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Abstract
Restless multi-arm bandits (RMABs) is a class of1

resource allocation problems with broad applica-2

tion in areas such as healthcare, online advertis-3

ing, and anti-poaching. We explore several impor-4

tant question such as how to handle arms opting-in5

and opting-out over time without frequent retrain-6

ing from scratch, how to deal with continuous state7

settings with nonlinear reward functions, which ap-8

pear naturally in practical contexts. We address9

these questions by developing a pre-trained model10

(PreFeRMAB) based on a novel combination of11

three key ideas: (i) to enable fast generalization,12

we use train agents to learn from each other’s expe-13

rience; (ii) to accommodate streaming RMABs, we14

derive a new update rule for a crucial λ-network;15

(iii) to handle more complex continuous state set-16

tings, we design the algorithm to automatically de-17

fine an abstract state based on raw observation and18

reward data. PreFeRMAB allows general zero-shot19

ability on previously unseen RMABs, and can be20

fine-tuned on specific instances in a more sample-21

efficient way than retraining from scratch. We the-22

oretically prove the benefits of multi-arm general-23

ization and empirically demonstrate the advantages24

of our approach on several challenging, real-world25

inspired problems.26

1 Introduction27

Restless multi-arm bandits (RMABs), a class of resource al-28

location problems involving multiple agents with a global re-29

source constraint, have found applications in various scenar-30

ios, including resource allocation in multi-channel commu-31

nication, machine maintenance, and healthcare [Hodge and32

Glazebrook, 2015; Mate et al., 2022]. RMABs have recently33

been studied from a multi-agent reinforcement learning per-34

spective.35

The usual RMAB setting considers a fixed number of arms,36

each associated with a known, fixed MDP with finite state37

and action spaces; the RMAB chooses K of N arms every38

round to optimize some long term objective. Even in this39

∗Equal contribution.

setting, the problem has been shown to be PSPACE hard [Pa- 40

padimitriou and Tsitsiklis, 1999]. Several approximation al- 41

gorithms have been proposed in this setting [Whittle, 1988; 42

Hawkins, 2003], particularly when MDP transition proba- 43

bilities are fully specified, which are successful in practice. 44

State-of-the-art approaches for binary action RMABs com- 45

monly provide policies based on the Whittle index [Whittle, 46

1988], an approach that has also been generalized to multi- 47

action RMABs[Hawkins, 2003; Killian et al., 2021b]. There 48

are also linear programming-based approaches to both binary 49

and multi-action RMABs [Zhang and Frazier, 2021]. Re- 50

inforcement learning (RL) based techniques have also been 51

proposed as state-of-the-art solutions for general multi-action 52

RMABs [Xiong and Li, 2023]. 53

In this work, we focus on RL-based methods that provide 54

general solutions to binary and multi-action RMABs, without 55

requiring ground truth transition dynamics, or special prop- 56

erties such as indexability as required by other approaches 57

[Wang et al., 2023]. Unfortunately, several limitations ex- 58

ist in current RMAB solutions, especially for state of the art 59

RL-based solutions, making them challenging or inefficient 60

to deploy in real-world resource allocation problems. 61

The first limitation arises when dealing with arms that con- 62

stantly opt-in (also known as streaming RMABs), which hap- 63

pens in public health programs where new patients (arms in 64

RMABs) arrive asynchronously. Existing solutions either re- 65

quire ground truth transition probabilities [Mate et al., 2021], 66

which are often unknown in practice, or else require an en- 67

tirely new model to be trained repeatedly, which can be ex- 68

tremely computationally costly and sample inefficient. 69

A second limitation occurs for new programs, or existing 70

programs experiencing a slight change in the user base. In 71

these situations, existing approaches do not provide a pre- 72

trained RMAB model that can be immediately deployed. In 73

deep learning, pretrained models are the foundation for con- 74

temporary, large-scale image and text networks that general- 75

ize well across a variety of tasks [Bommasani et al., 2021]. 76

For real-world problems modeled with RMABs, establishing 77

a similar pretrained model is essential to reduce the burden of 78

training new RMAB policies from scratch. 79

The third limitation occurs in handling continuous state 80

multi-action RMABs that have important applications [Sinha 81

and Mahajan, 2022; Dusonchet and Hongler, 2003]. Natu- 82

rally continuous domain state-spaces, such as patient adher- 83



ence, are often binned into manually crafted discrete state84

spaces to improve model tractability and scalability [Mate et85

al., 2022], resulting in the loss of crucial information about86

raw observations.87

In this work we present PreFeRMAB, a Pretrained88

Flexible model for RMABs. Using multi-arm generalization,89

PreFeRMAB enables zero-shot deployment for unseen arms90

as well as rapid fine-tuning for specific RMAB settings.91

Our main contributions are:92

• To the best of our knowledge, we are the first to develop93

a pretrained RMAB model with zero shot ability on en-94

tire sets of unseen arms.95

• Whereas a general multiagent RL system could suf-96

fer from sample complexity exponential in the number97

of agents N [Gheshlaghi Azar et al., 2013], we prove98

PreFeRMAB benefits from larger N , via multi-arm gen-99

eralization and better estimation of the population distri-100

bution of arm features.101

• Our pretrained model can be fine-tuned on specific102

instances in a more sample-efficient way than train-103

ing from scratch, requiring less than 12.5% of sam-104

ples needed for training a previous multi-action RMAB105

model in a healthcare setting [Verma et al., 2023].106

• We derive an update rule for a crucial λ-network, allow-107

ing changing numbers of arms without retraining. While108

streaming bandits received considerable attention [Liau109

et al., 2018], we are the first to handle streaming multi-110

action RMABs with unknown transition dynamics.111

• Our model accommodates both discrete and continuous112

states. To address the continuous state setting, where113

real-world problems often require nonlinear rewards114

[Riquelme et al., 2018], we providing a StateShaping115

module to automatically define an abstract state.116

2 Related Work117

RMABs with binary and multiple actions. Solving an118

RMAB problem, even with known transition dynamics, is119

known to be PSPACE hard [Papadimitriou and Tsitsiklis,120

1999]. For binary action RMABs, [Whittle, 1988] provides121

an approximate solution, using a Lagrangian relaxation to122

decouple arms and choose actions by computing so-called123

Whittle indices of each arm. It has been shown that the124

Whittle index policy is asymptotically optimal under the in-125

dexability condition [Weber and Weiss, 1990; Akbarzadeh126

and Mahajan, 2019]. The Whittle index was extended to a127

special class of multi-action RMABs with monotonic struc-128

ture [Hodge and Glazebrook, 2015]. A method for more129

general multi-action RMABs based on Lagrangian relaxation130

was proposed by [Killian et al., 2021b]. Weakly coupled131

Markov Decisions Processes (WCMDP), which generalizes132

multi-action RMABs to have multiple constraints, was stud-133

ied by [Hawkins, 2003], who proposed a Langrangian de-134

composition approach. WCMDP was subsequently studied135

by [Adelman and Mersereau, 2008], who proposed improve-136

ments in solution quality at the expense of higher computa-137

tional costs. While above methods developed for WCMDP138

require knowledge of ground truth transition dynamics, our139

algorithm handles unknown transition dynamics, which is 140

more common in practice[Wang et al., 2023]. Additionally, 141

the above works in multi-action settings do not provide algo- 142

rithms for continuous state RMABs. 143

Multi-agent RL and RL for RMABs. RMABs are a 144

specific instance of the powerful multi-agent RL framework 145

used to model systems with multiple interacting agents in 146

both competitive and co-operative settings [Shapley, 1953; 147

Littman, 1994], for which significant strides have been made 148

empirically [Jaques et al., 2019; Yu et al., 2022] and the- 149

oretically [Jin et al., 2021; Xie et al., 2020]. [Nakhleh et 150

al., 2021] proposed a deep RL method to estimate the Whit- 151

tle index. [Fu et al., 2019] provided an algorithm to learn 152

a Q-function based on Whittle indices, states, and actions. 153

[Avrachenkov and Borkar, 2022] and [Biswas et al., 2021] 154

developed Whittle index-based Q-learning methods with con- 155

vergence guarantees. While the aforementioned works focus 156

on binary action RMABs, [Killian et al., 2021a] generalized 157

this to multi-action RMABs using tabular Q-learning. A sub- 158

sequent work [Killian et al., 2022], which focussed on ro- 159

bustness against adversarial distributions, took a deep RL ap- 160

proach that was more scalable. However, existing works on 161

multi-action RMABs do not consider streaming RMABs and 162

require training from scratch when a new arm opts-in. Ad- 163

ditionally, works built on tabular Q-learning [Fu et al., 2019; 164

Avrachenkov and Borkar, 2022; Biswas et al., 2021; Killian 165

et al., 2021a] may not generalize to continuous state RMABs 166

without significant modifications. Our pretrained model ad- 167

dresses these limitations, and enables zero-shot ability on a 168

wide range of unseen RMABs. 169

Streaming algorithms. The streaming model, pioneered 170

by [Alon et al., 1996], considers a scenario where data ar- 171

rives online and the amount of memory is limited. The model 172

is adapted to multi-arm bandits (MAB), assuming that arms 173

arrive in a stream and the number of arms that can be stored 174

is limited [Liau et al., 2018; Chaudhuri and Kalyanakrishnan, 175

2020]. The streaming model has recently been adapted to bi- 176

nary action RMABs with known transition probabilities[Mate 177

et al., 2021], but not studied in the more general and practi- 178

cal settings of multi-action RMABs with unknown transition 179

dynamics. We aim to close this gap. 180

Zero-shot generalization and fine-tuning. Foundation 181

models that have a strong ability to generalize to new tasks 182

in zero shot and efficiently adapt to new tasks via fine-tuning 183

have received great research attention [Bommasani et al., 184

2021]. Such models are typically trained on vast data, such 185

as internet-scale text [Devlin et al., 2018] or images [Ramesh 186

et al., 2021]. RL has seen success in the direction of foun- 187

dation models for decision making, using simulated [Team et 188

al., 2023] and real-world [Yu et al., 2020] environments. A 189

pretrained model for RMABs is needed [Zhao et al., 2024]. 190

To our knowledge, we are the first to realize zero-shot gener- 191

alization and efficient fine-tuning in the setting of RMABs. 192

3 Problem Statement 193

We study multi-action RMABs with system capacity N , 194

where existing arms have the option to opt-out (that is, the 195

state-action-rewards corresponding to them are disregarded 196



by the model post opt-out), and new, unseen arms can request197

to opt-in (that is, these arms are considered only post the opt-198

in time). Such requests will be accepted if and only if the199

system capacity permits. A vector ξt ∈ {0, 1}N represents200

the opt-in decisions:201

ξi,t =

{
1 if arm i opts-in at round t,
0 otherwise.

