2013

Jun-young Kwak. 5/2013. “The Power of Flexibility: Autonomous Agents That Conserve Energy in Commercial Buildings ”.Abstract
Agent-based systems for energy conservation are now a growing area of research in multiagent systems, with applications ranging from energy management and control on the smart grid, to energy conservation in residential buildings, to energy generation and dynamic negotiations in distributed rural communities. Contributing to this area, my thesis presents new agent-based models and algorithms aiming to conserve energy in commercial buildings. More specifically, my thesis provides three sets of algorithmic contributions. First, I provide online predictive scheduling algorithms to handle massive numbers of meeting/event scheduling requests considering flexibility, which is a novel concept for capturing generic user constraints while optimizing the desired objective. Second, I present a novel BM-MDP (Bounded-parameter Multi-objective Markov Decision Problem) model and robust algorithms for multi-objective optimization under uncertainty both at the planning and execution time. The BM-MDP model and its robust algorithms are useful in (re)scheduling events to achieve energy efficiency in the presence of uncertainty over user’s preferences. Third, when multiple users contribute to energy savings, fair division of credit for such savings to incentivize users for their energy saving activities arises as an important question. I appeal to cooperative game theory and specifically to the concept of Shapley value for this fair division. Unfortunately, scaling up this Shapley value computation is a major hindrance in practice. Therefore, I present novel approximation algorithms to efficiently compute the Shapley value based on sampling and partitions and to speed up the characteristic function computation. These new models have not only advanced the state of the art in multiagent algorithms, but have actually been successfully integrated within agents dedicated to energy efficiency: SAVES, TESLA and THINC. SAVES focuses on the day-to-day energy consumption of individuals and groups in commercial buildings by reactively suggesting energy conserving alternatives. TESLA takes a long-range planning perspective and optimizes overall energy consumption of a large number of group events or meetings together. THINC provides an end-to-end integration within a single agent of energy efficient scheduling, rescheduling and credit allocation. While SAVES, TESLA and THINC thus differ in their scope and applicability, they demonstrate the utility of agent-based systems in actually reducing energy consumption in commercial buildings. I evaluate my algorithms and agents using extensive analysis on data from over 110,000 real meetings/events at multiple educational buildings including the main libraries at the University of Southern California. I also provide results on simulations and real-world experiments, clearly demonstrating the power of agent technology to assist human users in saving energy in commercial buildings.
B. An, E. Shieh, R. Yang, M. Tambe, C. Baldwin, J. DiRenzo, B. Maule, and G. Meyer. 2013. “A Deployed Quantal Response Based Patrol Planning System for the US Coast Guard .” In Interfaces, 43, 5, Pp. 400-420.Abstract
In this paper we describe the model, theory developed and deployment of PROTECT, a game-theoretic system in use by the United States Coast Guard (USCG) in the Port of Boston for scheduling patrols. The USCG evaluated the deployment of PROTECT in the Port of Boston as a success and is currently evaluating the system in the Port of New York, with the potential for nationwide deployment. The PROTECT system is premised on an attacker-defender Stackelberg game model but its development and implementation required both theoretical contributions and detailed evaluations. In this paper we describe the work required in the deployment which we group into five key innovations. First, we propose a compact representation of the defender’s strategy space, by exploiting equivalence and dominance, that makes PROTECT efficient enough to solve real world sized problems. Second, this system does not assume that adversaries are perfectly rational, a regular assumption in previous game theoretic models for security. Instead, PROTECT relies on a quantal response (QR) model of the adversary’s behavior — to the best of our knowledge, this is the first real-world deployment of a QR model. Third, we develop specialized solution algorithms that are able to solve this problem for real-world instances and give theoretical guarantees. Fourth, our experimental results illustrate that PROTECT’s QR model handles real-world uncertainties more robustly than a perfect rationality model. Finally, this paper presents real-world evaluation of PROTECT by: (i) a comparison of human-generated vs PROTECT security schedules, and (ii) results from an Adversarial Perspective Team’s (human mock attackers) analysis.
