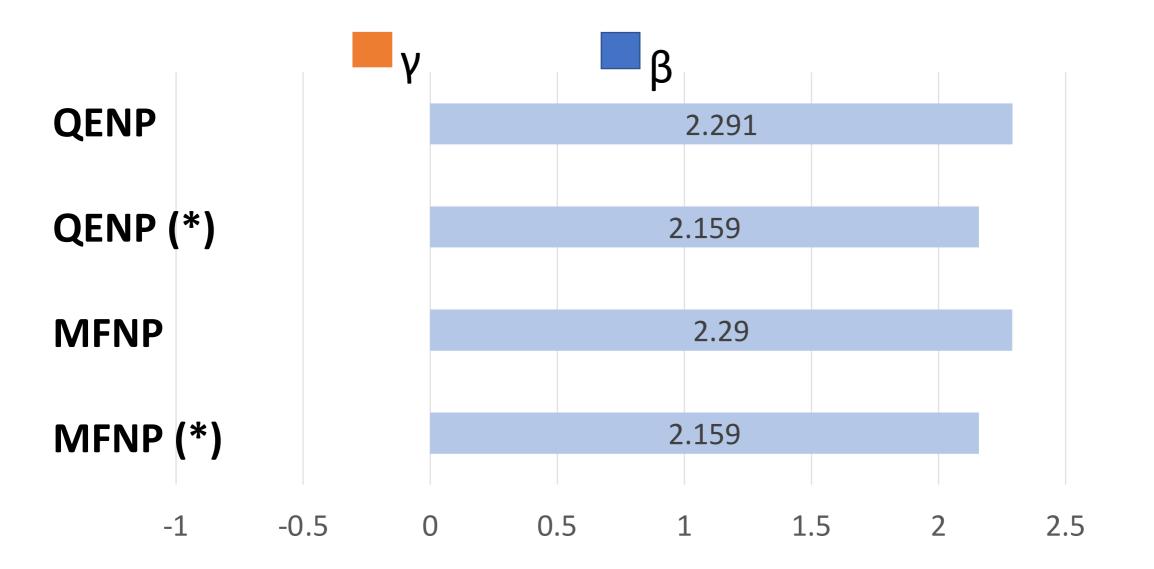
Is Adversary observing & Reacting to Patrols? YES! Adversaries deterred by patrols

Xu

Perrault

Logistic regression model

 $a_i + \gamma \cdot \texttt{past_effort} + \beta \cdot \texttt{current_effort}$

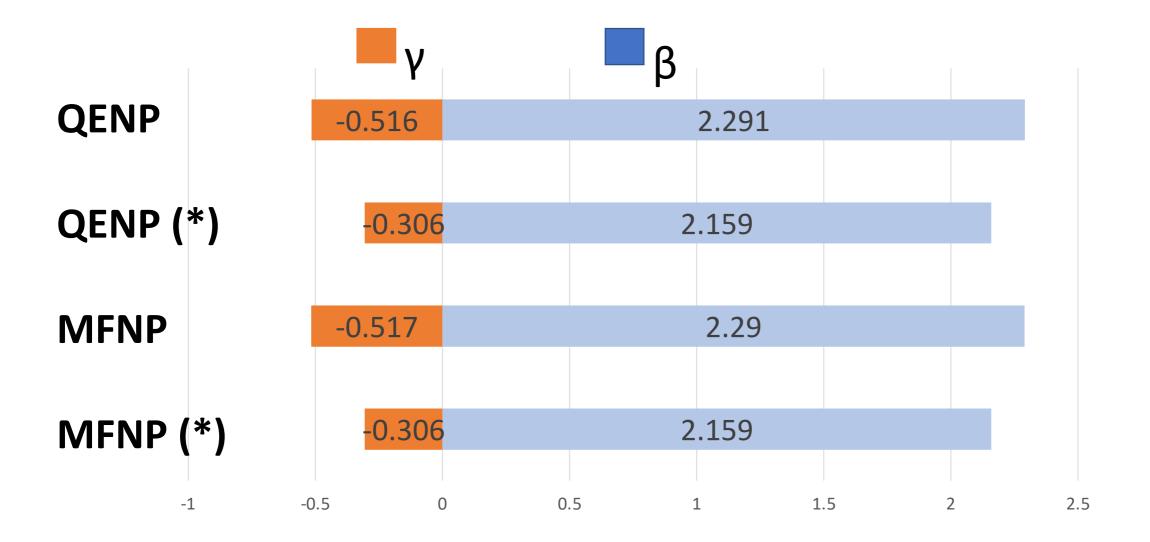


Is Adversary observing & Reacting to Patrols? YES! Adversaries deterred by patrols