Notice that existing arms must opt-in in each round t to202

remain in the system. For each arm i ∈ [N ], the state space203

Si can be either discrete or continuous, and the action space204

Ai is a finite set of discrete actions. Each action a ∈ Ai205

has an associated cost Ci(a), with Ci(0) denoting a no-cost206

passive action. The reward at a state is given by a function207

Ri : Si → R. We let β ∈ [0, 1) denote a discount factor. Each208

arm has a unique feature vector zi ∈ Rm that provides useful209

information about the arm. Notice our model directly utilizes210

feature information in its policy network, without requiring211

intermediate steps to extract transition dynamics information212

from features.213

When the state space is discrete, each arm i ∈ [N ] follows214

a Markov Decision Process (Si,Ai, Ci, Ti, Ri, β, zi), where215

Ti : Si ×Ai × Si → [0, 1] is a transition matrix representing216

the probability of transitioning from the current state to the217

next state given an action. In contrast, when the state space218

is continuous, each arm i ∈ [N ] follows a Markov Decision219

Process (Si,Ai, Ci,Γi, Ri, β, zi), where Γi is a set of param-220

eters encoding the transition dynamics. For example, in the221

case that the next state moves according to a Gaussian distri-222

bution, Γi may denote the mean and variance of the Gaussian.223

For simplicity, we assume that Si,Ai, Ci, and Ri are the224

same for all arms i ∈ [N ] and omit the subscript i. Note that225

our algorithms can also be used in the general case where226

rewards and action costs are different across arms. For ease227

of notation, we let s ∈ RN denote the state over all arms,228

and we let A ∈ {0, 1}N×|A| denote one-hot-encoding of the229

actions taken over all arms. The agent learns a policy π that230

maps states s and features z to actions A, while satisfying a231

constraint that the sum cost of actions taken is no greater than232

a given budget B in every timestep t ∈ [H], where H is the233

length of the horizon.234

Our goal is to learn an RMAB policy that maximizes the
following Bellman equation The key difficulty in learning
such a policy is how to utilize features z and address opt-
in decisions ξ. These are important research questions not
addressed in previous works [Killian et al., 2022].

J(s, z, ξ) = max
A

{
N∑
i=1

R (si) + β E [J (s′, z, ξ) | s,A]

}
,

(1)

s.t.
N∑
i=1

|A|∑
j=1

Aijcj ≤ B and
|A|∑
j=1

Aij = 1 ∀i ∈ [N ] ,

where cj ∈ C is the cost of jth action, and Aij = 1 if action235

j is chosen on arm i and Aij = 0 otherwise. Further, we236

assume that the rewards R are uniformly bounded by Rmax.237

4 Generalized Model for RMABs 238

We first provide an overview of key ideas and then discuss 239

each of the ideas in more detail. (See Figure 3 in Appendix 240

for an overview of the training procedure.) 241

4.1 Key Algorithmic Ideas 242

Several key algorithmic novelties are necessary for our model 243

to address limitations of existing works: 244

A pretrained model via multi-arm generalization: We 245

train agents to learn from each others’ experience. Whereas 246

a general multiagent RL system could suffer from sample 247

complexity exponential in the number of arms N [Ghesh- 248

laghi Azar et al., 2013], we prove PreFeRMAB benefits from 249

a larger N , via generalization across arms. 250

A novel λ-network updating rule for opt-in: The opt-in 251

and opt-out of arms induce a more complex form of the La- 252

grangian and add randomness to actions taken by agents. We 253

provide a new λ-network update rule and train PreFeRMAB 254

with opt-in and opt-out of arms, to enable zero-shot perfor- 255

mance across various opt-in rates and accommodate stream- 256

ing RMABs. 257

Handling continuous states with StateShaping subrou- 258

tine: In the continuous state setting, real-world problems of- 259

ten require nonlinear rewards [Riquelme et al., 2018], and 260

naively using raw observations to train models may result in 261

poor performance (see Figure 5). To tackle this challenge, we 262

design the algorithm to automatically define an abstract state 263

based on raw observation and reward data. 264

4.2 A Pretrained Model via Multi-arm 265

Generalization 266

To enable multi-arm generalization, we introduce feature-
based Q-values, together with a Lagrangian relaxation with
features zi and opt-in decisions ξi:

J (s, z, ξ, λ⋆)

= min
λ≥0

(
λB

1− β
+

N∑
i=1

max
ai∈|A|

{Q (si, ai, zi, ξi, λ)}

)
, (2)

s.t. Q (si, ai, zi, ξi, λ)

= ξiR (si)− ξiλcai
+ β E [Q (s′i, ai, zi, ξi, λ) | π(λ)] .

where Q is the Q-function, ai is the action of arm i, s′i is 267

the state transitioned to from si under action ai, and π(λ) is 268

the optimal policy under a given λ. Notice that this relaxation 269

decouples the Q-functions of the arms, and therefore Qi can 270

be solved independently for a given λ. 271

Now we discuss how we use feature-based Q-values and 272

how agents could learn from each other. During pretraining, 273

having received arms’ opt-in and out decisions (line 5), Algo- 274

rithm 1 samples an action-charge λ based on updated opt-in 275

decisions ξ and features zi (line 6). Next, from opt-in arms 276

we collect trajectories (lines 7-14), which are later used to 277

train a single pair of actor/critic networks for all arms, al- 278

lowing the policy for one arm to benefit from other arms’ 279

data. After that, we update the policy network θ and the critic 280

network ϕ (Line 16), using feature-based Q-values to com- 281

pute advantage estimates for the actor in PPO update. Crit- 282

ically, feature-based Q-values updated with one arm’s data, 283



improves the policy for other arms. In real-world problems284

with missing feature entries or less informative features, it is285

more important for agents to learn from each other (see Ta-286

ble 1 in Sec 5.2). Intuitively, if a model only learns from287

homogeneous arms, then we should expect this model to per-288

form poorly when used out-of-the-box on arms with com-289

pletely different behaviors.290

Algorithm 1 PreFeRMAB (Training)

1: Input: n epochs, n steps, λ-update frequency K ∈ N+,
and system capacity N

2: Initialize actor θ, critic ϕ, λ-network Λ, buffer = [], state
s ∈ RN , and features zi ∈ Rm

3: Initialize StateShaping, and set s̄←StateShaping(s)
4: for epoch = 1, 2, . . . , n epochs do
5: Receive opt-in/out requests and update ξ and zi.
6: Compute λ = Λ(s̄, {zi}Ni=1, ξ)
7: for timestep t = 1, . . . , n steps do
8: for Arm i = 1, . . . , N do
9: if Arm i is opt-in (i.e. ξi = 1) then

10: Sample an action ai ∼ θ(s̄i, λ,zi)
11: s′i, ri = Simulate(si, ai)
12: s̄′i = StateShaping(s′i)
13: Add tuple (si, s̄i, ai, ri, s̄′i, zi) to buffer
14: si ← s′i, s̄i ← s̄′i
15: Add tuple (λ, ξ) to buffer
16: Update the (θ, ϕ) pair using buffer.
17: if epoch // K = 0 then
18: Update Λ via Prop 2 using trajectories in buffer
19: Update r̂(·) in StateShaping using (s, r)-tuples in

buffer

We will now give a theoretical guarantee of multi-arm gen-291

eralization by considering the following simplified setting292

and assumptions where we do not consider opt-in and opt-293

out. That is, in each epoch we draw a new set of N arms.294

We let the distribution of arm features (i.e, zi) to be denoted295

by the probability measure µ∗. Each ‘sample’ for our policy296

network training consists of N features corresponding to N297

arms (z1, . . . , zN ), drawn i.i.d. from the distribution µ∗. Call298

the empirical distribution of (zi) to be µ̂. During training, we299

receive nepochs i.i.d. draws of N arm features each, denoted300

by µ̂1, . . . , µ̂nepochs
301

Let Θ denote the space of neural network weights of the302

policy network (for clarity, we shorten the (θ, ϕ) in Algo-303

rithm 1 to θ). The neural network inputs are Lagrangian mul-304

tiplier λ, state of an arm s, its feature z and the output is305

a ∈ A. Let V (s, θ, λ, µ̂) denote the discounted reward, av-306

eraged over N arms with features µ̂ obtained with the neural307

network with parameter θ, starting from the state s (cumu-308

lative state of all arms). The proposition below shows the309

generalization properties of the output of Algorithm 1. The310

proof and a detailed discussion of the assumptions and con-311

sequences are given in Section D.312

Proposition 1. Suppose the following assumptions hold:313

1. Algorithm 1 learns neural network weights θ̂ ∈ Θ,314

whose policy is optimal for each (µ̂i, λ) for 1 ≤ i ≤315

nepochs and λ ∈ [0, λmax] 316

2. There exists θ∗ ∈ Θ which is optimal for every instance 317

(µ̂, λ). 318

3. Θ = B2(D,Rd), the ℓ2 ball of radius D in Rd. 319

4. |V (s, θ1, λ, µ̂) − V (s, θ2, λ, µ̂)| ≤ L∥θ1 − θ2∥ and 320

|V (s, θ, λ1, µ̂) − V (s, θ, λ2, µ̂)| ≤ L|λ1 − λ2| for all 321

θ1, θ2, θ ∈ Θ and λ1, λ2, λ ∈ [0, λmax]. 322

Then, the generalization error over unseen arms (µ̂) satis-
fies:

Eµ̂,θ̂[ inf
λ∈[0,λmax]

V (s, θ̂, λ, µ̂)] ≥ Eµ̂[ inf
λ∈[0,λmax]

V (s, θ∗, λ, µ̂)]

− Õ

(
1√

nepochsN

)
(3)

