Towards a game theoretic approach for defending against crime diffusion


Chao Zhang, Albert Xin Jiang, Martin B. Short, Jeffrey P. Brantingham, and Milind Tambe. 2014. “Towards a game theoretic approach for defending against crime diffusion .” In International Conference on Autonomous Agents and Multiagent Systems (AAMAS) [SHORT PAPER].


In urban transportation networks, crime diffuses as criminals travel through the networks and look for illicit opportunities. It is important to first model this diffusion in order to recommend actions or patrol policies to control the diffusion of such crime. Previously, game theory has been used for such patrol policy recommendations, but these applications of game theory for security have not modeled the diffusion of crime that comes about due to criminals seeking opportunities; instead the focus has been on highly strategic adversaries that plan attacks in advance. To overcome this limitation of previous work, this paper provides the following key contributions. First, we provide a model of crime diffusion based on a quantal biased random movement (QBRM) of criminals opportunistically and repeatedly seeking targets. Within this model, criminals react to real-time information, rather than strategically planning their attack in advance. Second, we provide a game-theoretic approach to generate randomized patrol policies for controlling such diffusion.
See also: 2014