Xu

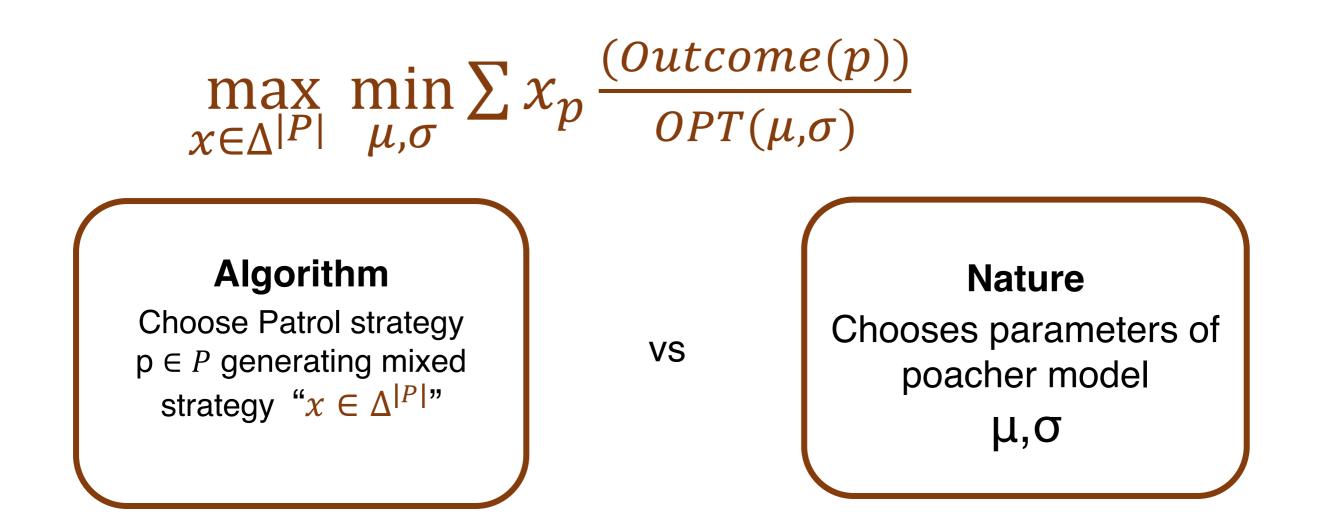
Perrault

- Is adversary observing & reacting to patrols? Logistic regression model
 - $a_i + \gamma \cdot \texttt{past_effort} + \beta \cdot \texttt{current_effort}$



MIRROR: Handling Uncertainty in Poacher Model Simulation Results (UAI 2021)

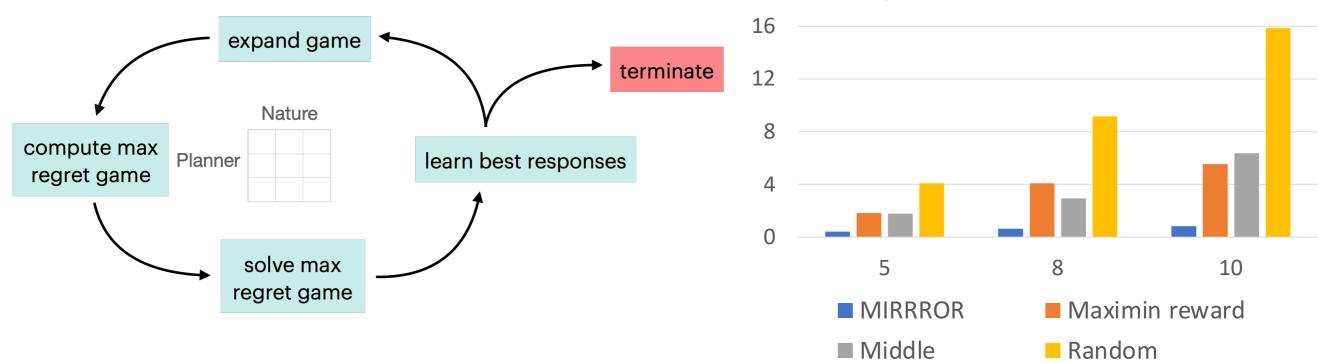
Worst case parameters: a zero-sum game against nature