Here, Õ hides polylogarithmic factors in nepochs, N and con- 323

stants depending on d,D,L, β, B
N , cj , Rmax and λmax 324

The assumption of existence of θ∗ is reasonable: This 325

means that there exists a neural network which gives the op- 326

timal policy for a family of single-arm MDPs indexed by 327

(z, λ). Proposition 1 shows that when nepochs and N are 328

large, the Lagrangian relaxed value function of the learned 329

network is close to that of the optimal network. 330

An important insight is that the generalization ability of the 331

PreFeRMAB network becomes better as the number of arms 332

per instance becomes larger. This is counter intuitive since 333

a system with a larger number of agents are generally very 334

complex. Jointly, the arms form an MDP with |S|N states 335

and |A|N actions. General multi-agent RL problems with N 336

arms thus can suffer from an exponential dependence on N in 337

their sample complexity for learning (see sample complexity 338

lower bounds in [Gheshlaghi Azar et al., 2013]). However, 339

due to the structure of RMABs and the Lagrangian relaxation, 340

we achieve a better generalization with a larger N . Our proof 341

in the appendix shows that this is due to the fact that a larger 342

number of arms helps estimate the population distribution µ∗ 343

of the arm features better. We show in Table 1 that indeed 344

having more number of arms helps the PreFeRMAB network 345

generalize better over unseen instances. 346

4.3 A Novel λ-network Updating Rule 347

In real-world health programs, we may observe new patients 348

constantly opt-in [Mate et al., 2021]. The opt-in / opt-out 349

decisions render the updating rule in [Killian et al., 2022] un- 350

usable and add additional randomness to actions taken by the 351

agent. To overcome this challenge and to stabilize training, 352

we develop a new λ-network updating rule. 353

Proposition 2. [λ-network updating rule] The equation for
gradient descent for the objective (Eq 2) with respect to λ,
with step size α is:

Λt =Λt−1 − α

(
B

1− β

)
− α

(
N∑
i=1

E

[
H∑
t=0

ξi,tβ
tci,t + (1− ξi,t)β

tc0,t

])
,

where ci,t is the cost of the action taken by the optimal policy 354

on arm i in round t. 355



Critically, this update rule allows PreFeRMAB to handle356

streaming RMABs, accommodating a changing number of357

arms without retraining and achieving strong zero-shot per-358

formance across various opt-in rates (see Table 3 and 14).359

Having established an updating rule, we provide a conver-360

gence guarantee. The proofs are relegated to Appendix E.361

Proposition 3 (Convergence of λ-network). Suppose the arm362

policies converge to the optimal Q-function for a given Λt,363

then the update rule (in Prop 2) for the λ-network converges364

to the optimal as the number of training epochs and the num-365

ber of actions collected in each epoch go to infinity.366

4.4 Handling Continuous States with StateShaping367

Real-world problems may require continuous states with non-368

linear rewards [Riquelme et al., 2018]. Existing RMAB al-369

gorithms either use a human-crafted discretization or fail to370

address challenging nonlinear rewards [Killian et al., 2022].371

Discretization may result in loss of information and fail to372

generalize to different population sizes. For example, the373

popular SIS epidemic model [Yaesoubi and Cohen, 2011] is374

expected to scale to a continuum limit as the population size375

increases to infinity, and a continuous state-space model can376

better handle scaling by using proportions instead of absolute377

numbers. Under nonlinear rewards, naively using raw obser-378

vations in training may result in poor performance (see Fig-379

ure 5). We provide a StateShaping module to improve model380

stability and performance.381

Algorithm 2 StateShaping Subroutine

1: Input: estimator ∈ {Isotonic Regression,KNN}, states
s ∈ RN , data D of (s, r) tuples

2: Output s̄ = s if no normalization is desired
3: Compute

rmin = min
s′: s′∈D

r(s′), rmax = max
s′: s′∈D

r(s′)

smin = min
s′∈D

s′, smax = max
s′∈D

s′

4: Compute r̂(si) using the choice of Estimator.
5: Output s̄, where s̄i =

r̂(si)−rmin

rmax−rmin
(smax − smin),∀i

In Algorithm 2, users can choose whether to obtain abstract382

state [Abel et al., 2018] from raw observations (lines 2). We383

compute ranges of reward and raw observations, and obtain384

an reward estimate (lines 3-4). After that, we automatically385

refine the raw observation such that reward is a linear func-386

tion of the abstract state (line 4), improving model stability387

for challenging reward functions. Here a key assumption is388

that reward is an increasing function of the raw observation,389

which is common in RMABs [Killian et al., 2022]. Notice390

as we collect more observations, the accuracy of the reward391

estimator r̂(·) will improve (it is updated in line 24 of Algo-392

rithm 1).393

StateShaping instantiates the idea of state abstraction,394

which is shown to improve generalizability and robustness395

[Li et al., 2006], in the RMAB context for continuous states.396

Applying Theorem 3 in [Li et al., 2006] to the Lagrangian re-397

laxation (Eq. 2), we have that an optimal policy learnt using398

the abstract state space is guaranteed to be also optimal in the 399

ground MDP (defined by raw observations). 400

4.5 Inference using Pretrained Model 401

An important difference between training and inference is 402

that during inference time, we strictly enforce the budget con- 403

straint on the trained model, by greedily selecting highest 404

probability actions until the budget is reached. The rest of the 405

inference components are similar to the training component. 406

Algorithm 3 PreFeRMAB (Inference)

1: Input: : States s, costs C, budget B, features zi ∈ Rm,
opt-in decisions ξ, agent actor θ, λ-network, StateShap-
ing routine with trained estimator r̂(·)

2: Compute λ = Λ(s̄, {zi}Ni=1, ξ)
3: for Arm i = 1, . . . , N do
4: if Arm i is opt-in (i.e. ξi = 1) then
5: s̄i = StateShaping(si)
6: Compute pi ∼ θ(s̄i, λ,zi)

7: a = GreedyProba(p, C,B) ▷ Greedily select highest
probability actions until budget B is reached

5 Experimental Evaluation 407

We provide experimental evaluations of our model in three 408

separate domains, including a synthetic setting, an epidemic 409

modeling setting, as well as a maternal healthcare interven- 410

tion setting. We first describe these three experimental do- 411

mains. Then, we provide results for PreFeRMAB in a zero- 412

shot evaluation setting, demonstrating the performance of 413

our model on new, unseen test arms drawn from distribu- 414

tions distinct from those in training. Here, we demonstrate 415

the flexibility of PreFeRMAB, including strong performance 416

across domains, state representations (discrete vs. continu- 417

ous), and over various challenging reward functions. Finally, 418

we demonstrate the strength of using PreFeRMAB as a pre- 419

trained model, enabling faster convergence for fine-tuning on 420

a specific set of evaluation arms. 421

In Appendix B, we provide ablation studies over (1) a 422

wider range of opt-in rates (2) different feature mappings (3) 423

DDLPO topline with and without features (4) more problem 424

settings. For hyperparameter details, we refer to Appendix A. 425

5.1 Experimental Settings 426

Features: In all experiments, we generate features by pro- 427

jecting parameters that describe the ground truth transition 428

dynamics into features using randomly generated projection 429

matrices. The dimension of feature equals the number of pa- 430

rameters required to describe the transition dynamics. In Ap- 431

pendix B, we provide results on different feature mappings. 432

Synthetic: Following [Killian et al., 2022], we consider a 433

synthetic dataset with binary states and binary actions. The 434

transition probabilities for each arm i are represented by ma- 435

trices T (i)
s=0 and T

(i)
s=1 for arm i at states 0 and 1 respectively: 436

T
(i)
s=0 =

[
p00 1− p00
p01 1− p01

]
, T

(i)
s=1 =

[
p10 1− p10
p11 1− p11

]



Each pjk corresponds to the probability of transitioning437

from state j to state 0 when action k is taken. These values438

are sampled uniformly from the intervals:439

p00 ∈ [0.4, 0.6], p01 ∈ [0.4, 0.6], p10 ∈ [0.8, 1], p11 ∈ [0.0, 1]

SIS Epidemic Model: Inspired by the vast literature on440

agent-based epidemic modeling, we adapt the SIS model441

given in [Yaesoubi and Cohen, 2011], following a similar ex-442

periment setup as described in [Killian et al., 2022]. Arms443

p represent a subpopulation in distinct geographic regions;444

states s are the number of uninfected people within each445

arm’s total population Np; the number of possible states is446

S. Transmission within each arm is guided by parameters:447

κ, the average number of contacts within the arm’s subpopu-448

lation in each round, and rinfect, the probability of becoming449

infected after contact with an infected person.450

In this setting, there is a budget constraint over interven-451

tions. There are three available intervention actions a0, a1, a2452

that affect the transmission parameters: a0 represents no ac-453

tion; a1 represents messaging about physical distancing; a2454

represents the distribution of face masks. We discuss addi-455

tional details in Appendix A.456

ARMMAN: Similar to the set up in [Biswas et al., 2021;457

Killian et al., 2022], we model the real world maternal health458

problem as a discrete state RMAB. We aim to encourage459

engagement with automated health information messaging.460

There are three possible states, presenting self-motivated, per-461

suadable, and lost cause. The actions are binary. There are 6462

uncertain parameters per arm, sampled from uncertainty in-463

tervals of 0.5 centered around the transition parameters that464

align with summary statistics given in [Biswas et al., 2021].465

Continuous State Modeling: Continuous state restless466

bandits have important applications [Lefévre, 1981; Sinha467

and Mahajan, 2022; Dusonchet and Hongler, 2003]. By not468

explicitly having a switch in the model (switching between469

discrete and continuous state space), we enable greater model470

flexibility. To demonstrate this, we consider both a Continu-471

ous Synthetic and a Continuous SIS modeling setting. We472

provide details of these settings in Appendix A.3.473

We present additional details, including hyperparameters474

and StateShaping illustration in Appendix A.475

5.2 PreFeRMAB Zero-Shot Learning476

We first consider three challenging datasets in the discrete477

state space. After that, we present results on datasets with478

continuous state spaces with more complex reward functions479

and transition dynamics.480

Pretraining. For each pretraining iteration, we sample481

from a binomial with mean 0.8 to determine which arms will482

be opted-in given system capacity N . For new arms, we sam-483

ple new transition dynamics to allow the model to see a wider484

range of arm features.485

Evaluation. We compare PreFeRMAB to Random Action486

and No Action baselines. In every table in this subsection, we487

present the reward per arm averaged over 50 trials, on new,488

unseen arms arm sampled from the testing distribution.489

Multi-arm Generalization: Table 1 on Synthetic illus-490

trates that PreFeRMAB, learning from multi-arm general-491

ization, achieves stronger performance when the number of492

System capacity N = 21. Budget B = 7.
# Unique training arms 45 33 21

No Action 2.88±0.17 2.88±0.17 2.88±0.17

Random Action 3.25±0.22 3.25±0.22 3.25±0.22

PreFeRMAB (2/4 Feats. Masked) 3.81±0.23 3.79±0.22 3.59±0.21

PreFeRMAB (1/4 Feats. Masked) 3.92±0.24 3.70±0.21 3.58±0.20

PreFeRMAB (0/4 Feats. Masked) 4.02±0.26 3.80±0.22 3.78±0.21

Table 1: Multi-arm generalization results on Synthetic (opt-in
100%). With the same total amount of data, PreFeRMAB achieves
stronger performance when pretrained on more unique arms, espe-
cially when input arm features are masked.

unique arms (i.e. arms with unique features) seen during pre- 493

training increases. Additionally, in practice arm features may 494

be missing or not always reliable, such as in real-world AR- 495

MMAN data [Mate et al., 2022]. Our results demonstrate 496

that when features are masked, arms could learn from similar 497

arms’ experience. 498

Wasserstein 0.05 0.10 0.15 0.20 0.25
Distance

System capacity N = 48. Budget B = 16.