Fei Fang, Albert Xin Jiang, and Milind Tambe. 2013. “Protecting Moving Targets with Multiple Mobile Resources .” Journal of Artificial Intelligence Research, 48, Pp. 583-634.Abstract
In recent years, Stackelberg Security Games have been successfully applied to solve resource allocation and scheduling problems in several security domains. However, previous work has mostly assumed that the targets are stationary relative to the defender and the attacker, leading to discrete game models with finite numbers of pure strategies. This paper in contrast focuses on protecting mobile targets that leads to a continuous set of strategies for the players. The problem is motivated by several real-world domains including protecting ferries with escort boats and protecting refugee supply lines. Our contributions include: (i) A new game model for multiple mobile defender resources and moving targets with a discretized strategy space for the defender and a continuous strategy space for the attacker. (ii) An efficient linear-programming-based solution that uses a compact representation for the defender’s mixed strategy, while accurately modeling the attacker’s continuous strategy using a novel sub-interval analysis method. (iii) Discussion and analysis of multiple heuristic methods for equilibrium refinement to improve robustness of defender’s mixed strategy. (iv) Discussion of approaches to sample actual defender schedules from the defender’s mixed strategy. (iv) Detailed experimental analysis of our algorithms in the ferry protection domain.
J. Tsai, Y. Qian, M. Tambe, Y. Vorobeychik, and C. Kiekintveld. 2013. “Bayesian Security Games for Controlling Contagion (Extended version) .” ASE Human Journal, 2, Pp. 168-181.Abstract
Influence blocking games have been used to model adversarial domains with a social component, such as counterinsurgency. In these games, a mitigator attempts to minimize the efforts of an influencer to spread his agenda across a social network. Previous work has assumed that the influence graph structure is known with certainty by both players. However, in reality, there is often significant information asymmetry between the mitigator and the influencer. We introduce a model of this information asymmetry as a two-player zero-sum Bayesian game. Nearly all past work in influence maximization and social network analysis suggests that graph structure is fundamental in strategy generation, leading to an expectation that solving the Bayesian game exactly is crucial. Surprisingly, we show through extensive experimentation on synthetic and real-world social networks that many common forms of uncertainty can be addressed near-optimally by ignoring the vast majority of it and simply solving an abstracted game with a few randomly chosen types. This suggests that optimal strategies of games that do not model the full range of uncertainty in influence blocking games are typically robust to uncertainty about the influence graph structure.
Nupul Kukreja, William G. J. Halfond, and Milind Tambe. 2013. “Randomizing Regression Tests using Game Theory .” In International conference on Automated Software Engineering (ASE).Abstract
As software evolves, the number of test-cases in the regression test suites continues to increase, requiring testers to prioritize their execution. Usually only a subset of the test cases is executed due to limited testing resources. This subset is often known to the developers who may try to “game” the system by committing insufficiently tested code for parts of the software that will not be tested. In this new ideas paper, we propose a novel approach for randomizing regression test scheduling, based on Stackelberg games for deployment of scarce resources. We apply this approach to randomizing test cases in such a way as to maximize the testers’ expected payoff when executing the test cases. Our approach accounts for resource limitations (e.g., number of testers) and provides a probabilistic distribution for scheduling test cases. We provide an example application of our approach showcasing the idea of using Stackelberg games for randomized regression test scheduling.