MIRROR: Deterrence-Based Patrol Planning Simulation Results (UAI 2021)

Perrault

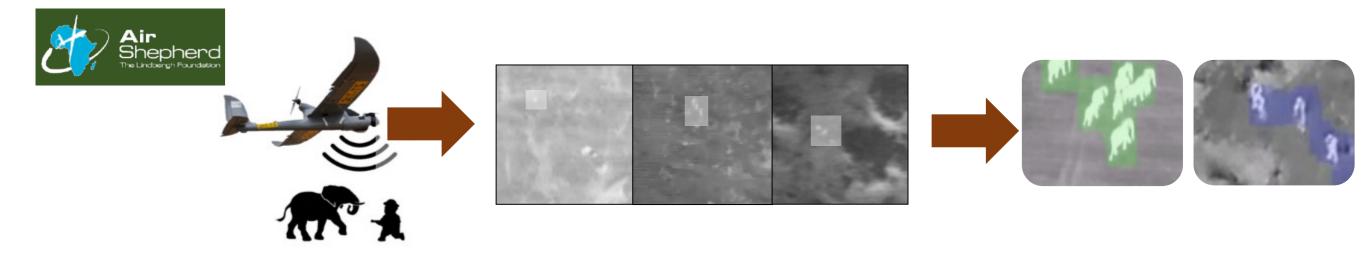
- Double oracle: Iteratively solve for equilibrium
- Final strategy is guaranteed to minimize max regret



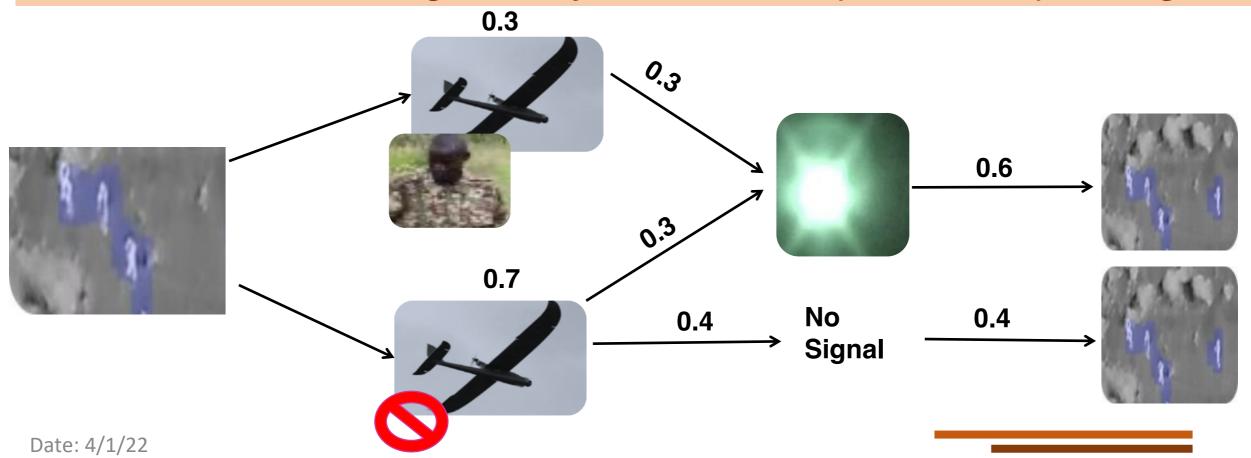
Regret Across Time Horizons

Next Steps: Integrating Real-Time "SPOT" Information

(IAAI 2018, AAAI 2018, AAAI 2020)



Si-G Model: Stackelberg Security Games with Optimal Deceptive Signaling

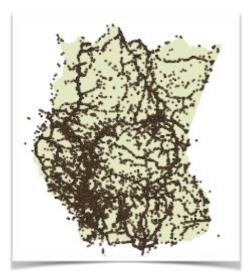


Next Steps: Data Scarce Parks

exploitation

Data-rich parks: build predictive models to plan patrols

Data-scarce parks: conduct patrols to detect illegal activity and collect data to improve the predictive model



Srepok, Cambodia 43,269 patrol observations 2013 – 2018

Royal Belum, Malaysia 824 patrol observations June – August 2018

exploration

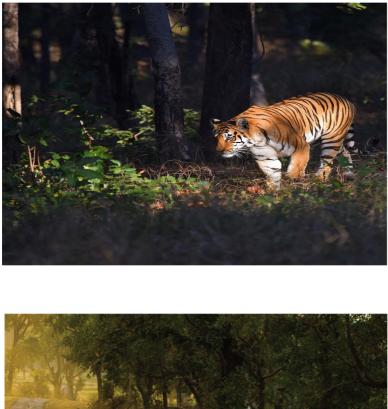
Theorem: With time horizon T, regret bound of LIZARD is $Regret(T) \le O(T^{\frac{2}{3}})$

