VIOLA: Video Labeling Application for SecurityDomains


Elizabeth Bondi, Fei Fang, Debarun Kar, Venil Noronha, Donnabell Dmello, Milind Tambe, Arvind Iyer, and Robert Hannaford. 2017. “VIOLA: Video Labeling Application for SecurityDomains.” In Conference on Decision and Game Theory for Security (GameSec) 2017.


Advances in computational game theory have led to several successfully deployed applications in security domains. These gametheoretic approaches and security applications learn game payoff values or adversary behaviors from annotated input data provided by domain experts and practitioners in the field, or collected through experiments with human subjects. Beyond these traditional methods, unmanned aerial vehicles (UAVs) have become an important surveillance tool used in security domains to collect the required annotated data. However, collecting annotated data from videos taken by UAVs efficiently, and using these data to build datasets that can be used for learning payoffs or adversary behaviors in game-theoretic approaches and security applications, is an under-explored research question. This paper presents VIOLA, a novel labeling application that includes (i) a workload distribution framework to efficiently gather human labels from videos in a secured manner; (ii) a software interface with features designed for labeling videos taken by UAVs in the domain of wildlife security. We also present the evolution of VIOLA and analyze how the changes made in the development process relate to the efficiency of labeling, including when seemingly obvious improvements surprisingly did not lead to increased efficiency. VIOLA enables collecting massive amounts of data with detailed information from challenging security videos such as those collected aboard UAVs for wildlife security. VIOLA will lead to the development of a new generation of game-theoretic approaches for security domains, including approaches that integrate deep learning and game theory for real-time detection and response.
See also: Conservation, 2017
Last updated on 07/26/2021