No Action 3.07±0.10 2.89±0.08 2.68±0.07 2.49±0.09 2.35±0.07

Random Action 3.49±0.09 3.25±0.09 2.99±0.16 2.80±0.17 2.57±0.17

PreFeRMAB 4.50±0.09 4.30±0.10 3.81±0.17 3.79±0.18 3.46±0.12

System capacity N = 96. Budget B = 32.

No Action 3.09±0.08 2.88±0.04 2.74±0.05 2.62±0.06 2.49±0.06

Random Action 3.44±0.14 3.23±0.09 3.05±0.09 2.90±0.10 2.70±0.11

PreFeRMAB 4.44±0.13 4.26±0.13 4.12±0.13 3.97±0.16 3.75±0.12

Table 2: Results on Synthetic (opt-in 100%). For each system capac-
ity, we pretrain a model and present zero-shot results under different
amounts of distributional shift.

Number of arms
System capacity 80% 85% 90% 95% 100%

Parameters aeff1 , aeff1 are uniformly sampled from [2, 8].

No Action 5.23±0.17 5.27±0.16 5.28±0.16 5.26±0.14 5.28±0.13

Random Action 6.94±0.15 7.00±0.16 7.03±0.15 6.97±0.14 6.99±0.12

PreFeRMAB 7.64±0.27 7.75±0.25 7.96±0.18 7.80±0.16 7.82±0.11

Parameters aeff1 , aeff1 are uniformly sampled from [3, 9].

No Action 5.29±0.16 5.30±0.17 5.29±0.15 5.26±0.14 5.28±0.13

Random Action 7.21±0.15 7.28±0.18 7.26±0.15 7.22±0.13 7.22±0.12

PreFeRMAB 7.77±0.29 7.87±0.28 7.90±0.22 7.95±0.16 7.95±0.11

Table 3: Results on SIS (N = 20, B = 16, S = 150). We pretrain a
model and present zero-shot results on various distributions. During
training, aeff

1 , aeff
1 are uniformly sampled from [1, 7].

Discrete State Settings with Different Distributional 499

Shifts: Results on Synthetic (Table 2) shows PreFeRMAB 500

consistently outperforms under varying amounts of distribu- 501

tional shift, measured in Wasserstein distance. Results on SIS 502

(Table 3) shows PreFeRMAB performs well in settings with 503

large state space S = 150 and multiple actions, under various 504

testing distributions and opt-in rates. Results on ARMMAN 505

(Table 4) shows PreFeRMAB could handle more challenging 506

settings that mimics the scenario of a real-world non-profit 507

organization using RMABs to allocate resources. 508

Continuous State Settings: Our results (Figure 1) show 509



Number of arms
System capacity 80% 85% 90% 95% 100%

40% motivated, 20% persuadable, and 40% lost cause.

No Action 2.39±0.30 2.32±0.28 2.16±0.25 2.26±0.28 2.25±0.30

Random Action 3.04±0.40 3.06±0.38 3.00±0.36 3.14±0.36 3.24±0.32

PreFeRMAB 5.47±0.41 5.00±0.37 4.95±0.29 5.34±0.27 5.03±0.37

40% motivated, 40% persuadable, and 20% lost cause.

No Action 2.07±0.29 2.19±0.28 2.19±0.30 2.05±0.24 2.17±0.28

Random Action 3.04±0.37 3.02±0.33 2.99±0.30 3.12±0.31 3.15±0.29

PreFeRMAB 5.06±0.36 4.81±0.35 5.13±0.34 5.01±0.26 5.00±0.28

Table 4: Results on ARMMAN (N = 25, B = 7, S = 3). We pre-
train a model and present zero-shot results on various testing distri-
butions. During training, the proportion of self-motivated, persuad-
able, and lost cause arms are 20%, 20%, annd 60% respectively.

that StateShaping is crucial in handling continuous states,510

where the reward function can be more challenging. We pro-511

vide additional evaluations in Table 5, showing PreFeRMAB512

outperforms in complex transition dynamics. More details513

are provided in Appendix A.514

Figure 1: Results for Continuous Synthetic domain (N=21,B=7.0)
with challenging rewards r(s).

Number of arms
System capacity 80% 85% 90% 95% 100%

Continuous Synthetic (N=21, B=7.0, S=2)

No Action 0.70±0.25 0.71±0.25 0.70±0.23 0.70±0.23 0.66±0.21

Random Action 3.44±0.48 3.43±0.45 3.45±0.41 3.37±0.41 3.20±0.38

PreFeRMAB 3.94±0.31 3.76±0.33 4.01±0.31 4.02±0.29 3.67±0.27

Continuous SIS Model (N=20, B=16)

No Action 5.64±0.25 5.68±0.19 5.57±0.21 5.48±0.18 5.62±0.17

Random Action 7.11±0.22 7.31±0.22 7.23±0.22 7.24±0.21 7.18±0.17

PreFeRMAB 7.91±0.17 8.08±0.11 7.95±0.14 7.98±0.13 7.82±0.12

Table 5: Results on continuous states. For each problem instance,
we pretrain a model.

Comparison with an Additional Baseline: DDLPO515

[Killian et al., 2022] could not handle distributional shifts516

or various opt-in rates, the more challenging settings that517

PreFeRMAB is designed for. Nevertheless, we provide518

comparisons with DDLPO in settings with no distributional519

shift (Table 6, see also Appendix B.4). Notably, PreFeR-520

MAB zero-shot performance on unseen arms is near that of521

DDLPO, which is trained and tested on the same set of arms.522

5.3 PreFeRMAB Fast Fine-Tuning523

Having shown the zero-shot results of PreFeRMAB, we now524

demonstrate finetuning capabilities of the pretrained model.525

In Figure 2, we compare the number of samples required526

Number of arms
System capacity 80% 85% 90% 95% 100%

Synthetic with N = 96, B = 32, S = 2.

No Action 3.22±0.12 3.24±0.12 3.19±0.11 3.18±0.11 3.18±0.11

Random Action 3.62±0.13 3.66±0.13 3.58±0.13 3.60±0.12 3.60±0.12

PreFeRMAB 4.63±0.12 4.71±0.12 4.53±0.13 4.47±0.12 4.61±0.10

DDLPO (topline) n/a n/a n/a n/a 4.58±0.13

SIS with N = 20, B = 16, S = 150.

No Action 5.33±0.16 5.30±0.15 5.31±0.14 5.29±0.13 5.28±0.13

Random Action 7.03±0.17 7.13±0.16 7.02±0.14 7.11±0.13 7.06±0.13

PreFeRMAB 8.35±0.12 8.38±0.11 8.26±0.11 8.10±0.11 8.00±0.10

DDLPO (topline) n/a n/a n/a n/a 8.09±0.11

ARMMAN with N = 25, B = 7, S = 3.

No Action 2.12±0.26 2.30±0.29 2.29±0.27 2.19±0.23 2.26±0.25

Random Action 2.86±0.32 3.27±0.40 3.01±0.30 3.09±0.35 2.96±0.31

PreFeRMAB 5.06±0.34 5.26±0.33 4.68±0.33 4.75±0.35 4.61±0.27

DDLPO (topline) n/a n/a n/a n/a 4.68±0.09

Table 6: Comparison of PreFeRMAB zero-shot performance on un-
seen arms against that of DDLPO trained and tested on the same set
of arms. For each problem instance, we pretrain a model.

to train DDLPO from scratch vs. the number of samples 527

for fine-tuning PreFeRMAB starting from a pre-trained model 528

(additional results in Appendix A.5). Results suggests the 529

cost of pretraining can be amortized over different down- 530

stream instances. A non-profit organization using RMAB 531

models may have new beneficiaries opting in every week, and 532

training a new model from scratch every week can be 3-20 533

times more expensive than fine-tuning our pretrained model. 534

Figure 2: Comparison of samples per arm required by DDLPO and
PreFeRMAB (fine-tuning using a pretrained model) to achieve max-
imum DDLPO reward across different environments. PreFeRMAB
achieves the maximum topline reward with significantly fewer sam-
ples than DDLPO. Averages across training seeds are reported as
interquartile means.

