Towards a Game-theoretic Framework for Intelligent Cyber-security Alert Allocation

Citation:

A Schlenker, H Xu, C Kiekintveld, A Sinha, M Tambe, M Guirguis, S Sonya, D Balderas, and N Dunstatter. 2017. “Towards a Game-theoretic Framework for Intelligent Cyber-security Alert Allocation .” In .

Abstract:

In recent years, there have been a number of successful cyber attacks on enterprise networks by malicious actors. These attacks generate alerts which must be investigated by cyber analysts to determine if they are an attack. Unfortunately, there are magnitude more alerts than cyber analysts - a trend expected to continue into the future creating a need to find optimal assignments of the incoming alerts to analysts in the presence of a strategic adversary. We address this challenge with the four following contributions: (1) a cyber allocation game (CAG) model for the cyber network protection domain, (2) an NP-hardness proof for computing the optimal strategy for the defender, (3) techniques to find the optimal allocation of experts to alerts in CAG in the general case and key special cases, and (4) heuristics to achieve significant scale-up in CAGs with minimal loss in solution quality.
See also: 2017