Albert Xin Jiang, Thanh H. Nguyen, Milind Tambe, and Ariel D. Procaccia. 2013. “Monotonic Maximin: A Robust Stackelberg Solution Against Boundedly Rational Followers .” In Conference on Decision and Game Theory for Security (GameSec).Abstract
There has been recent interest in applying Stackelberg games to infrastructure security, in which a defender must protect targets from attack by an adaptive adversary. In real-world security settings the adversaries are humans and are thus boundedly rational. Most existing approaches for computing defender strategies against boundedly rational adversaries try to optimize against specific behavioral models of adversaries, and provide no quality guarantee when the estimated model is inaccurate. We propose a new solution concept, monotonic maximin, which provides guarantees against all adversary behavior models satisfying monotonicity, including all in the family of Regular Quantal Response functions. We propose a mixed-integer linear program formulation for computing monotonic maximin. We also consider top-monotonic maximin, a related solution concept that is more conservative, and propose a polynomial-time algorithm for top-monotonic maximin.
J. Tsai, Y. Qian, Y. Vorobeychik, C. Kiekintveld, and M. Tambe. 2013. “Bayesian security games for controlling contagion .” In ASE/IEEE International Conference on Social Computing(SocialCom).Abstract
Influence blocking games have been used to model adversarial domains with a social component, such as counterinsurgency. In these games, a mitigator attempts to minimize the efforts of an influencer to spread his agenda across a social network. Previous work has assumed that the influence graph structure is known with certainty by both players. However, in reality, there is often significant information asymmetry between the mitigator and the influencer. We introduce a model of this information asymmetry as a two-player zero-sum Bayesian game. Nearly all past work in influence maximization and social network analysis suggests that graph structure is fundamental in strategy generation, leading to an expectation that solving the Bayesian game exactly is crucial. Surprisingly, we show through extensive experimentation on synthetic and real-world social networks that many common forms of uncertainty can be addressed nearoptimally by ignoring the vast majority of it and simply solving an abstracted game with a few randomly chosen types. This suggests that optimal strategies of games that do not model the full range of uncertainty in influence blocking games are typically robust to uncertainty about the influence graph structure.
Chao Zhang, Albert Xin Jiang, Martin B. Short, P. Jeffrey Brantingham, and Milind Tambe. 2013. “Modeling Crime diffusion and crime suppression on transportation networks: An initial report.” In SNSC 2013: The AAAI Fall Symposium 2013 on Social Networks and Social Contagion.Abstract
In urban transportation networks, crime diffuses as criminals travel through the networks and look for illicit opportunities. It is important to first model this diffusion in order to recommend actions or patrol policies to control the diffusion of such crime. Previously, game theory has been used for such patrol policy recommendations, but these applications of game theory for security have not modeled the diffusion of crime that comes about due to criminals seeking opportunities; instead the focus has been on highly strategic adversaries that plan attacks in advance. To overcome this limitation of previous work, this paper provides the following key contributions. First, we provide a model of crime diffusion based on a quantal biased random movement (QBRM) of criminals opportunistically and repeatedly seeking targets. Within this model, criminals react to real-time information, rather than strategically planning their attack in advance. Second, we provide a gametheoretic approach to generate randomized patrol policies for controlling such diffusion.
Pujol-Gonzalez, J. Cerquides, P. Meseguer, J. A. Rodriguez Aguilar, and M. Tambe. 2013. “Engineering the decentralized coordination of UAVs with limited communication range.” In Conference of the Spanish Association for Artificial Intelligence (CAEPIA), 2013.Abstract
This paper tackles the problem of allowing a team of UAVs with limited communication range to autonomously coordinate to service requests. We present two MRF-based solutions: one assumes independence between requests; and the other considers also the UAVs’ workloads. Empirical evaluation shows that the latter performs almost as well as state-of-the-art centralized techniques in realistic scenarios.
2013. “Mitigating Multi-path Fading in a Mobile Mesh Network .” Ad-Hoc Networks Journal, 11, 4, Pp. 1510-1521.Abstract
By using robots as routers, a team of networked robots can provide a communication substrate to establish a wireless mesh network. The mobile mesh network can autonomously optimize its configuration, increasing performance. One of the main sources of radio signal fading in such a network is multi-path propagation, which can be mitigated by moving the senders or the receivers on the distance of the order of a wavelength. In this paper, we measure the performance gain when robots are allowed to make such small movements and find that it may be as much as 270%. Our main contribution is the design of a system that allows robots to cooperate and improve the real-world network throughput via a practical solution. We model the problem of which robots to move as a distributed constraint optimization problem (DCOP). Our study includes four local metrics to estimate global throughput.
