
Suitability of Message Passing Computers for
Implementing rsductiord Systems

Anoop Gupta
Dept. of Computer Science

Stanford University
Stanford, CA 94305

Abstract

Two important parallel architecture types are the shared-memory
architectures and the message-passing architectures. In the past
researchers working on the parallel implementations of production
systems have focussed either on shared-memory multiprocessors or
on special purpose architectures. Message-passing computers have
not been studied. The main reasons have been the large message-
passing latency (as large as a few milliseconds) and high message
reception overheads (several hundred microseconds) exhibited by the
first generation message-passing computers. These overheads are too
large for the parallel implementation of production systems, where it
is necessary to exploit parallelism at a very fine granularity to obtain
significant speed-up (subtasks execute about 100 machine
instructions). However, recent advances in interconnection network
technology and processing node design have cut the network latency
and message reception overhead by 2-3 orders of magnitude, making
these computers much more interesting. In this paper we present
techniques for mapping production systems onto message-passing
computers. We show that using a concurrent distributed hash table
data structure, it is possible to exploit parallelism at a very fine
granularity and to obtain significant speed-ups from paralIelisml.

1. lntsoduction
Production systems (or rule-based systems) occupy a prominent

place in the field of AI. They have been used extensively in the
attempts to understand the nature of intelligence as well as to develop
expert systems spanning a wide variety of applications. Production
system programs, however, are computation intensive and run
slowly. This slows down research and limits the utility of these
systems. In this paper, we examine the suitability of message-passing
computers (MPCs) for exploiting parallelism to speed-up the
execution of production systems.

To obtain significant speed-up from parallelism in production
systems it is necessary to exploit parallelism at a very fine
granularity. For example, the average number of instructions
executed by subtasks in the parallel implementation suggested in
[lo] is only about 100. In the past, researchers have explored the use

of special-purpose architectures and shared memory multiprocessors
to capture this fine-grained parallelism [lo, 16, 17, 18, 11,211.
However, the performance of MPCs for production systems has not

‘This research was sponsored by Encore Computer Corporation, Digital Equipment
Corporation and by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 4976 under contract F3361587-C-1499 and monitored by the Air Force Avionics
Laboratory. Anoop Gupta is supported by DARPA contract MDA903-83-C-0335 and an
award from the Digital Equipment Corporation. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the
offkial policies, either expressed or implied, of Encore Computer Corporation, Digital
Equipment Corporation and the Defense Advanced Research Projects Agency or the US
Government.

Milind Tambe
Dept. of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

been analyzed. Considering MPCs is important, because MPCs
represent a major architectural and programming model in current
use. Previously, the communication delays in the MPCs made them
impossible to be used for the purpose of exploiting fine grained
parallelism. However, recent developments in the implementations
of MPCs [3], have reduced the communication delays and the
message processing overheads by 2-3 orders of magnitude. The
presence of these new generation MPCs such as the AMETEK-2010
[19] makes it interesting to consider MPCs for implementing

production systems.

This paper is organized as follows. Section 2 describes the OPS5
production system and the Rete matching algorithm used in
implementing it. Section 3 describes recent developments in the
MPCs and presents the assumptions about their execution times
which we will use in our analysis. Section 4 presents our scheme for
implementing OPSS on the MPCs. We then evaluate its performance
and compare it with other parallel implementations of production
systems.

2.1. 0PS5
An OPS5 [2] production system is composed of a set of if-then

rules called productions that make up the production memory, and a
database of temporary assertions, called the working memory. The
individual assertions are called working memory elements (WMEs),
which are lists of attribute-value pairs. Each production consists of a
conjunction of condition elements (CEs) corresponding to the if part
of the rule (the left-hand side or LHS), and a set of actions
corresponding to the then part of the rule (the right-hand side or
RHS).

The CEs in a production consist of attribute-value tests, where
some attributes may contain variables as values. The attribute-value
tests of a CE must all be matched by a WME for the CE to match; the
variables in the condition element may match any value, but if the
variable occurs in more than one CE of a production, then all
occurrences of the variable must match identical values. When all
the CEs of a production are matched, the production is satisfied, and
an instantiation of the production (a list of WMEs that matched it), is
created and entered into the conji’ict set. The production system uses
a selection procedure called conflict-resolution to choose a
production from the conflict set, which is then fired. When a
production fires, the RHS actions associated with that production are
executed. The RHS actions can add, remove or modify WMEs, or
perform I/O.

