Don’t Put All Your Strategies in One Basket: Playing Green Security Games with Imperfect Prior Knowledge


Shahrzad Gholami, Amulya Yadav, Long Tran-Thanh, Bistra Dilkina, and Milind Tambe. 2019. “Don’t Put All Your Strategies in One Basket: Playing Green Security Games with Imperfect Prior Knowledge .” In International Conference on Autonomous Agents and Multiagent Systems (AAMAS-19).


Security efforts for wildlife monitoring and protection of endangered species (e.g., elephants, rhinos, etc.) are constrained by limited resources available to law enforcement agencies. Recent progress in Green Security Games (GSGs) has led to patrol planning algorithms for strategic allocation of limited patrollers to deter adversaries in environmental settings. Unfortunately, previous approaches to these problems suffer from several limitations. Most notably, (i) previous work in GSG literature relies on exploitation of error-prone machine learning (ML) models of poachers’ behavior trained on (spatially) biased historical data; and (ii) online learning approaches for repeated security games (similar to GSGs) do not account for spatio-temporal scheduling constraints while planning patrols, potentially causing significant shortcomings in the effectiveness of the planned patrols. Thus, this paper makes the following novel contributions: (I) We propose MINION-sm, a novel online learning algorithm for GSGs which does not rely on any prior error-prone model of attacker behavior, instead, it builds an implicit model of the attacker on-the-fly while simultaneously generating schedulingconstraint-aware patrols. MINION-sm achieves a sublinear regret against an optimal hindsight patrol strategy. (II) We also propose MINION, a hybrid approach where our MINION-sm model and an ML model (based on historical data) are considered as two patrol planning experts and we obtain a balance between them based on their observed empirical performance. (III) We show that our online learning algorithms significantly outperform existing state-of-theart solvers for GSGs.
See also: 2019