Dehghani M., Immordino-Yang M. H., Graham J., Marsella S., Forbus K., Ginges J., Tambe M., and Maheswaran R. 2013. “Computational Models of Moral Perception, Conflict & Elevation .” In International Association for Computing and Philosophy (IACAP) 2013.Abstract
Computational models of moral cognition will be critical to the creation of agents and robots that operate autonomously in morally sensitive and complex domains. We propose a framework for developing computational models of moral cognition based on behavioral and neurobiological experimental results and field observations. Specifically, we discuss the following critical issues in building such models: 1. Managing conflicts between different moral concerns; 2. The role of moral perceptions in moral judgments; 3. Mechanisms and consequences of moral emotions; 4. Learning and adjusting moral behavior. Moreover, we discuss computational architectures for building and exploring models of moral cognition at different levels of analysis: individual, small groups and large groups.
Manish Jain. 2013. “Thwarting Adversaries with Unpredictability: Massive-scale Game-Theoretic Algorithms for Real-world Security Deployments ”.Abstract
Protecting critical infrastructure and targets such as airports, transportation networks, power generation facilities as well as critical natural resources and endangered species is an important task for police and security agencies worldwide. Securing such potential targets using limited resources against intelligent adversaries in the presence of the uncertainty and complexities of the real-world is a major challenge. My research uses a game-theoretic framework to model the strategic interaction between a defender (or security forces) and an attacker (or terrorist adversary) in security domains. Game theory provides a sound mathematical approach for deploying limited security resources to maximize their effectiveness. While game theory has always been popular in the arena of security, unfortunately, the state of the art algorithms either fail to scale or to provide a correct solution for large problems with arbitrary scheduling constraints. For example, US carriers fly over 27,000 domestic and 2,000 international flights daily, presenting a massive scheduling challenge for Federal Air Marshal Service (FAMS). My thesis contributes to a very new area that solves game-theoretic problems using insights from large-scale optimization literature towards addressing the computational challenge posed by real-world domains. I have developed new models and algorithms that compute optimal strategies for scheduling defender resources is large real-world domains. My thesis makes the following contributions. First, it presents new algorithms that can solve for trillions of actions for both the defender and the attacker. Second, it presents a hierarchical framework that provides orders of magnitude scale-up in attacker types for Bayesian Stackelberg games. Third, it provides an analysis and detection of a phase-transition that identifies properties that makes security games hard to solve. These new models have not only advanced the state of the art in computational game-theory, but have actually been successfully deployed in the real-world. My work represents a successful transition from game-theoretic advancements to real-world applications that are already in use, and it has opened exciting new avenues to greatly expand the reach of game theory. For instance, my algorithms are used in the IRIS system: IRIS has been in use by the Federal Air Marshals Service (FAMS) to schedule air marshals on board international commercial flights since October 2009.