The production system is executed by an interpreter that
repeatedly cycles through three steps: match, conjlict-resolzdion, and
act. The matching procedure determines the set of satisfied

Ciupta and Tambe 687

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

productions, the conflict-resolution procedure selects the highest
priority instantiation, and the act procedure executes its RHS.

2.2. Rete
Rete [7] is a highly efficient match algorithm that is also suitable

for parallel implementations [9]. Rete gains its efficiency from two
optimizations. First, it exploits the fact that only a small fraction of
working memory changes each cycle by storing results of match Gem
previous cycles and using them in subsequent cycles. Second, it
exploits the commonality between CEs of productions, to reduce the
number of tests performed.

Rete uses a special kind of a data-flow network compiled from the
LHSs of productions to perform match. The network is generated at
compile time, before the production system is actually run. The
entities that flow in this network are called tokens, which consist of a
tag, a list of WME time-tags, and a list of variable bindings. The tag
is either a + or a - indicating the addition or deletion of a WME. The
list of WME time-tags identifies the data elements matching a
subsequence of CEs in the production. The list of variable bindings
associated with a token corresponds to the bindings created for
variables in those CEs that the system is trying to match or has
already matched.

There are primarily three types of nodes in the network which use
the tokens described above to perform match:

1. Constant-test nodes: These are used to test the constant-
value attributes of the CEs and always appear in the top
part of the network. They take less than 10% of the time
spent in Match.

2. Memory nodes: These store the results of the match phase
from previous cycles as state. This state consists of a list
of the tokens that match a part of the LHS of the
associated production. This way only changes made to
the working memory by the most recent production firing
have to be processed every cycle.

3. Two-input nodes: These test for joint satisfaction of CEs
in the LHS of a production. Both inputs of a two-input
node come from memory nodes. When a token arrives
from the lef memory, i.e., on the left input of a two-input
node, it is compared to each token stored in the right
memory. All token pairs that have consistent variable
bindings are sent to the successors of the two-input node.
Similar action occurs when a token arrives from the right
memory. We refer to such an action as a node-activation.

Figure 2-l shows the Rete net for a production named Pl.

3. Message-Passing Computers and Assumptions
MPCs are MIMD computers based on the programming model of

concurrent processes communicating by message passing. There is
no global shared memory and hence communication between the
concurrent processes is explicit as in Hoare’s CSP [12], though not
necessarily synchronous. The early MPG such as the Cosmic
Cube [ZO] had a high network latency of about -2 millisecond (ms)
and a high overhead of message handling of about -300
microseconds (ps). As a result, it was impossible to exploit
parallelism at the fine granularity of 50-100 ~LS as is necessary in
production systems.

Recent developments in MPCs such as worm-hole routing [4] have
reduced the network latencies to 2-3 l.~s and the use of special
processors such as the MDP (Message Driven Processor) [5] can

(P Pl
(Cl ^attrl <x> ^attr2 12)
(C2 "attrl 9 ^attrf <x>) Root
(C2 "attrl <x> ^attr2 15)

--> A
(remove 2))

7 9

17 Two input
nodes

CE2:attr2 = CE3:attrl

0 Memory nodes Pl

Figure 2-1: The Rete network.

potentially reduce the message reception overhead by an order of
magnitude. With today’s VLSI technology, it is possible to construct
MPCs with thousands of processing nodes and hundreds of
megabytes of memory [3]. Thus very fine grain parallelism can now
be exploited easily with the MPCs.

This raises the issue of whether production systems can be
implemented efficiently on the MPCs to give good speedups, which
we analyze in detail in this paper. For the purpose of this analysis,
we assume a 32-ary 2-cube architecture (1024 nodes), with a 4 MIPS
processor at each node similar to the MDP. The various times that
required for our analysis are as follows. The latency of wonnhole
routing is given by

T wh = T&D + L/W)

Where -

TC

W

Channel Delay, assumed to be 50 nanoseconds
(ns), as in [3].