6 Conclusion 535

Our pretrained model (PreFeRMAB) leverages multi-arm 536

generalization, a novel update rule for a crucial λ-network, 537

and a StateShaping module for challenging reward functions. 538

PreFeRMAB demonstrates general zero-shot ability on un- 539

seen arms, and can be fine-tuned on specific instances in a 540

more sample-efficient way than training from scratch. 541
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Ethical Statement544

The presented methods do not carry direct negative societal545

implications. However, training reinforcement learning mod-546

els should be done responsibly, especially given the safety547

concerns associated with agents engaging in extreme, unsafe,548

or uninformed exploration strategies. While the domains we549

considered such as ARMMAN do not have these concerns,550

the approach may be extended to extreme environments; in551

these cases, ensuring a robust approach to training reinforce-552

ment models is critical.553
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A Additional Experimental Details758

A.1 Hyperparameters759

In Table 7, we present hyperparameters used, with exceptions760

(1) for Continuous Synthetic, we use lambda scheduler dis-761

count rate = 0.95 (2) for Continuous SIS, we use training opt-762

in rate = 0.8.763

In our experiments, all neural networks have 2 hidden lay-764

ers each with 16 neurons and tanh activation. The output layer765

has identity activation and its size is determined by the num-766

ber of actions (3 for SIS and Continuous SIS, and 2 for other767

environments).768

The lambda-network training is similar to that in Killian et769

al.[2022]. After every n subepochs, we update the λ-network770

and encourage the actor network to explore new parts of the771

state space immediately after the lambda-update (this explo-772

ration is controlled by the temperature parameter that weights773

the entropy term in the actor loss functions).774

Different from Killian et al.[2022], we use a λ-network775

learning rate scheduler, which we found improves the perfor-776

mance and stability of the model.777

Table 7: Hyperparameter values.

hyperparameter value

training opt-in rate 0.8
agent clip ratio 2.0e+00
lambda freeze epochs 2.0e+01
start entropy coeff 5.0e-01
end entropy coeff 0.0e+00
actor learning rate 2.0e-03
critic learning rate 2.0e-03
lambda initial learning rate 2.0e-03
lambda scheduler discount rate 0.99
trains per epoch 2.0e+01
n subepochs 4.0e+00

A.2 SIS Modeling (Discrete) Experimental Details778

Recall that each arm p represents a subpopulation in distinct
geographic regions. The state of each arm s is the number
of uninfected people within the arm’s total population Np.
Transmission within each arm is guided by parameters: κ, the
average number of contacts within the arm’s subpopulation in
each round, and rinfect, the probability of becoming infected
after contact with an infected person. The probability that a
single uninfected person gets infected is then:

q = 1− e−κ·S−s
S ·rinfect ,

where S is the number of possible states, and s ∈ [S] is the779

current state. Note S−s
S is the percentage of people who are780

currently infected. The number of infected people in the next781

timestep follows a binomial distribution B(S, q).782

Recall that there are three available intervention actions783

a0, a1, a2 that affect the transmission parameters: a0 repre-784

sents no action; a1 represents messaging about physical dis-785

tancing, dividing κ by aeff
1 ; a2 represents the distribution of786

face masks, dividing rinfect by aeff
2 . The actions costs are787

c = {0, 1, 2}. Following the implementation in [Killian et788

al., 2022], these parameters are sampled within ranges:789

κ ∈ [1, 10], rinfect ∈ [0.5, 0.99], aeff
1 ∈ [1, 10], aeff

2 ∈ [1, 10]

A.3 Continuous States Experimental Details 790

We consider a synthetic dataset with continuous states and 791

binary actions. For the current state si of arm i, and action a, 792

the next state s′i is represented by the transition dynamic: 793

s′i =

{
clip (si +N (µi0, σi0), 0, 1) if a = 0

clip (si +N (µi1, σi1), 0, 1) if a = 1

Where the transition dynamics are sampled uniformly from 794

the intervals (σi0 = σi1 = 0.2 is fixed): 795

µi0 ∈ [−0.5,−0.1], µi1 ∈ [0.1, 0.5].

We also consider continuous state experiments in real- 796

world settings. In the discrete state SIS Epidemic Model de- 797

scribed above, each arm represents a subpopulation, and the 798

state of that arm represents the number of uninfected people 799

within the subpopulation. In real-world public health settings 800

such as COVID-19 control, interventions like quarantine and 801

mask mandates may be imposed on subpopulations of very 802

large sizes such as an entire city. The SIS model is expected to 803

scale to a continuum limit as the population size increases to 804

infinity. Thus, a SIS model with population 1 million would 805

behave roughly similar to that with population 1 billion in 806

terms of the proportions. This notion is inherently captured 807

by continuous models but not by those dealing with absolute 808

numbers. 809

Following Killian et al.[2022], within an arm, any un- 810

infected person will get infected with the same probabil- 811

ity. Thus, the number of uninfected people in the next 812

timestep follows a binomial distribution. It is well-known 813

that a normal distribution N (µ, σ2) well approximates a bi- 814

nomial distribution B(n, p), with the choice µ = np and 815

σ2 = np(1− p), when n is sufficiently large. 816

A.4 Distributional Shift Details 817

In real-world resources allocation problems, we may observe 818

distribution shifts in arms, i.e., arms in testing are sampled 819

from a distribution slightly different from that in training. 820

In public health settings, a non-profit organization solving 821

RMAB problems to allocate resources to beneficiaries may 822

observe that beneficiaries’ behavior or feature information 823

change over time [Wang et al., 2023; Killian et al., 2022]. 824

Additionally, a non-profit organization may have new bene- 825

ficiaries joining who are in a different subpopulation. In Ta- 826

ble 2, we provide ablation results illustrating that PreFeR- 827

MAB is robust to distribution shift in arms. We mea- 828

sure the shift in distribution using Wasserstein distance. The 829

results demonstrate that even on arm samples from distri- 830

butions that significantly deviate from that seen in training, 831

PreFeRMAB still achieves strong performance and outper- 832

forms baselines. 833

For each arm, the associated Markov Decision Process 834

(MDP) has only two discrete states, the transition dynam- 835

ics p(s′|s, a), representing the probability of transitioning to 836

state s′ from state s given action a, can be described by four 837

Bernoulli random variables, one for each combination of state 838

and action. By introducing a uniform distribution shift, we 839

can modify the transition probabilities of the Bernoulli ran- 840

dom variable associated with each state-action pair by adding 841



Figure 3: Overview of the PreFeRMAB training procedure. A trained model consists of a policy network, a critic network, a λ-network, and
a StateShaping module. Arm states si, features zi, and opt-in decisions ξ are passed through the policy network with an action-charge λ.
The policy network independently predicts action probabilities for each arm, which are then greedily selected until the specified budget is
reached. These selected actions are used with arm state, feature, and opt-in information to update the λ-network. Updated arm states s′ and
rewards r from the environment are then added to the buffer, and passed through the state abstraction module before being fed back through
the policy network.

a constant δ to the parameter of each Bernoulli distribution.842

Consequently, this results in a consistent shift in the transition843

probabilities across all states and actions.844

Furthermore, this delta is exactly the Wasserstein distance845

between the two distributions, which we show here. Suppose846

we have two discrete probability distributions, P and Q, with847

their respective probabilities associated with the outcomes xi848

and yj . The The 1-Wasserstein distance, also known as the849

Earth Mover’s Distance W (P,Q), can be calculated by solv-850

ing the following optimization problem:851

W (P,Q) = inf
γ∈Γ(P,Q)

∑
i,j

|xi − yj |γ(xi, yj),

where Γ(P,Q) is the set of all joint distributions γ with852

marginals P and Q, and γ(xi, yj) represents the amount of853

”mass” moved from xi to yj .854

Note W (P,Q) between two Bernoulli distributions with855

parameters b1 and b2 can be succinctly determined as |b2−b1|.856

This is because each Bernoulli distribution has only two po-857

tential outcomes, 0 and 1, and so moving mass from one out-858

come to another across these distributions involves a shift of859

probability mass |b2 − b1| across the one-unit distance be-860

tween the two points. Therefore, without loss of generality861

assuming b2 ≥ b1, the Wasserstein distance simplifies to the862

non-negative difference b2 − b1.863

A.5 Fast Fine-Tuning864

In subsection 5.3, we demonstrate that, in addition to strong865

zero-shot performance, PreFeRMAB may also be used as866

Figure 4: Comparison of the percentage of the final DDLPO (Kil-
lian et al. [2022] topline) reward achieved by the number of samples
per arm. In DDLPO, samples are used for training from scratch; in
PreFeRMAB, samples are used to fine-tune a pretrained PreFeR-
MAB model. Results indicate that PreFeRMAB, from zero-shot re-
sults, achieves near-optimal performance, and requires a small frac-
tion of the required DDLPO samples to achieve final DDLPO per-
formance.

a pretrained model for fast fine-tuning in specific domains. 867

In particular, we demonstrate that we may start from a pre- 868

trained PreFeRMAB model, and train on additional samples 869

for a fixed environment (with fixed arm transition dynam- 870

ics). We showed that using this pre-trained model can help 871

achieve topline DDLPO performance in significantly fewer 872



fine-tuning samples than required by DDLPO to train from873

scratch. In Figure 4, we further visualize these results in874

training curves comparing DDLPO and PreFeRMAB. These875

training curves, which plot the number of samples per arm876

against the achieved percentage of final DDLPO reward, are877

shown for the discrete-state synthetic environment setting for878

N=21, B=7.0879

The results in Figure 4 demonstrate that PreFeRMAB880

shows both 1) strong zero-shot performance, achieving near-881

topline reward with no fine-tuning samples required, as well882

as 2) a significant reduction in the number of samples re-883

quired to achieve final DDLPO performance. In particular,884

we note that DDLPO, before training, achieves a reward only885

marginally higher than the average Random Action reward.886

Alternatively, PreFeRMAB begins, in a zero-shot setting,887

with a much higher initial reward value. We also observe that888

PreFeRMAB requires significantly fewer samples per arm to889

achieve the final DDLPO reward. This is particularly criti-890

cal in high-stakes, real-world settings where continually sam-891

pling arms from the environment may be prohibitively expen-892

sive, especially for low-resource NGOs.893

A.6 StateShaping894

Figure 5 provides a simple example, illustrating how we adapt895

states through the state abstraction procedure. In this particu-896

lar example, the reward is an increasing function of the state,897

and the reward plateaus at state 0.5, i.e. s ∈ [0.5, 1] achieve898

the same reward. We map all raw observations in the range899

[0.5, 1] to abstract state 1. We note that this process is au-900

tomated, using data collected on arm states and reward from901

prior (historical) samples to 1) estimate the reward of a cur-902

rent arm, and 2) use this reward to normalize the arm state.903

We demonstrate how these states are mapped to normalized904

values in Table 5.905

In Figure 5, we show results in two settings after 30 epochs906

of training, evaluating on a separate set of test arms for zero-907

shot evaluation. Continuous transition dynamics are used908

directly as input features for training and evaluation. The909

results illustrate that state abstraction can help achieve ad-910

ditional performance gains for various challenging reward911

functions. Drawing from prior literature on state abstraction,912

this modular component of PreFeRMAB may also serve as a913

placeholder for future automated state abstraction procedures914

to improve generalizability and robustness of PreFeRMAB915

across domains with challenging reward functions.916

Figure 5: Illustration for StateShaping.

B Ablation Studies 917

In this section, we provide ablation results over (1) a wider 918

range of opt-in rates than presented in the main paper (Ta- 919

ble 12) (2) different feature mappings, including linear and 920

non-linear feature transformations of the original transition 921

probabilities (3) DDLPO topline (Killian et al. [2022]) with 922

and without transition probability features as inputs (4) re- 923

sults in more problem settings. The ablation results showcase 924

that PreFeRMAB consistently achieve strong performance 925

and having access to feature information does not provide 926

PreFeRMAB an unfair advantage over DDLPO. 927

B.1 Opt-in Rates 928

Number of arms
System capacity 30% 40% 50% 60% 70%

System capacity N = 21. Budget B = 7.

