Soar/Psm-e: Investigating match parallelism in a learning production system


M. Tambe, D. Kalp, A. Gupta, C. L. Forgy, B. G. Milnes, and A. Newell. 1988. “ Soar/Psm-e: Investigating match parallelism in a learning production system.” In ACM/SIGPLAN Symposium on Parallel Programming: Experience with Applications, Languages, and Systems (PPEALS).


Soar is an attempt to realize a set of hypotheses on the nature of general intelligence within a single system. Soar uses a Production system (rule based system) to encode its knowledge base. Its learning mechanism, chunking. adds productions continuously to the production system. The process of searching for relevant knowledge, matching, is known to be a performance bottleneck in production systems. PSM-E is a C-based implementation of the OPS5 production system on the Encore Multimax that has achieved significant speedups in matching. In this paper we describe our im- plementation, Soar/PSM-E, of Soar on the Encore Multimax that is built on top of PSM-E. We fiit describe the exten- sions and modifications required to PSM-E in order to support Soar, especially the capability of adding productions at run time as required by chunking. We present tbe speedups obtained on Soar/PSM-E and discuss some effects of chunk- ing on parallelism. We also analyze the performance of the system and identify the bottlenecks limiting parallelism. Finally, we discuss the work in progress to deal with some of them.
See also: 1988