Channel Width, assumed to be 16 bits.

L Length of the message in bits.

D Distance or number of hops traveled by the
message. If two processing nodes are selected at
random in a k-ary n-cube, then number of hops is
n*(k* - 1)/3k = 22 for our 32-ary 2-cube.

We assume that the MDP is driven by a 100 ns clock and that the
time to execute a send (broadcast) command is

Ta= (5 + N*Q) clock cycles.

where a message of Q words is to be sent to N sites [5]. The
overhead of receiving messages is assumed insignificant [5]. Thus
there are two delays associated with a message: Ts in transmission,
Twh in its communication.

4. Mapping Rete on the MPC
In this section we describe our mapping of Rete on the MPCs. We

draw heavily from our previous work with the PSM implementations
of production systems on shared-memory multiprocessors [9, lo,21 1.

One possible scheme for implementing OPS5 on the MPCs arises

688 Machine Architectures and Computer Languages for Al

from viewing Rete in an object-oriented manner, where the nodes of
Rete are objects and tokens are messages. This scheme maps a single
object (node) of Rete onto a single processor of the MPC. However,
there are two serious problems: (1) The mapping requires one
processor per node of the Rete net, and the processor utilization of
such a scheme is expected to be very low; (2) Often, the processing
of a WME change results in multiple activations of the same Rete
node, which in the above mapping would be processed sequentially
on the same PE, thus causing that PE to be a bottleneck.

control processor

Match
processors

implement
a concurrent
hash-table

I I
+ -

4 constant 4 conflict
node processors set processors

Figure 4-1: A high level view of the Mapping on the MPCs.

To overcome the limitations of above mapping, we propose an
alternative mapping, a high-level picture of which is shown in Figure
4-l. At the heart of this mapping is a concurrent distributed
hash-table [6] data structure that enables fine-grain exploitation of
concurrency. The details are described later in this section. As
shown in the figure 4-1, the parallel mapping consists of 1 control
processor, 4 constant-node processors, 4 conflict set processors; and
the rest are match processors. The constant-test nodes of the Rete net
are divided into 4 parts and assigned to the constant-node processors.
The match processors perform the function of the rest of the Rete net.
The conflict-set processors perform conflict-resolution on the
instantiations sent to them. Subsequently, they send the best
instantiation to the control processor. The control processor is
responsible for performing conflict-resolution among the best
instantiations, evaluating the RHS and performing other functions of
the interpreter.

As mentioned in Section 2.2, most of the time in match is spent
processing two-input node activations. Hashing the contents of the
associated memory nodes, instead of storing them in linear lists,
reduces the number of comparisons performed during a node-
activation and thus improves the performance of Rete. One hash
table is used for all left memory nodes in the network and the other
for all right memory nodes. The hash function that is applied to the
tokens takes into account (1) the variable bindings tested for equality
at the two-input node, and (2) the unique node-identifier of the
destination two-input node. This permits quick detection of the
tokens that are likely to pass the equal variable tests.

In our mapping, to allow the parallel processing of (1) tokens
destined for the same two-input node and (2) tokens destined for
different two-input nodes, the hash tables buckets storing the tokens
are distributed among the PEs of the processor array. In particular, a
small number of corresponding buckets from the left and right hash
tables are assigned to each processor pair in the array -- the left-
buckets to the left processor and the right buckets to the right
processor. (Note that when processing a node activation, the left and

right buckets at only one index need to be accessed.) This mapping is
pictorially depicted in Figure 4-2. There is one restriction on the
communication with the processor-pair - it can only be done
through the left-processor. Allowing communication with both left
and right processors can result in creation of duplicate tokens leading
to incorrect behavior, and it does not gain as much in concurrency.

Token Structure

+/- l/r nodeid varbl varb2 . . yag Tag

Variables
involved in

bits for

~-Index
--T-base

Left Hash Buckets Right Hash Buckets

Figure 4-2: The detailed mapping.