Jason Tsai. 2013. “Protecting Networks Against Diffusive Attacks: Game-Theoretic Resource Allocation for Contagion Mitigation ”.Abstract
Many real-world situations involve attempts to spread influence through a social network. For example, viral marketing is when a marketer selects a few people to receive some initial advertisement in the hopes that these ‘seeds’ will spread the news. Even peacekeeping operations in one area have been shown to have a contagious effect on the neighboring vicinity. Each of these domains also features multiple parties seeking to maximize or mitigate a contagious effect by spreading its own influence among a select few seeds, naturally yielding an adversarial resource allocation problem. My work models the interconnected network of people as a graph and develops algorithms to optimize resource allocation in these networked competitive contagion scenarios. Game-theoretic resource allocation in the past has not considered domains with both a networked structure and contagion effects, rendering them unusable in critical domains such as rumor control, counterinsurgency, and crowd management. Networked domains without contagion effects already present computational challenges due to the large scale of the action space. To address this issue, my first contribution proposed efficient game-theoretic allocation algorithms for the graph-based urban road network domain. This work still provides the only polynomialtime algorithm for allocating vehicle checkpoints through a city, giving law enforcement officers an efficient tool to combat terrorists making their way to potential points of attack. Second, I have provided the first game-theoretic treatment for contagion mitigation in social networks and given practitioners the first principled techniques for such vital concerns as rumor control and counterinsurgency. Finally, I extended my work on game-theoretic contagion mitigation to address uncertainty about the network structure to find that, contrary to what evidence and intuition suggest, heuristic sampling approaches provide near-optimal solutions across a wide range of generative graph models and uncertainty models. Thus, despite extreme practical challenges in attaining accurate social network information, my techniques remain near-optimal across numerous forms of uncertainty in multiple synthetic and real-world graph structures. Beyond optimization of resource allocation, I have further studied contagion effects to understand the effectiveness of such resources. First, I created an evacuation simulation, ESCAPES, to explore the interaction of pedestrian fear contagion and authority fear mitigation during an evacuation. Second, using this simulator, I have advanced the frontier in contagion modeling by developing empirical evaluation methods for comparing and calibrating computational contagion models that are critical in crowd simulations and evacuation modeling. Finally, I have also conducted an examination of agent-human emotional contagion to inform the rising use of simulations for personnel training in emotionally-charged situations.
Nan Li, Jun-young Kwak, Burcin Becerik-Gerber, and Milind Tambe. 2013. “Predicting HVAC Energy Consumption in Commercial Buildings using Multiagent Systems .” In International Symposium on Automation and Robotics in Construction (ISARC).Abstract
Energy consumption in commercial buildings has been increasing rapidly in the past decade. The knowledge of future energy consumption can bring significant value to commercial building energy management. For example, prediction of energy consumption decomposition helps analyze the energy consumption patterns and efficiencies as well as waste, and identify the prime targets for energy conservation. Moreover, prediction of temporal energy consumption enables building managers to plan out the energy usage over time, shift energy usage to off-peak periods, and make more effective energy purchase plans. This paper proposes a novel model for predicting heating, ventilation and air conditioning (HVAC) energy consumption in commercial buildings. The model simulates energy behaviors of HVAC systems in commercial buildings, and interacts with a multiagent systems (MAS) based framework for energy consumption prediction. Prediction is done on a daily, weekly and monthly basis. Ground truth energy consumption data is collected from a test bed office building over 267 consecutive days, and is compared to predicted energy consumption for the same period. Results show that the prediction can match 92.6 to 98.2% of total HVAC energy consumption with coefficient of variation of the root mean square error (CV-RMSE) values of 7.8 to 22.2%. Ventilation energy consumption can be predicted at high accuracies (over 99%) and low variations (CV-RMSE values of 3.1 to 16.3%), while cooling energy consumption accounts for majority of inaccuracies and variations in total energy consumption prediction.
Francesco Maria Delle Fave, Yundi Qian, Albert Xin Jiang, Matthew Brown, and Milind Tambe. 2013. “Planning and Learning in Security Games .” In ACM SigEcom Exchanges, 3rd ed. Vol. 11.Abstract
We present two new critical domains where security games are applied to generate randomized patrol schedules. For each setting, we present the current research that we have produced. We then propose two new challenges to build accurate schedules that can be deployed effectively in the real world. The first is a planning challenge. Current schedules cannot handle interruptions. Thus, more expressive models, that allow for reasoning over stochastic actions, are needed. The second is a learning challenge. In several security domains, data can be used to extract information about both the environment and the attacker. This information can then be used to improve the defender’s strategies.

Pages