No Action 3.09± 0.31 3.10± 0.32 3.12± 0.29 3.14± 0.25 3.16± 0.22
Random Action 3.57± 0.48 3.46± 0.48 3.55± 0.35 3.55± 0.34 3.57± 0.33
PreFeRMAB 3.78± 0.72 3.75± 0.70 4.16± 0.57 4.52± 0.54 4.45± 0.42

System capacity N = 48. Budget B = 16.

No Action 3.19± 0.27 3.15± 0.23 3.13± 0.12 3.17± 0.12 3.17± 0.14
Random Action 3.44± 0.26 3.43± 0.23 3.46± 0.20 3.47± 0.17 3.44± 0.17
PreFeRMAB 3.90± 0.50 3.64± 0.30 3.87± 0.27 3.85± 0.25 4.06± 0.31

System capacity N = 96. Budget B = 32.

No Action 3.21± 0.17 3.17± 0.20 3.17± 0.15 3.18± 0.14 3.17± 0.13
Random Action 3.54± 0.22 3.55± 0.23 3.58± 0.18 3.55± 0.18 3.56± 0.13
PreFeRMAB 3.93± 0.33 3.72± 0.23 3.79± 0.18 4.02± 0.21 4.16± 0.25

Table 8: Robustness to different opt-in rates with identity mapping.
Evaluation follows Table 10: we run for 50 trials with 2 total number
of states for each arm, and pretrain a model for each system capacity
N and test generalization on different opt-in rates.

Number of arms
System capacity 30% 40% 50% 60% 70%

System capacity N = 21. Budget B = 7.

No Action 3.13± 0.36 3.19± 0.34 3.17± 0.27 3.17± 0.23 3.15± 0.24
Random Action 3.60± 0.53 3.62± 0.40 3.59± 0.34 3.58± 0.36 3.57± 0.32
PreFeRMAB 3.79± 0.49 3.76± 0.49 3.79± 0.39 3.89± 0.39 3.86± 0.46

System capacity N = 48. Budget B = 16.

No Action 3.15± 0.23 3.17± 0.21 3.18± 0.16 3.18± 0.13 3.19± 0.14
Random Action 3.41± 0.29 3.52± 0.27 3.50± 0.20 3.49± 0.22 3.48± 0.17
PreFeRMAB 3.61± 0.51 4.08± 0.34 4.45± 0.30 4.44± 0.30 4.44± 0.29

System capacity N = 96. Budget B = 32.

No Action 3.18± 0.18 3.17± 0.13 3.18± 0.14 3.19± 0.14 3.16± 0.15
Random Action 3.54± 0.22 3.57± 0.22 3.55± 0.14 3.58± 0.15 3.56± 0.15
PreFeRMAB 3.74± 0.21 3.68± 0.23 3.76± 0.21 3.98± 0.19 4.06± 0.22

Table 9: Robustness to different opt-in rates with linear-mappings.
Evaluation follows Table 10: we run for 50 trials with 2 total number
of states for each arm, and pretrain a model for each system capacity
N and test generalization on different opt-in rates.

Throughout the main paper, we provide results for evalu- 929

ation opt-in rates in the range 80%-100%. In Table 8 and 930

Table 9, we provide ablation results for opt-in rates in a 931

wider range of 30%-70%. During the training phase, we 932

maintain an expected opt-in rate of 80%, which may gen- 933

erally range from 70%-90% every training iteration. Given 934

this training configuration, we demonstrate strong results in 935

the main paper for evaluating on a similar range of test-time 936

opt-ins from 80% to 100%. However, we also further demon- 937

strate in Table 8 and Table 9 that our pretrained PreFeRMAB 938



model, despite a training opt-in rate around 80% in expec-939

tation, achieves strong results on testing opt-in rates from a940

substantially different range. These results highlight PreFeR-941

MAB’s flexibility and ability to generalize to unseen opt-in942

rates, which may be critical in real-world applications where943

arms frequently exit and re-enter the environment.944

B.2 Feature Mapping945

Number of arms
System capacity 80% 85% 90% 95% 100%

System capacity N = 21. Budget B = 7.

No Action 3.46± 0.20 3.39± 0.19 3.40± 0.17 3.40± 0.18 3.22± 0.16
Random Action 3.80± 0.31 3.76± 0.30 3.79± 0.29 3.76± 0.31 3.58± 0.27
PreFeRMAB 4.57± 0.29 4.70± 0.33 4.70± 0.29 4.64± 0.29 4.37± 0.25

System capacity N = 48. Budget B = 16.

No Action 3.22± 0.13 3.28± 0.13 3.22± 0.12 3.29± 0.12 3.21± 0.11
Random Action 3.56± 0.19 3.65± 0.18 3.56± 0.18 3.65± 0.17 3.57± 0.17
PreFeRMAB 3.94± 0.23 4.00± 0.23 3.86± 0.20 3.90± 0.16 3.73± 0.16

System capacity N = 96. Budget B = 32.

No Action 3.24± 0.10 3.24± 0.10 3.21± 0.10 3.21± 0.10 3.20± 0.10
Random Action 3.61± 0.14 3.62± 0.15 3.57± 0.15 3.57± 0.13 3.57± 0.14
PreFeRMAB 4.35± 0.16 4.36± 0.15 4.29± 0.14 4.23± 0.13 4.20± 0.12

Table 10: Results on non-linearly transformed synthetic discrete
states. We present final reward divided by the number of arms, aver-
aged over 50 trials with each trial consisting on 10 rounds, for a total
of 500 evaluations. The number of states S = 2. For each system
capacity N , we pretrain a model

In our main paper, we use linear feature mapping, pro-946

jecting true transition probabilities to features with randomly947

generated projection matrices. This can be represented by948

y = Ax, where y are the output features, A is the transfor-949

mation matrix, and x denotes the ground truth arm transition950

probabilities. To demonstrate the robustness of our approach951

to various types of input features, we also consider more952

challenging, non-linear feature mappings, which may in-953

troduce higher representational complexity as compared to954

linear feature mappings. For these ablation results, we use955

a sigmoidal transformation, which can be expressed as y =956
1

1+exp(−Ax) . We demonstrate the results using these non-957

linear feature mappings in Table 10. These results indicate958

that PreFeRMAB consistently outperforms baselines under959

various forms of feature mappings, and is robust to both linear960

and non-linear input features.961

B.3 DDLPO Topline with Features962

Synthetic Experiment N=21,B=7.0 N=48,B=16.0 N=96,B=32.0
DDLPO, w/o Features 4.63± 0.21 4.60± 0.18 4.35± 0.11
DDLPO, w/ Features 4.63± 0.23 4.59± 0.17 4.21± 0.11

Table 11: Performance comparison of Killian et al. [2022] DDLPO
topline, with and without ground truth transition probabilities as in-
put features. Results are shown for evaluation on a single, fixed
training seed. The results suggest that transition probability features
do not significantly improve the final performance of the topline
DDLPO model–this implies that PreFeRMAB does not leverage
these features for an unfair reward advantage.

In Table 11, we show that having access to features963

does not boost the performance of DDLPO. Features help964

PreFeRMAB generalize to unseen arms and achieve strong 965

zero-shot results, as demonstrated in the main paper. How- 966

ever, one may ask whether access to these features, as used by 967

PreFeRMAB, may provide an unfair reward advantage over 968

DDLPO, which in its original form [Killian et al., 2022] does 969

not utilize feature information. That is, because input features 970

in our experiments are derived from the original arm transi- 971

tion probabilities, it may be the case that these are used to 972

achieve better performance. To determine whether there is an 973

advantage from utilizing these features, we modify the orig- 974

inal DDLPO model to accept ground truth transition proba- 975

bilities for each arm as feature inputs to the respective policy 976

networks. We present results for DDLPO with and without 977

input features, for a fixed seed, in Table Table 11. In this ta- 978

ble, we observe that across synthetic experiments for various 979

system capacities and budgets, DDLPO’s performance does 980

not improve given access to features. These results suggest 981

that PreFeRMAB is not leveraging the input features to gain 982

an unfair advantage in evaluation. 983

B.4 Different values of N,B, S 984

We present results on a wider range of problem settings, 985

specifically different number of arms N , different budget B, 986

and (for SIS Epidemic Modeling only), different number of 987

possible states S. 988

Number of arms
System capacity 80% 85% 90% 95% 100%

System capacity N = 96. Budget B = 32.

No Action 3.22±0.12 3.24±0.12 3.19±0.11 3.18±0.11 3.18±0.11

Random Action 3.62±0.13 3.66±0.13 3.58±0.13 3.60±0.12 3.60±0.12

PreFeRMAB 4.63±0.12 4.71±0.12 4.53±0.13 4.47±0.12 4.61±0.10

DDLPO (topline) n/a n/a n/a n/a 4.58±0.13

System capacity N = 48. Budget B = 16.

No Action 3.19±0.11 3.24±0.13 3.18±0.11 3.23±0.11 3.17±0.10

Random Action 3.61±0.17 3.70±0.21 3.56±0.18 3.67±0.17 3.58±0.16

PreFeRMAB 4.77±0.18 4.74±0.16 4.62±0.19 4.94±0.14 4.78±0.14

DDLPO (topline) n/a n/a n/a n/a 4.76±0.14

System capacity N = 21. Budget B = 7.

No Action 3.44±0.21 3.43±0.19 3.41±0.20 3.38±0.17 3.22±0.16

Random Action 3.82±0.32 3.79±0.33 3.77±0.31 3.76±0.28 3.58±0.27

PreFeRMAB 4.20±0.27 4.46±0.23 4.48±0.23 4.74±0.26 4.56±0.23

DDLPO (topline) n/a n/a n/a n/a 4.81±0.14

Table 12: Results on Synthetic with discrete states. We present final
reward divided by the number of arms, averaged over 50 trials. For
each system capacity N , we pretrain a model. The DDLPO (topline)
does not accomodate different opt-in rates and can only be used on
100% opt-in.

