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Abstract 

Two important parallel architecture types are the shared-memory 
architectures and the message-passing architectures. In the past 
researchers working on the parallel implementations of production 
systems have focussed either on shared-memory multiprocessors or 
on special purpose architectures. Message-passing computers have 
not been studied. The main reasons have been the large message- 
passing latency (as large as a few milliseconds) and high message 
reception overheads (several hundred microseconds) exhibited by the 
first generation message-passing computers. These overheads are too 
large for the parallel implementation of production systems, where it 
is necessary to exploit parallelism at a very fine granularity to obtain 
significant speed-up (subtasks execute about 100 machine 
instructions). However, recent advances in interconnection network 
technology and processing node design have cut the network latency 
and message reception overhead by 2-3 orders of magnitude, making 
these computers much more interesting. In this paper we present 
techniques for mapping production systems onto message-passing 
computers. We show that using a concurrent distributed hash table 
data structure, it is possible to exploit parallelism at a very fine 
granularity and to obtain significant speed-ups from paralIelisml. 

1. lntsoduction 
Production systems (or rule-based systems) occupy a prominent 

place in the field of AI. They have been used extensively in the 
attempts to understand the nature of intelligence as well as to develop 
expert systems spanning a wide variety of applications. Production 
system programs, however, are computation intensive and run 
slowly. This slows down research and limits the utility of these 
systems. In this paper, we examine the suitability of message-passing 
computers (MPCs) for exploiting parallelism to speed-up the 
execution of production systems. 

To obtain significant speed-up from parallelism in production 
systems it is necessary to exploit parallelism at a very fine 
granularity. For example, the average number of instructions 
executed by subtasks in the parallel implementation suggested in 
[lo] is only about 100. In the past, researchers have explored the use 

of special-purpose architectures and shared memory multiprocessors 
to capture this fine-grained parallelism [lo, 16, 17, 18, 11,211. 
However, the performance of MPCs for production systems has not 
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been analyzed. Considering MPCs is important, because MPCs 
represent a major architectural and programming model in current 
use. Previously, the communication delays in the MPCs made them 
impossible to be used for the purpose of exploiting fine grained 
parallelism. However, recent developments in the implementations 
of MPCs [3], have reduced the communication delays and the 
message processing overheads by 2-3 orders of magnitude. The 
presence of these new generation MPCs such as the AMETEK-2010 
[19] makes it interesting to consider MPCs for implementing 

production systems. 

This paper is organized as follows. Section 2 describes the OPS5 
production system and the Rete matching algorithm used in 
implementing it. Section 3 describes recent developments in the 
MPCs and presents the assumptions about their execution times 
which we will use in our analysis. Section 4 presents our scheme for 
implementing OPSS on the MPCs. We then evaluate its performance 
and compare it with other parallel implementations of production 
systems. 

2.1. 0PS5 
An OPS5 [2] production system is composed of a set of if-then 

rules called productions that make up the production memory, and a 
database of temporary assertions, called the working memory. The 
individual assertions are called working memory elements (WMEs), 
which are lists of attribute-value pairs. Each production consists of a 
conjunction of condition elements (CEs) corresponding to the if part 
of the rule (the left-hand side or LHS), and a set of actions 
corresponding to the then part of the rule (the right-hand side or 
RHS). 

The CEs in a production consist of attribute-value tests, where 
some attributes may contain variables as values. The attribute-value 
tests of a CE must all be matched by a WME for the CE to match; the 
variables in the condition element may match any value, but if the 
variable occurs in more than one CE of a production, then all 
occurrences of the variable must match identical values. When all 
the CEs of a production are matched, the production is satisfied, and 
an instantiation of the production (a list of WMEs that matched it), is 
created and entered into the conji’ict set. The production system uses 
a selection procedure called conflict-resolution to choose a 
production from the conflict set, which is then fired. When a 
production fires, the RHS actions associated with that production are 
executed. The RHS actions can add, remove or modify WMEs, or 
perform I/O. 

The production system is executed by an interpreter that 
repeatedly cycles through three steps: match, conjlict-resolzdion, and 
act. The matching procedure determines the set of satisfied 
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productions, the conflict-resolution procedure selects the highest 
priority instantiation, and the act procedure executes its RHS. 