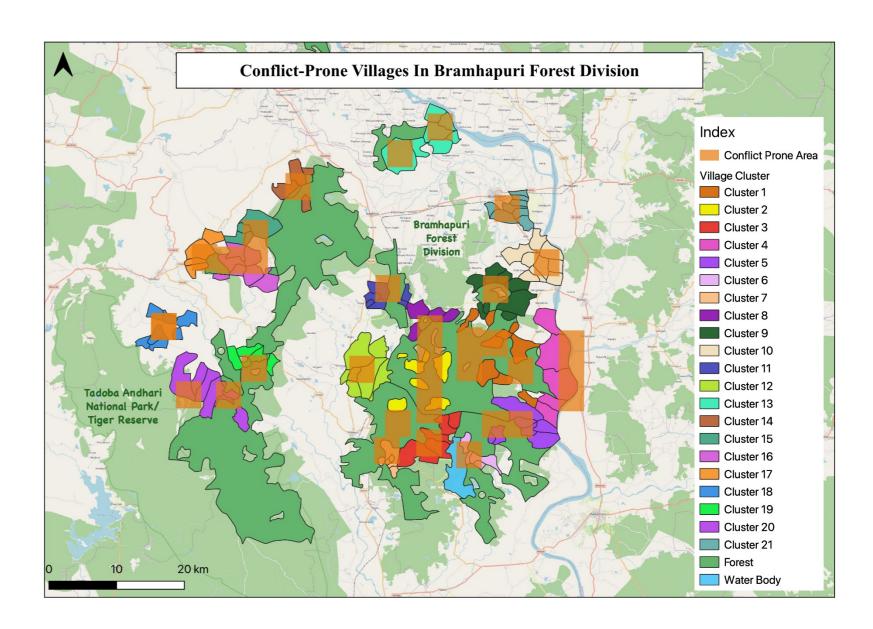
LIZARD algorithm exploits decomposability, smoothness, monotonicity

- Input: N targets with features, stochastic poacher places snares at targets
- *Output:* Patrol effort per target \leq budget *B*
- Reduce regret wrt OPT, optimal patrol effort, for capturing snares

Preventing Human-Wildlife Conflict (Joint work with P. Varakantham, WCT)

- Most forest areas in India are multi-use: wild animals & humans co-habit, conflict
- Our predictions used to distribute funds in Bramhapuri division, Maharashtra

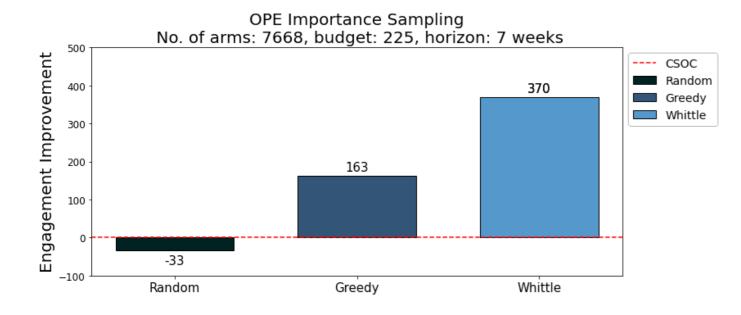


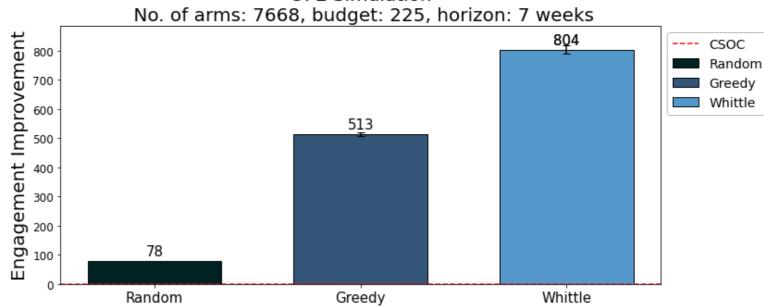


Future: Al for Social Impact (AI4SI)

#AlforSocialImact

@MilindTambe_Al





OPE Simulation