Risk-Sensitive Submodular Optimization

Citation:

Bryan Wilder. 2018. “Risk-Sensitive Submodular Optimization .” In AAAI conference on Artificial Intelligence (AAAI-18).

Abstract:

The conditional value at risk (CVaR) is a popular risk measure which enables risk-averse decision making under uncertainty. We consider maximizing the CVaR of a continuous submodular function, an extension of submodular set functions to a continuous domain. One example application is allocating a continuous amount of energy to each sensor in a network, with the goal of detecting intrusion or contamination. Previous work allows maximization of the CVaR of a linear or concave function. Continuous submodularity represents a natural set of nonconcave functions with diminishing returns, to which existing techniques do not apply. We give a (1 − 1/e)-approximation algorithm for maximizing the CVaR of a monotone continuous submodular function. This also yields an algorithm for submodular set functions which produces a distribution over feasible sets with guaranteed CVaR. Experimental results in two sensor placement domains confirm that our algorithm substantially outperforms competitive baselines.
See also: 2018