2.2. Rete 
Rete [7] is a highly efficient match algorithm that is also suitable 

for parallel implementations [9]. Rete gains its efficiency from two 
optimizations. First, it exploits the fact that only a small fraction of 
working memory changes each cycle by storing results of match Gem 
previous cycles and using them in subsequent cycles. Second, it 
exploits the commonality between CEs of productions, to reduce the 
number of tests performed. 

Rete uses a special kind of a data-flow network compiled from the 
LHSs of productions to perform match. The network is generated at 
compile time, before the production system is actually run. The 
entities that flow in this network are called tokens, which consist of a 
tag, a list of WME time-tags, and a list of variable bindings. The tag 
is either a + or a - indicating the addition or deletion of a WME. The 
list of WME time-tags identifies the data elements matching a 
subsequence of CEs in the production. The list of variable bindings 
associated with a token corresponds to the bindings created for 
variables in those CEs that the system is trying to match or has 
already matched. 

There are primarily three types of nodes in the network which use 
the tokens described above to perform match: 

1. Constant-test nodes: These are used to test the constant- 
value attributes of the CEs and always appear in the top 
part of the network. They take less than 10% of the time 
spent in Match. 

2. Memory nodes: These store the results of the match phase 
from previous cycles as state. This state consists of a list 
of the tokens that match a part of the LHS of the 
associated production. This way only changes made to 
the working memory by the most recent production firing 
have to be processed every cycle. 

3. Two-input nodes: These test for joint satisfaction of CEs 
in the LHS of a production. Both inputs of a two-input 
node come from memory nodes. When a token arrives 
from the lef memory, i.e., on the left input of a two-input 
node, it is compared to each token stored in the right 
memory. All token pairs that have consistent variable 
bindings are sent to the successors of the two-input node. 
Similar action occurs when a token arrives from the right 
memory. We refer to such an action as a node-activation. 

Figure 2-l shows the Rete net for a production named Pl. 

3. Message-Passing Computers and Assumptions 
MPCs are MIMD computers based on the programming model of 

concurrent processes communicating by message passing. There is 
no global shared memory and hence communication between the 
concurrent processes is explicit as in Hoare’s CSP [12], though not 
necessarily synchronous. The early MPG such as the Cosmic 
Cube [ZO] had a high network latency of about -2 millisecond (ms) 
and a high overhead of message handling of about -300 
microseconds (ps). As a result, it was impossible to exploit 
parallelism at the fine granularity of 50-100 ~LS as is necessary in 
production systems. 

Recent developments in MPCs such as worm-hole routing [4] have 
reduced the network latencies to 2-3 l.~s and the use of special 
processors such as the MDP (Message Driven Processor) [5] can 
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Figure 2-1: The Rete network. 

potentially reduce the message reception overhead by an order of 
magnitude. With today’s VLSI technology, it is possible to construct 
MPCs with thousands of processing nodes and hundreds of 
megabytes of memory [3]. Thus very fine grain parallelism can now 
be exploited easily with the MPCs. 

This raises the issue of whether production systems can be 
implemented efficiently on the MPCs to give good speedups, which 
we analyze in detail in this paper. For the purpose of this analysis, 
we assume a 32-ary 2-cube architecture (1024 nodes), with a 4 MIPS 
processor at each node similar to the MDP. The various times that 
required for our analysis are as follows. The latency of wonnhole 
routing is given by 

T wh = T&D + L/W) 

Where - 

TC 

W 

Channel Delay, assumed to be 50 nanoseconds 
(ns), as in [3]. 

Channel Width, assumed to be 16 bits. 

L Length of the message in bits. 

D Distance or number of hops traveled by the 
message. If two processing nodes are selected at 
random in a k-ary n-cube, then number of hops is 
n*(k* - 1)/3k = 22 for our 32-ary 2-cube. 

We assume that the MDP is driven by a 100 ns clock and that the 
time to execute a send (broadcast) command is 

Ta= (5 + N*Q) clock cycles. 

where a message of Q words is to be sent to N sites [5]. The 
overhead of receiving messages is assumed insignificant [5]. Thus 
there are two delays associated with a message: Ts in transmission, 
Twh in its communication. 

