PAWS: A Deployed Game-Theoretic Application to Combat Poaching


Fei Fang, Thanh H. Nguyen, Rob Pickles, Wai Y. Lam, Gopalasamy R. Clements, Bo An, Amandeep Singh, Brian C. Schwedock, Milind Tambe, and Andrew Lemieux. 2017. “PAWS: A Deployed Game-Theoretic Application to Combat Poaching.” AI Magazine 38(1):23-36.


Poaching is considered a major driver for the population drop of key species such as tigers, elephants, and rhinos, which can be detrimental to whole ecosystems. While conducting foot patrols is the most commonly used approach in many countries to prevent poaching, such patrols often do not make the best use of the limited patrolling resources. This paper presents PAWS, a game-theoretic application deployed in Southeast Asia for optimizing foot patrols to combat poaching. In this paper, we report on the significant evolution of PAWS from a proposed decision aid introduced in 2014 to a regularly deployed application. We outline key technical advances that lead to PAWS’s regular deployment: (i) incorporating complex topographic features, e.g., ridgelines, in generating patrol routes; (ii) handling uncertainties in species distribution (game theoretic payoffs); (iii) ensuring scalability for patrolling large-scale conservation areas with fine-grained guidance; and (iv) handling complex patrol scheduling constraints.
See also: Conservation, PAWS, 2017
Last updated on 07/26/2021