A processor-pair together performs the activity of a single node
activation. Consider the case when a token corresponding to the
left-activation of a two-input node arrives at a processor-pair. The
left processor immediately transmits the token to the right processor.
The left processor then copies the token into a data-structure and adds
it to the appropriate hash-table bucket. Meanwhile, the right
processor compares the token with contents of the appropriate right
bucket to generate tokens required for successor node activations.
The right-processor then calculates the hash value for the newly
created tokens, and sends each token to the processor pair which
owns the buckets that it hashes to. The activities performed by the
individual processors of the processor pair are called micro-tasks, and
all the micro-tasks on the various processor pairs are performed in
parallel.

The performance of this scheme depends on the discriminability of
hashing. Two observations can be made in this respect:

1. Hashing is based on equality tests in CEs and 90% of the
tests at two input nodes are equality tests [9].

Gupta and Tambe G89

2. The locks on the hash tables in the PSM implementations
have not been seen to be bottlenecks [10, 211.

Thus hashing is not expected to be a problem in general.
However, in certain production systems, a large number of two-input
nodes do not have any tests. For such nodes, various schemes as
proposed in [l], can be used to introduce discriminability into the
tokens generated. Furthermore, when the compiler does come across
nodes which cannot be hashed, it can assign a larger number of
processors for that pair of buckets, (since all the tokens would end up
in a single pair of buckets) thus breaking up the processing.

The code for the Rete net is to be encoded in the OPS83 [8]
software technology. With this encoding, large OPSS programs (with
= 1000 productions) require about l-2 Mbytes of memory - a
problem, since each MPC processor has only lo-20 kbytes of local
memory. We therefore use two strategies to save space:

1. Partition the nodes of Rete such that each processor
evaluates nodes from only one partition. This
partitioning is easily achieved if the hash function
preserves some bits from the node-id. To avoid
contention, nodes belong to a single production are put
into different partitions.

2. One cause of the large memory requirement is the in-line
expansion of procedures. We can instead encode the two-
input nodes into structures of 14 bytes, indexed by the
node-id. A small performance penalty of loading the
required information into registers is then paid in the
beginning of the computation.

The system’s overall operation is as follows:
1. The control processor evaluates a WME change and

transmits it to the constant node processors.

2. The constant node processors match the WME with the
constants in the CEs. The result of this match is tokens
that have bindings for the variables in matched CEs.
These tokens represent individual node activations and
are sent to appropriate processor pairs.

3. The following steps are then repeated
pairs until completion of match:

bY the processor-

0 Split the node-activation
perform them in parallel.

into micro-tasks and

l Count the number of successor tokens generated
due to this token; if no successors are generated,
then send an acknowledgement (ack) message to
this processor pair’s activator.

0 Accept ack messages from the successors. If
accounted for all successors of a token, send an ack
message to the activator.

Detecting termination in a distributed system is a complex
problem in itself [15]. The ack messages provide an easy and
reasonably efficient method of informing the conflict-set processors
about the completion of the match. Thus after the processing of the
last activation in the current match cycle, a single stream of ack
messages flows back, finally to the control processor, which then
informs the conflict set processors that the match is completed.

5. Performance Anallysis
We now evaluate the MPC implementation using the

measurements on the Rete net from [9].2 The point of the analysis is
to establish that the MPCs will provide good speedups compared to
other previously proposed parallel implementations, rather than to
estimate the exact performance that will be obtained on a real
machine.

One of the important numbers for this analysis is the time spent in
the processing of one node activation. Using that, we can estimate the
time for a micro-task. A node activation is identical to a task on the
PSM, which takes 200 ps on a 1 MIPS processor [lo].
Measurements of the number of instructions executed indicate that
about 50% of that time is spent in updating the hash bucket and 50%
in performing tests with tokens in opposite memory. We therefore
assume that on our 4 MIPS processor, performing a micro-task will
take about 25 /.Ls, which is 200 ps * l/4 (due to processor speed) * 0.5
(due to partitioning of the node-activation into micro-tasks).

