Publications by Year: 1992

M. Tambe, Kalp. D., and P. Rosenbloom. 11/1992. “ An efficient algorithm for production systems with linear-time match.” In International Conference on Tools of Artificial Intelligence.Abstract
Combinatorial match in production systems (rule-based system) is problematical in several areas of production system application: real-time performance, learning new productions for performance improvement. modeling human cognition. and parallelization. The unique-attribute representation in production systems is a promising approach to eliminate match combinatorics. Earlier investigations have focused on the ability of unique-attributes to alleviate the problems caused b~ combinatorial match 1331. This paper reports on an additional benefit of unique-attributes: a specialized match algorithm called Uni-Rete. Uni-Rete is a specialization of the widely used Rete match algorirhm for unique-attributes. The paper presents performance results for Uni-Rete. which indicate over 10-fold speedup with respect to Rete. It also discusses the implications of Uni-Rete for non-unique-attribute systems.
C. lain Stobie, Milind Tambe, and Paul S. Rosenbloom. 11/1992. “ Flexible integration of path-planning capabilities.” MOBILE ROBOTS VII.Abstract
Robots pursuing complex goals must plan paths according to several criteria of quality, including shortness, safety, speed and planning time. Many sources and kinds of knowledge, such as maps, procedures and perception, may be available or required. Both the quality criteria and sources of knowledge may vary widely over time, and in general they will interact. One approach to address this problem is to express all criteria and goals numerically in a single weighted graph, and then to search this graph to determine a path. Since this is problematic with symbolic or uncertain data and interacting criteria, we propose that what is needed instead is an integration of many kinds of planning capabilities. We describe a hybrid approach to integration, based on experiments with building simulated mobile robots using Soar, an integrated problem-solving and learning system. For flexibility, we have implemented a combination of internal planning, reactive capabilities and specialized tools. We illustrate how these components can complement each other's limitations and produce plans which integrate geometric and task knowledge.
R. Doorenbos, M. Tambe, and A. Newell. 1992. “ Learning 10,000 chunks: what’s it like out there.” In National Conference on Artificial Intelligence (AAAI).Abstract
This paper describes an initial exploration into large learning systems, i.e., systems that learn a large number of rules. Given the well-known utility problem in learning systems, efficiency questions are a major concern. But the questions are much broader than just efficiency, e.g., will the effectiveness of the learned rules change with scale? This investigation uses a single problem-solving and learning system, Dispatcher-Soar, to begin to get answers to these questions. Dispatcher-Soar has currently learned 10,112 new productions, on top of an initial system of 1,819 productions, so its total size is 11,931 productions. This represents one of the largest production systems in existence, and by far the largest number of rules ever learned by an AI system. This paper presents a variety of data from our experiments with Dispatcher-Soar and raises important questions for large learning systems1
A. Acharya, M. Tambe, and A. Gupta. 1992. “Implementation of production systems on message passing computers: Simulation results and analysis.” In IEEE Transactions on Parallel and Distributed Computing (IEEE TPDC), 4th ed., 3: Pp. 477-487.Abstract
In the past, researchers working on parallel implementations of production systems have focused on shared- memory multiprocessors and special-purpose architectures. Message-passing computers have not been given as much attention. The main reasons for this have been the large message- passing latency (as large as a few milliseconds) and high message-handling overheads (several hundred microseconds) associated with the first generation message-passing computers. These overheads were too large for parallel implementations of production systems, which require a fine-grain decomposition to obtain a significant speedup. Recent advances in interconnection network technology and processing element design, however, promise to reduce the network latency and message-handling overhead by 2-3 orders of magnitude, making these computers much more interesting for implementation of production systems. In this paper, we examine the suitability of message-passing computers for parallel implementations of production systems. We present two mappings for production systems on these computers, one targeted toward fine-grained message-passing machines and the other targeted toward medium-grained machines. We also present simulation results for the medium- grained mapping and show that it is possible to exploit the available parallelism and to obtain reasonable speedups. Finally, we perform a detailed analysis of the results and suggest solutions for some of the problems. Index Terms- Coarse-grain mapping, concurrent distributed hash table, fine-grain mapping, medium-grain mapping, message- passing computers, OPS5, parallel production systems, Rete net- work, simulation results.