4. Mapping Rete on the MPC 
In this section we describe our mapping of Rete on the MPCs. We 

draw heavily from our previous work with the PSM implementations 
of production systems on shared-memory multiprocessors [9, lo,21 1. 

One possible scheme for implementing OPS5 on the MPCs arises 
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from viewing Rete in an object-oriented manner, where the nodes of 
Rete are objects and tokens are messages. This scheme maps a single 
object (node) of Rete onto a single processor of the MPC. However, 
there are two serious problems: (1) The mapping requires one 
processor per node of the Rete net, and the processor utilization of 
such a scheme is expected to be very low; (2) Often, the processing 
of a WME change results in multiple activations of the same Rete 
node, which in the above mapping would be processed sequentially 
on the same PE, thus causing that PE to be a bottleneck. 

control processor 

Match 
processors 

implement 
a concurrent 
hash-table 

I I 
+ - 

4 constant 4 conflict 
node processors set processors 

Figure 4-1: A high level view of the Mapping on the MPCs. 

To overcome the limitations of above mapping, we propose an 
alternative mapping, a high-level picture of which is shown in Figure 
4-l. At the heart of this mapping is a concurrent distributed 
hash-table [6] data structure that enables fine-grain exploitation of 
concurrency. The details are described later in this section. As 
shown in the figure 4-1, the parallel mapping consists of 1 control 
processor, 4 constant-node processors, 4 conflict set processors; and 
the rest are match processors. The constant-test nodes of the Rete net 
are divided into 4 parts and assigned to the constant-node processors. 
The match processors perform the function of the rest of the Rete net. 
The conflict-set processors perform conflict-resolution on the 
instantiations sent to them. Subsequently, they send the best 
instantiation to the control processor. The control processor is 
responsible for performing conflict-resolution among the best 
instantiations, evaluating the RHS and performing other functions of 
the interpreter. 

As mentioned in Section 2.2, most of the time in match is spent 
processing two-input node activations. Hashing the contents of the 
associated memory nodes, instead of storing them in linear lists, 
reduces the number of comparisons performed during a node- 
activation and thus improves the performance of Rete. One hash 
table is used for all left memory nodes in the network and the other 
for all right memory nodes. The hash function that is applied to the 
tokens takes into account (1) the variable bindings tested for equality 
at the two-input node, and (2) the unique node-identifier of the 
destination two-input node. This permits quick detection of the 
tokens that are likely to pass the equal variable tests. 

In our mapping, to allow the parallel processing of (1) tokens 
destined for the same two-input node and (2) tokens destined for 
different two-input nodes, the hash tables buckets storing the tokens 
are distributed among the PEs of the processor array. In particular, a 
small number of corresponding buckets from the left and right hash 
tables are assigned to each processor pair in the array -- the left- 
buckets to the left processor and the right buckets to the right 
processor. (Note that when processing a node activation, the left and 

right buckets at only one index need to be accessed.) This mapping is 
pictorially depicted in Figure 4-2. There is one restriction on the 
communication with the processor-pair - it can only be done 
through the left-processor. Allowing communication with both left 
and right processors can result in creation of duplicate tokens leading 
to incorrect behavior, and it does not gain as much in concurrency. 

Token Structure 

+/- l/r nodeid varbl varb2 . . yag Tag 

Variables 
involved in 

bits for 

~-Index 
--T-base 

Left Hash Buckets Right Hash Buckets 

Figure 4-2: The detailed mapping. 

A processor-pair together performs the activity of a single node 
activation. Consider the case when a token corresponding to the 
left-activation of a two-input node arrives at a processor-pair. The 
left processor immediately transmits the token to the right processor. 
The left processor then copies the token into a data-structure and adds 
it to the appropriate hash-table bucket. Meanwhile, the right 
processor compares the token with contents of the appropriate right 
bucket to generate tokens required for successor node activations. 
The right-processor then calculates the hash value for the newly 
created tokens, and sends each token to the processor pair which 
owns the buckets that it hashes to. The activities performed by the 
individual processors of the processor pair are called micro-tasks, and 
all the micro-tasks on the various processor pairs are performed in 
parallel. 