Since the processor-pairs communicate via tokens, we also need to
calculate the overhead of a token message. The length of a token-
message is dependent on the number of variable bindings and the
number of WME timetags carried by the token. There are on average
four variable bindings per production [9]. The number of WME
timetags is dependent on the number of CEs in a production.
Assuming the number of CEs to be (M = 5) for the moment, we use
the token-structure in Figure 4-2 to estimate 42 bytes of information
per token. The overhead of sending the token message will therefore
be equal to T, = (5 + Q * N) clock cycles, with Q = 42/4 words and N
= 1 processor (see section 3). Substituting, we get Ts = 1.6 ps. The
communication delay Twh is given by Tc@ + L/W). This
communication will be between a random pairs of processors.
Therefore, D = 22. We have assumed T, to be 5Ons and W to be 16.
Our L is 42 * 8 = 336 bits. Substituting, we get T,+, = 2.2 ps. The
total &lay will be therefore 1.6 + 2.2 = 3.8 ps per token message
between processor-pairs.

We can now estimate the cost of one match cycle.
below correspond to the algorithm in the previous section.

The steps

Step 1: The WME changes are transmitted to the 4 constant-node
processors. The cost of addition of a WME is as follows: The
average WME consists of 24 attribute value pairs, which can be
encoded in 24 bytes for attributes + 24 words for the values = 30
words. Broadcasting this WME takes T, = (5 + 30 words * 4
processors) clock cycles i.e., 12.5 ps.

For the communication delay, Twh, D = 1 since the constant node
processors are one hop away f&n the control processor. The value
of L is 30 words * 32 bits/word = 960 bits; W = 16 and the value of
T, is fixed at 50. Substituting, we get T, = 3.1 ps. Thus the total
time spent in communication during WME-addition is 15.6 ps.

For deleting a WME, only the timetag of the WME to be deleted is
passed on to the constant-node processors. Calculating Ts and T,,,,., in
a similar fashion, we get the total time spent in delete to be 1.1 ps.
There is an average of 2.5 WME changes per cycle. Assuming equal
proportions of adds and deletes, the cost of the first step is 1.25(1.1 +
15.6) = 21 ps.

2We do not analyze the conflict-resolution and action parts of the match since these take
less than 10% of the time in a serial implementation. Since we have divided up the conflict
set and pipelmed the action part with the match, these should take even less time than that.
In case they clc hecomc bottlenecks, various schemes discussed in [9] can be used to reduce
their overheads.

690 Machine Architectures and Computer Languages for AI

Step 2: The constant tests are now evaluated. Assuming that the 6. Discussion
constant tests are implemented via hashing, there are 20 constant- Comparing the MPC implementation to a shared memory multi-
node activations per WME change [9]. On average, each partition
will have 5 activations per WME change. Thus about (5 * 2 / 4

processor implementation, we see that the principle advantage of the
MF’C implementation is the absence of a centralized task-scheduler,

MIPS) = 2.5 ks are spent in matching the constant nodes. A token
structure is then generated and bindings are created for the variable(s)
of the CEs which passed the tests. Measurements [9] show that there
will be about 5-7 such tokens generated per WME change, which we
assume to take 20 p.s. This whole operation of processing a WME-
change by a constant-node processor is therefore estimated to take
about 22.5 ws. For the 2.5 WME-changes, (22.5 * 2.5) = 56 p will
be spent in processing the constant nodes and generating the initial
tokens in a cycle. The generation of these tokens is pipelined with
sending the tokens to the match processors.

which can be a potential bottleneck As shown in [9], in shared-
memory implementations, a slow scheduler forces saturation speedup
with relatively small number of processors, irrespective of the
inherent parallelism in the system. However, the MPC
implementation suffers from a static partitioning of the hash tables. It
is possible that distinct tokens, which could potentially be processed
in parallel, are processed sequentially because they hash to the same
processor pair. Such a possibility does not arise in the shared-
memory implementation, since the size of the hash table is
independent of the number of processors.

Step 3: The processor-pairs perform the rest of the match. The
node-activation typically go to different processor-pairs, and arc
processed in parallel. Therefore, the total time to finish the match is
determined by the longest chain of dependent node-activations, since
the micro-tasks in the chain have to be processed sequentially. On an
average, the chain will be generated after 50% of the initial tokens in
a cycle have been generated. A constant-node processor takes 56 ps
to generate all the initial tokens; therefore, we assume that the initial
token generating the long chain will be created after 28 ps. Including
the constant-node processors, let the longest chain be of length M =
5.