Synthetic Evaluation: We first evaluate the performance 989

of PreFeRMAB in the discrete state synthetic environment 990

setting described above. Table 12 illustrates these results. 991

In this synthetic setting, we find that PreFeRMAB is able 992

to consistently outperform Random Action and No Action 993

baselines, and achieve performance comparable to the topline 994

DDLPO approach. Critically, PreFeRMAB achieves good re- 995

ward outcomes across changing system capacity N , budgets 996

B, as well as different opt-in rates. Additionally, we find 997

that PreFeRMAB achieves near-topline results from zero- 998

shot learning in the synthetic setting, compared to the topline 999

DDLPO approach which is trained and evaluated on a fixed 1000



set of arm transition dynamics for 100 epochs (we take the1001

best performance of DDLPO across the 100 epochs).1002

Number of arms
System capacity 80% 85% 90% 95% 100%

Number of possible states per arm S = 150.

No Action 5.33±0.16 5.30±0.15 5.31±0.14 5.29±0.13 5.28±0.13

Random Action 7.03±0.17 7.13±0.16 7.02±0.14 7.11±0.13 7.06±0.13

PreFeRMAB 8.35±0.12 8.38±0.11 8.26±0.11 8.10±0.11 8.00±0.10

DDLPO (topline) n/a n/a n/a n/a 8.09±0.11

Number of possible states per arm S = 100.

No Action 5.28±0.15 5.20±0.13 5.30±0.15 5.25±0.14 5.27±0.15

Random Action 6.95±0.19 7.01±0.16 7.11±0.16 7.06±0.15 7.07±0.15

PreFeRMAB 7.88±0.20 7.91±0.19 7.99±0.18 8.01±0.17 8.02±0.16

DDLPO (topline) n/a n/a n/a n/a 7.99±0.08

Number of possible states per arm S = 50.

No Action 5.39±0.15 5.47±0.15 5.42±0.13 5.44±0.12 5.46±0.12

Random Action 7.29±0.17 7.33±0.17 7.26±0.14 7.38±0.15 7.33±0.12

PreFeRMAB 8.51±0.08 8.37±0.11 8.24±0.07 8.10±0.10 7.93±0.09

DDLPO (topline) n/a n/a n/a n/a 8.04±0.08

Table 13: Results on SIS Epidemic Model with discrete states. We
present final reward divided by the number of arms, averaged over
50 trials. System capacity N = 20 and budget B = 16. For each
number of possible states per arm S, we pretrain a model. The
DDLPO (topline) does not accomodate different opt-in rates and can
only be used on 100% opt-in.

Number of arms
System capacity 80% 85% 90% 95% 100%

System capacity N = 25. Budget B = 7.

No Action 2.12±0.26 2.30±0.29 2.29±0.27 2.19±0.23 2.26±0.25

Random Action 2.86±0.32 3.27±0.40 3.01±0.30 3.09±0.35 2.96±0.31

PreFeRMAB 5.06±0.34 5.26±0.33 4.68±0.33 4.75±0.35 4.61±0.27

DDLPO (topline) n/a n/a n/a n/a 4.68±0.09

System capacity N = 25. Budget B = 5.

No Action 2.14±0.23 2.29±0.26 2.24±0.28 2.36±0.24 2.19±0.23

Random Action 2.68±0.31 2.95±0.36 2.75±0.32 2.92±0.26 2.69±0.21

PreFeRMAB 4.10±0.32 4.45±0.40 4.39±0.33 4.48±0.34 3.95±0.34

DDLPO (topline) n/a n/a n/a n/a 4.29±0.25

System capacity N = 50. Budget B = 10.

No Action 2.27±0.24 2.31±0.17 2.19±0.22 2.21±0.21 2.27±0.23

Random Action 2.82±0.26 2.91±0.22 2.72±0.23 2.69±0.18 2.77±0.23

PreFeRMAB 4.21±0.30 3.98±0.28 3.85±0.28 3.68±0.28 3.62±0.26

DDLPO (topline) n/a n/a n/a n/a 4.08±0.26

Table 14: Results on ARMMAN with discrete states. We present
final reward divided by the number of arms, averaged over 50 trials.
For each pair of (N,B), we pretrain a model. The DDLPO (topline)
does not accomodate different opt-in rates and can only be used on
100% opt-in.

SIS Evaluation: Next, we evaluate the performance of1003

PreFeRMAB in the discrete-state SIS modelling setting. Ta-1004

ble 13 illustrates these results. We evaluate PreFeRMAB1005

for N = 20, B = 16 on three different number of possi-1006

ble states per arm S = 50, 100, 150, representing the max-1007

imum population of a region in the SIS setting. The results1008

shown demonstrate that PreFeRMAB performs well in zero-1009

shot learning in settings that model real-world planning prob-1010

lems, especially with larger state spaces and with multiple ac-1011

tions. We again find that PreFeRMAB achieves results com-1012

parable to the DDLPO topline with zero-shot testing, com-1013

pared to DDLPO trained and evaluated on the same constant1014

set of arms. 1015

ARMMAN Evaluation: We next evaluate the perfor- 1016

mance of PreFeRMAB in the discrete state ARMMAN mod- 1017

eling setting. Table 14 illustrates these results. In these ex- 1018

periments, we show performance for S = 3 across 3 training 1019

configurations ((N = 25, B = 5), (N = 25, B = 7), (N = 1020

50, B = 10)) for 5 test-time opt-in rates. We observe that 1021

our approach again performs consistently well in a more 1022

challenging setting that models real-world planning problems 1023

across different system capacities, budgets, and opt-in rates. 1024

Specifically, we validate that PreFeRMAB can achieve higher 1025

average rewards for increased budgets given a fixed system 1026

capacity, which is expected as reward potential increases with 1027

higher budgets. Additionally, we see that PreFeRMAB again 1028

achieves zero-shot results comparable to the DDLPO topline 1029

reward, reaching ∼ 90% of the topline reward in zero-shot 1030

evaluation. 1031

C Multi-arm Generalization 1032

In the main paper (Table 1), we presented results on Synthetic 1033

with N = 21, B = 7, demonstrating the benefit of multi-arm 1034

generalization. The results are obtained when the Wasser- 1035

stein distance between training and testing distribution is 0.05 1036

(see Sec A.4 for how we compute the Wasserstein distance). 1037

We provide additional results to further showcase the bene- 1038

fits of multi-arm generalization. Specifically, in Table 15, we 1039

present results for N = 12, B = 3. 1040

System capacity N = 12. Budget B = 3.
# Unique arms 48 39 30 21 12

No Action 3.11±0.31 3.11±0.31 3.11±0.31 3.11±0.31 3.11±0.31

Random Action 3.45±0.31 3.45±0.31 3.45±0.31 3.45±0.31 3.45±0.31

PreFeRMAB 4.35±0.28 4.28±0.29 4.31±0.27 4.04±0.32 3.60±0.30

Table 15: Multi-arm generalization results on Synthetic (opt-in
100%). With the same total amount of data, PreFeRMAB achieves
stronger performance when pretrained on more unique arms.

D Proof of Multi-Arm Generalization 1041

In this section, we will shorten nepochs to n for the sake of 1042

clarity. In this section, we let Csys to denote a constant which 1043

depends on the parameters of the MDP such as budget per 1044

arm B/N , cost cj , discount factor β, λmax, Rmax, D, d and 1045

L. It can denote a different constant in every appearance. We 1046

list the assumptions made in the statement of the proposition 1047

below for the sake of clarity. 1048

Assumption 1. Suppose the learning algorithm learns neural 1049

network weights θ̂, whose policy is optimal for each (µ̂i, λ) 1050

for i = 1, 2, . . . , n and λ ∈ [0, λmax]. That is, it learns the 1051

optimal policy for every sample in the training data. 1052

Assumption 2. There exists a choice of weights θ∗ ∈ Θ 1053

which gives the optimal policy for every set of N features 1054

(µ̂) drawn as the empirical distribution of i.i.d. samples from 1055

µ∗ and for every λ ∈ [0, λmax] 1056

Assumption 3. Θ = B2(D,Rd), the ℓ2 ball of radius D in
Rd. We assume that

|V (s, θ1, λ, µ̂)− V (s, θ2, λ, µ̂)| ≤ L∥θ1 − θ2∥



|V (s, θ, λ1, µ̂)− V (s, θ, λ2, µ̂)| ≤ L|λ1 − λ2|

Define the population average value function by V̄ (s, θ) =1057

Eµ̂ infλ∈[0,λmax] V (s, θ, λ, µ̂) and the sample average value1058

function by V̂ (s, θ) = 1
n

∑n
j=1 infλ∈[0,λmax] V (s, θ, λ, µ̂)1059

Now, consider:1060

V̄ (s, θ̂)− V̄ (s, θ∗) = V̄ (s, θ̂)− V̂ (s, θ̂) + V̂ (s, θ̂)− V̂ (s, θ∗)

+ V̂ (s, θ∗)− V̄ (s, θ∗)

= V̄ (s, θ̂)− V̂ (s, θ̂) + V̂ (s, θ∗)− V̄ (s, θ∗)

≥ −2 sup
θ∈Θ
|V̄ (s, θ)− V̂ (s, θ)| (4)

The first step follows by adding and subtracting the same1061

term. In the second step, we have used the fact that Assump-1062

tions 1 and 2 imply that V̂ (s, θ̂) = V̂ (s, θ∗). In the third step,1063

we have replaced the discrepancy between the sample averate1064

and the population average at specific points θ̂, θ∗ with the1065

uniform bound over the parameter set Θ.1066

We use the Rademacher complexity bounds to bound this1067

term. By [Shalev-Shwartz and Ben-David, 2014, Lemma1068

26.2], we show the following:1069

Let S denote the random training sample (µ̂1, . . . , µ̂n) and1070

P0 denote the uniform distribution Unif({−1, 1}n). Then, for1071

some numerical constant C, we have:1072

ES sup
θ∈Θ
|V̄ (s, θ)− V̂ (s, θ)| ≤ CESR(Θ ◦ S)

Where,R(Θ ◦ S) is the Rademacher complexity:1073

R(Θ ◦ S) :=
1

n
Eσ∼P0

sup
θ∈Θ

n∑
i=1

σi[inf
λ

V (s, θ, λ, µ̂i)− Eµ̂ inf
λ

V (s, θ, λ, µ̂)]

Thus, to demonstrate the result, it is sufficient to show that:1074

R(Θ ◦ S) ≤ Csyspolylog(Nn)√
nN

(5)

We will dedicate the rest of this section to demonstrate1075

Equation (5). First we will state a useful Lemma which fol-1076

lows from [Vershynin, 2018, Lemma 1.2.1]1077

Lemma 1. Suppose a positive random variable X satisfies:1078

P(X > t) ≤ A exp(− t2

2B ) for some B > 0, A > e and for1079

every t ≥ 0 then for some numerical constant C, we have:1080

E[X] ≤ C
√
B logA

Proof. From [Vershynin, 2018, Lemma 1.2.1], we have:

EX =
∫∞
0

P(X > t)dt. Thus, we conclude:

EX ≤
∫ ∞

0

min(1, A exp(− t2

2B
))dt

=
√

2B logA+

∫ ∞

√
2B logA

A exp(− t2

2B
)dt

=
√

2B logA+

∫ ∞

0

A exp(− (t+
√
2B logA)2

2B )dt

≤
√
2B logA+

∫ ∞

0

exp(− t2

2B )dt

≤
√

2B logA+
√
2πB (6)

In the fourth step we have used the fact that exp(−(a + 1081

b)2) ≤ exp(−a2 − b2) whenever a, b > 0. 1082

Define

vi(θ) := [inf
λ

V (s, θ, λ, µ̂i)− Eµ̂ inf
λ

V (s, θ, λ, µ̂)] .