The performance of this scheme depends on the discriminability of 
hashing. Two observations can be made in this respect: 

1. Hashing is based on equality tests in CEs and 90% of the 
tests at two input nodes are equality tests [9]. 
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2. The locks on the hash tables in the PSM implementations 
have not been seen to be bottlenecks [ 10, 211. 

Thus hashing is not expected to be a problem in general. 
However, in certain production systems, a large number of two-input 
nodes do not have any tests. For such nodes, various schemes as 
proposed in [l], can be used to introduce discriminability into the 
tokens generated. Furthermore, when the compiler does come across 
nodes which cannot be hashed, it can assign a larger number of 
processors for that pair of buckets, (since all the tokens would end up 
in a single pair of buckets) thus breaking up the processing. 

The code for the Rete net is to be encoded in the OPS83 [8] 
software technology. With this encoding, large OPSS programs (with 
= 1000 productions) require about l-2 Mbytes of memory - a 
problem, since each MPC processor has only lo-20 kbytes of local 
memory. We therefore use two strategies to save space: 

1. Partition the nodes of Rete such that each processor 
evaluates nodes from only one partition. This 
partitioning is easily achieved if the hash function 
preserves some bits from the node-id. To avoid 
contention, nodes belong to a single production are put 
into different partitions. 

2. One cause of the large memory requirement is the in-line 
expansion of procedures. We can instead encode the two- 
input nodes into structures of 14 bytes, indexed by the 
node-id. A small performance penalty of loading the 
required information into registers is then paid in the 
beginning of the computation. 

The system’s overall operation is as follows: 
1. The control processor evaluates a WME change and 

transmits it to the constant node processors. 

2. The constant node processors match the WME with the 
constants in the CEs. The result of this match is tokens 
that have bindings for the variables in matched CEs. 
These tokens represent individual node activations and 
are sent to appropriate processor pairs. 

3. The following steps are then repeated 
pairs until completion of match: 

bY the processor- 

0 Split the node-activation 
perform them in parallel. 

into micro-tasks and 

l Count the number of successor tokens generated 
due to this token; if no successors are generated, 
then send an acknowledgement (ack) message to 
this processor pair’s activator. 

0 Accept ack messages from the successors. If 
accounted for all successors of a token, send an ack 
message to the activator. 

Detecting termination in a distributed system is a complex 
problem in itself [15]. The ack messages provide an easy and 
reasonably efficient method of informing the conflict-set processors 
about the completion of the match. Thus after the processing of the 
last activation in the current match cycle, a single stream of ack 
messages flows back, finally to the control processor, which then 
informs the conflict set processors that the match is completed. 

5. Performance Anallysis 
We now evaluate the MPC implementation using the 

measurements on the Rete net from [9].2 The point of the analysis is 
to establish that the MPCs will provide good speedups compared to 
other previously proposed parallel implementations, rather than to 
estimate the exact performance that will be obtained on a real 
machine. 

One of the important numbers for this analysis is the time spent in 
the processing of one node activation. Using that, we can estimate the 
time for a micro-task. A node activation is identical to a task on the 
PSM, which takes 200 ps on a 1 MIPS processor [lo]. 
Measurements of the number of instructions executed indicate that 
about 50% of that time is spent in updating the hash bucket and 50% 
in performing tests with tokens in opposite memory. We therefore 
assume that on our 4 MIPS processor, performing a micro-task will 
take about 25 /.Ls, which is 200 ps * l/4 (due to processor speed) * 0.5 
(due to partitioning of the node-activation into micro-tasks). 

Since the processor-pairs communicate via tokens, we also need to 
calculate the overhead of a token message. The length of a token- 
message is dependent on the number of variable bindings and the 
number of WME timetags carried by the token. There are on average 
four variable bindings per production [9]. The number of WME 
timetags is dependent on the number of CEs in a production. 
Assuming the number of CEs to be (M = 5) for the moment, we use 
the token-structure in Figure 4-2 to estimate 42 bytes of information 
per token. The overhead of sending the token message will therefore 
be equal to T, = (5 + Q * N) clock cycles, with Q = 42/4 words and N 
= 1 processor (see section 3). Substituting, we get Ts = 1.6 ps. The 
communication delay Twh is given by Tc@ + L/W). This 
communication will be between a random pairs of processors. 
Therefore, D = 22. We have assumed T, to be 5Ons and W to be 16. 
Our L is 42 * 8 = 336 bits. Substituting, we get T,+, = 2.2 ps. The 
total &lay will be therefore 1.6 + 2.2 = 3.8 ps per token message 
between processor-pairs. 

We can now estimate the cost of one match cycle. 
below correspond to the algorithm in the previous section. 

The steps 

Step 1: The WME changes are transmitted to the 4 constant-node 
processors. The cost of addition of a WME is as follows: The 
average WME consists of 24 attribute value pairs, which can be 
encoded in 24 bytes for attributes + 24 words for the values = 30 
words. Broadcasting this WME takes T, = (5 + 30 words * 4 
processors) clock cycles i.e., 12.5 ps. 

For the communication delay, Twh, D = 1 since the constant node 
processors are one hop away f&n the control processor. The value 
of L is 30 words * 32 bits/word = 960 bits; W = 16 and the value of 
T, is fixed at 50. Substituting, we get T, = 3.1 ps. Thus the total 
time spent in communication during WME-addition is 15.6 ps. 

For deleting a WME, only the timetag of the WME to be deleted is 
passed on to the constant-node processors. Calculating Ts and T,,,,., in 
a similar fashion, we get the total time spent in delete to be 1.1 ps. 
There is an average of 2.5 WME changes per cycle. Assuming equal 
proportions of adds and deletes, the cost of the first step is 1.25( 1.1 + 
15.6) = 21 ps. 

2We do not analyze the conflict-resolution and action parts of the match since these take 
less than 10% of the time in a serial implementation. Since we have divided up the conflict 
set and pipelmed the action part with the match, these should take even less time than that. 
In case they clc hecomc bottlenecks, various schemes discussed in [9] can be used to reduce 
their overheads. 
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Step 2: The constant tests are now evaluated. Assuming that the 6. Discussion 
constant tests are implemented via hashing, there are 20 constant- Comparing the MPC implementation to a shared memory multi- 
node activations per WME change [9]. On average, each partition 
will have 5 activations per WME change. Thus about (5 * 2 / 4 

processor implementation, we see that the principle advantage of the 
MF’C implementation is the absence of a centralized task-scheduler, 

MIPS) = 2.5 ks are spent in matching the constant nodes. A token 
structure is then generated and bindings are created for the variable(s) 
of the CEs which passed the tests. Measurements [9] show that there 
will be about 5-7 such tokens generated per WME change, which we 
assume to take 20 p.s. This whole operation of processing a WME- 
change by a constant-node processor is therefore estimated to take 
about 22.5 ws. For the 2.5 WME-changes, (22.5 * 2.5) = 56 p will 
be spent in processing the constant nodes and generating the initial 
tokens in a cycle. The generation of these tokens is pipelined with 
sending the tokens to the match processors. 

which can be a potential bottleneck As shown in [9], in shared- 
memory implementations, a slow scheduler forces saturation speedup 
with relatively small number of processors, irrespective of the 
inherent parallelism in the system. However, the MPC 
implementation suffers from a static partitioning of the hash tables. It 
is possible that distinct tokens, which could potentially be processed 
in parallel, are processed sequentially because they hash to the same 
processor pair. Such a possibility does not arise in the shared- 
memory implementation, since the size of the hash table is 
independent of the number of processors. 

Step 3: The processor-pairs perform the rest of the match. The 
node-activation typically go to different processor-pairs, and arc 
processed in parallel. Therefore, the total time to finish the match is 
determined by the longest chain of dependent node-activations, since 
the micro-tasks in the chain have to be processed sequentially. On an 
average, the chain will be generated after 50% of the initial tokens in 
a cycle have been generated. A constant-node processor takes 56 ps 
to generate all the initial tokens; therefore, we assume that the initial 
token generating the long chain will be created after 28 ps. Including 
the constant-node processors, let the longest chain be of length M = 
5. 