We have the following lemma controlling how large vi is for 1083

any given θ. 1084

Lemma 2. For any δ > 0, with probability at-least 1− δ,

sup
i
|vi(θ)| ≤

√
Csys log(

Nn
δ )

N

Where Csys depends on the system parameters. 1085

Proof. First, we note that:

| inf
λ

V (s, θ, λ, µ̂i)− Eµ̂ inf
λ

V (s, θ, λ, µ̂)|

≤ Eµ̂| inf
λ

V (s, θ, λ, µ̂i)− inf
λ

V (s, θ, λ, µ̂)|

≤ Eµ̂ sup
λ∈[0,λmax]

|V (s, θ, λ, µ̂i)− V (s, θ, λ, µ̂)|

≤ sup
λ∈[0,λmax]

|V (s, θ, λ, µ̂i)− E[V (s, θ, λ, µ̂i)]|

+ Eµ̂ sup
λ∈[0,λmax]

|V (s, θ, λ, µ̂)− E[V (s, θ, λ, µ̂)]| (7)

In the last step, we have used the fact that µ̂ and µ̂i 1086

are identically distributed and hence E[V (s, θ, λ, µ̂)] = 1087

E[V (s, θ, λ, µ̂i)]. Note that by definition, the value func- 1088

tion V (s, θ, λ, µ̂i) = 1
N

∑N
j=1 V (sj , θ, λ, zj). Thus, it is 1089

clear that |V (s, θ, λ, µ̂i)| ≤ A 1+λmax

(1−β) =: Vmax where A 1090

is a constant which depends on the cost parameters cj ,
B
N 1091

and the maximum reward. Take µ̂i := (z
(i)
1 , . . . , z

(i)
N ) and 1092

µ̂ := (z1, . . . , zN ). 1093

Thus, for a given λ, we have: V (s, θ, λ, µ̂i) −
EV (s, θ, λ, µ̂i) has zero mean and

V (s, θ, λ, µ̂i)− EV (s, θ, λ, µ̂i)

=
1

N

N∑
j=1

[V (sj , θ, λ, z
(i)
j )− EV (sj , θ, λ, z

(i)
j )] (8)



It is an average of N i.i.d. zero mean random vari-
ables, bounded almost surely by 2Vmax. Therefore, using the
Azuma-Hoeffding inequality ([Vershynin, 2018]), we have:

P (|V (s, θ, λ, µ̂i)− EV (s, θ, λ, µ̂i)| > t) ≤ C exp(− c1Nt2

V 2
max

)

Only in this proof, let |V (s, θ, λ, µ̂i)− EV (s, θ, λ, µ̂i)| =:1094

H(λ) for the sake of clarity. Let B ⊆ [0, λmax] be any finite1095

subset. Then, by union bound, we have:1096

P
(
sup
λ∈B

H(λ) > t

)
≤ C|B| exp(− c1Nt2

V 2
max

) (9)

Suppose B is an ϵ-net for the set [0, λmax] for some ϵ > 0.1097

This can be achieved with |B| = λmax

ϵ . Let f : [0, λ] → B1098

map λ to the closest element in B1099

sup
λ∈[0,λmax]

H(λ) = sup
λ∈[0,λmax]

H(f(λ)) +H(λ)−H(f(λ))

≤ sup
λ∈[0,λmax]

H(f(λ)) + 2Lϵ

≤ sup
λ∈B

H(λ) + 2Lϵ (10)

Taking ϵ = 1√
N

, we conclude from Equation (9) that with1100

probability at-least 1− δ:1101

sup
λ∈[0,λmax]

H(λ) ≤ Csys

√
log(Nδ )

N

The same concentration bounds hold for
supλ |V (s, θ, λ, µ̂) − EV (s, θ, λ, µ̂)| and integrating the
tails (Lemma 1), we bound obtain the bound:

sup
λ∈[0,λmax]

|V (s, θ, λ, µ̂)− EV (s, θ, λ, µ̂)| ≤ Csys

√
logN

N

Applying a union bound over i = 1, . . . , n, conclude the1102

result.1103

We state the following folklore result regarding concentra-1104

tion of i.i.d. Rademacher random variables.1105

Lemma 3. Given constants a1, . . . , an ∈ R, and σ1, . . . , σn

i.i.d Rademacher random variables, then for any δ > 0, we
have with probability at-least 1− δ:

n∑
i=1

σiai ≤ C

√∑
i

a2i

√
log( 1δ )

Where C is a numerical constant1106

We are now ready to prove Equation (5) and hence1107

complete the proof of Proposition 1. Given a data1108

set µ̂1, . . . , µ̂n and θ ∈ Θ, we let vi(θ) :=1109

[infλ V (s, θ, λ, µ̂i)−Eµ̂ infλ V (s, θ, λ, µ̂)]. Given a finite set1110

Θ̂ := {θ1, . . . , θH} ⊆ Θ, from Lemma 2, we have with prob-1111

ability 1− δ,1112

sup
θ∈Θ̂

sup
i
|vi(θ)| ≤

√
Csys log(

nN |Θ̂|
δ )

N
=: R(δ)

Therefore, with probability at-least 1− δ over the random- 1113

ness in µ̂1, . . . , µ̂n, we have: 1114

P

(
sup
θ∈Θ̂

n∑
i=1

σivi(θ) > t
∣∣µ̂1, . . . , µ̂n

)

≤ C1|Θ̂| exp
(
− C2t

2

nR2(δ)

)
(11)

We pick Θ̂ to be an ϵ net over Θ. By [Vershynin, 2018,
Corollary 4.2.13], we can take |Θ̂| ≤ ( 3Dϵ )d. Let f : Θ→ Θ̂

be the map to its nearest element in Θ̂. Now, we have:

sup
θ∈Θ

∑
i

vi(θ)σi = sup
θ∈Θ

∑
i

vi(f(θ))σi + [vi(θ)− vi(f(θ))]σi

≤ 2nϵL+ sup
θ∈Θ̂

∑
i

vi(θ̂)σi

Combining this with Equation (11), we conclude that with 1115

1− δ over the randomness in µ̂1, . . . , µ̂n, we have: 1116

P

(
sup
θ∈Θ

n∑
i=1

σivi(θ) > t+ 2nϵL

∣∣∣∣µ̂1, . . . , µ̂n

)

≤ C1|Θ̂| exp
(
− C2t

2

nR2(δ)

)
(12)

Taking ϵ = 1

n
3
2
√
N

and integrating the tails (Lemma 1), we 1117

conclude that with probability at-least 1 − δ (with respect to 1118

the randomness in µ̂1, . . . , µ̂N ). 1119

E[sup
θ∈Θ

n∑
i=1

σivi(θ)|µ̂1, . . . , µ̂n] ≤ Csys
R(δ)√

n
polylog(Nn)

Define the random variable

X := E[sup
θ∈Θ

n∑
i=1

σivi(θ)|µ̂1, . . . , µ̂n]

Using the definition of R(δ), we have: 1120

P(X > t) ≤ C1 exp(−
t2nN

Csyspolylog(Nn)
) .

We then apply Lemma 1 to the equation above to bound 1121

EX and conclude Equation (5). 1122

E Proof for λ-network Update Rule and 1123

Convergence 1124

Proof of Proposition 2. We first consider a simple setting,
where the opt-in and opt-out decisions of arms are fixed be-
fore training. Taking the derivative of the objective (Eq 2)
with respect to λ, we obtain:

B

1− β
−

N∑
i=1

E

 ∑
t∈[H]

arm i opts-in at t

βtci,t +
∑
t∈[H]

arm i opts-out at t

βtc0,t

 .



Now consider the general case that the opt-in and opt-out de-
cisions are updated at each round during the training. We
have

Λt = Λt−1 − α

(
B

1− β

)
+ α

(
N∑
i=1

E

[
H∑
t=0

I{ξi,t = 1}βtci,t + I{ξi,t = 0}βtc0,t

])
,

where the expectation is over the random variables ξi,t and1125

the action chosen by the optimal policy. Rearranging and sim-1126

plifying the right hand side terms, we obtain the λ-updating1127

rule.1128

Proof of Proposition 3. The proof largely follows the proof1129

of Proposition 2 in Killian et al.[2022].1130

Since the max of piece-wise linear functions is a convex1131

function, Equation 2 is convex in λ. Thus, it suffices to show1132

(1) the gradient estimated using Proposition 2 is accurate and1133

(2) all inputs (states, features, opt-in decisions) are seen in-1134

finitely often in the limit. For (1), we note that training the1135

policy network for a sufficient number of epochs under a fixed1136

output of the λ-network ensures that Q-value estimates are ac-1137

curate. With accurate Q-functions and corresponding optimal1138

policies, the sampled cumulative sum of action costs is an un-1139

biased estimator of expected cumulative sum of action costs.1140

Critically, for the estimator to be unbiased, we do not strictly1141

enforce the budget constraint during training, as in Killian1142

et al.[2022]. In inference, we do strictly enforce the budget1143

constraint. For (2), we note that during training, initial states1144

are uniformly sampled, and opt-in decisions are also sampled1145

from a fixed bernoulli distribution.For arms that newly opt-in,1146

the features are uniformly sampled. Thus, both (1) and (2) are1147

achieved.1148
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