When a token arrives at the left processor, it is immediately 
transmitted to the right processor. For this transmission, Ts is still 1.6 
ps. But, T, = 50(1 channel + 42 * 8/16) = 1.1 ps. Thus, after a 
token arrives at the left processor, it wiIl take 1.6 + 1.1 = 2.7 ps to 
reach the right processor. The right processor will take 25 ps to finish 
the micro-task. It will then take 3.8 ps for the successor token to 
reach its destination. Thus, the time to complete a micro-task is 25 + 
2.7 + 3.8 = 31.5 ps. A chain of length 5 will therefore take 31.5 * 4 + 
28 ps (due to the constant nodes) = 154 l..~.. (Similar analysis could 
be done if the successors are generated by the left processor). 

The ack messages are propagated back through the node activation 
chain, after the last activation is processed. It is 1 word of 
information and so we estimate T, = 1.2 ps and T, = 0.6 ps. 
Assuming that the ack is processed in 1 ps, the time spent in the 
chain of ack messages is (M = 5) * (1 + 1.2 + 0.6) = 14.0 ps. Adding 
all the numbers together, we get the time for MF’C to match to be 
approximately 154 + 14 I- 21= 189 p. 

Another tradeoff to be considered is between processor utilization 
and the number of processors. With a higher number of processors, 
the processor utilization will be low, but the message contention in 
the network will be reduced. As the number of processors is reduced, 
processor utilization will be improved; but again, this will also 
increase the hash table contention. Thus there are some interesting 
tradeoffs involved in moving towards the MPCs. 

A mapping similar to one proposed in this paper has been used to 
implement production systems on the simulator for Nectar, a network 
computer architecture with low message passing latencies [133. 
These simulations show that good speedups can be obtained by 
implementing production systems on MPCs with low latencies [22]. 
The simulations also indicate that the constant node processors can 
quickly become bottlenecks if the initial tokens are not generated and 
sent fast enough. In our current implementation, we have hashed the 
constant nodes to take care of such a possibility. If the constant node 
processors continue to be bottlenecks inspite of this, then schemes 
proposed in [22] can be used to remove them. 

Finally, we would like to reiterate the importance of mapping 
production systems on Mf’Cs. Current production systems offer 
limited (lo-20 fold) parallelism [9]. We have shown that the MPCs 
are capable of exploiting this limited parallelism. However, 
production systems with more inherent parallelism are getting 
designed [14]. In such production systems, the parallelism is 
expected to be much higher [21]. For such production systems, it 
becomes necessary to analyze easily scalable architectures such as 
the MPCs for their implementations. 

A production system generates 200 micro-tasks on an 
average/cycle, and therefore a uniprocessor will take 200 * 25 = 5000 
ps per cycle. IJsing this we get about 26 fold speedup for the above 
system with the longest chain of M = 5. This is -60% of the 
maximum parallelism exploitable on an ideal multi-processor at this 
granularity. Our calculations show that the speedups is -14 fold if M 
= 10 and -9 fold if M = 15. Again, this is -60% of the maximum 
available parallelism. This is comparable with the estimate of 60% 
exploitable parallelism in shared memory multiprocessors at the 
node-activation level [9]. This coarser grain node-activation level 
parallelism can be exploited on the MPCs by allocating both the left 
and right buckets to one processor. Our calculations show that the 
micro-task based scheme is capable of exploiting 1.5 time more 
speedup than a scheme to exploit the node-activation level 
parallelism. 

7. Summary 
Recent advances in interconnection network technology and 

processing node design have reduced the latency and message 
handling overheads in MPCs to a few microseconds. In this paper we 
addressed the issue of efficiently implementing production systems 
on these new-generation MPCs. We conclude that it is indeed quite 
possible to implement production systems efficiently on MPCs. At a 
high level, our mapping corresponds to an object oriented system, 
with Rete network nodes passing tokens to each other using 
messages. At a lower level, however, instead of mapping each Rete 
node onto a single processor, the state and the code associated with a 
node are distributed among the multiple processors. The main data 
structure that we exploit in our mapping is a concurrent distributed 
hash-table that not only allows activations of distinct Rete nodes to 
be processed in parallel, but also allows multiple activations of the 
same node to be processed in parallel. A single node activation is 
further split into two micro-tasks that are processed in parallel, 
resulting in very high expected performance. 
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