When a token arrives at the left processor, it is immediately
transmitted to the right processor. For this transmission, Ts is still 1.6
ps. But, T, = 50(1 channel + 42 * 8/16) = 1.1 ps. Thus, after a
token arrives at the left processor, it wiIl take 1.6 + 1.1 = 2.7 ps to
reach the right processor. The right processor will take 25 ps to finish
the micro-task. It will then take 3.8 ps for the successor token to
reach its destination. Thus, the time to complete a micro-task is 25 +
2.7 + 3.8 = 31.5 ps. A chain of length 5 will therefore take 31.5 * 4 +
28 ps (due to the constant nodes) = 154 l..~.. (Similar analysis could
be done if the successors are generated by the left processor).

The ack messages are propagated back through the node activation
chain, after the last activation is processed. It is 1 word of
information and so we estimate T, = 1.2 ps and T, = 0.6 ps.
Assuming that the ack is processed in 1 ps, the time spent in the
chain of ack messages is (M = 5) * (1 + 1.2 + 0.6) = 14.0 ps. Adding
all the numbers together, we get the time for MF’C to match to be
approximately 154 + 14 I- 21= 189 p.

Another tradeoff to be considered is between processor utilization
and the number of processors. With a higher number of processors,
the processor utilization will be low, but the message contention in
the network will be reduced. As the number of processors is reduced,
processor utilization will be improved; but again, this will also
increase the hash table contention. Thus there are some interesting
tradeoffs involved in moving towards the MPCs.

A mapping similar to one proposed in this paper has been used to
implement production systems on the simulator for Nectar, a network
computer architecture with low message passing latencies [133.
These simulations show that good speedups can be obtained by
implementing production systems on MPCs with low latencies [22].
The simulations also indicate that the constant node processors can
quickly become bottlenecks if the initial tokens are not generated and
sent fast enough. In our current implementation, we have hashed the
constant nodes to take care of such a possibility. If the constant node
processors continue to be bottlenecks inspite of this, then schemes
proposed in [22] can be used to remove them.

Finally, we would like to reiterate the importance of mapping
production systems on Mf’Cs. Current production systems offer
limited (lo-20 fold) parallelism [9]. We have shown that the MPCs
are capable of exploiting this limited parallelism. However,
production systems with more inherent parallelism are getting
designed [14]. In such production systems, the parallelism is
expected to be much higher [21]. For such production systems, it
becomes necessary to analyze easily scalable architectures such as
the MPCs for their implementations.

A production system generates 200 micro-tasks on an
average/cycle, and therefore a uniprocessor will take 200 * 25 = 5000
ps per cycle. IJsing this we get about 26 fold speedup for the above
system with the longest chain of M = 5. This is -60% of the
maximum parallelism exploitable on an ideal multi-processor at this
granularity. Our calculations show that the speedups is -14 fold if M
= 10 and -9 fold if M = 15. Again, this is -60% of the maximum
available parallelism. This is comparable with the estimate of 60%
exploitable parallelism in shared memory multiprocessors at the
node-activation level [9]. This coarser grain node-activation level
parallelism can be exploited on the MPCs by allocating both the left
and right buckets to one processor. Our calculations show that the
micro-task based scheme is capable of exploiting 1.5 time more
speedup than a scheme to exploit the node-activation level
parallelism.

7. Summary
Recent advances in interconnection network technology and

processing node design have reduced the latency and message
handling overheads in MPCs to a few microseconds. In this paper we
addressed the issue of efficiently implementing production systems
on these new-generation MPCs. We conclude that it is indeed quite
possible to implement production systems efficiently on MPCs. At a
high level, our mapping corresponds to an object oriented system,
with Rete network nodes passing tokens to each other using
messages. At a lower level, however, instead of mapping each Rete
node onto a single processor, the state and the code associated with a
node are distributed among the multiple processors. The main data
structure that we exploit in our mapping is a concurrent distributed
hash-table that not only allows activations of distinct Rete nodes to
be processed in parallel, but also allows multiple activations of the
same node to be processed in parallel. A single node activation is
further split into two micro-tasks that are processed in parallel,
resulting in very high expected performance.

Gupta and Tambe 691

Acknowledgements
We would like to thank H. T. Kung for questioning our

assumptions about shared memory architectures. We would like to
thank Charles Forgy, Brian Milnes, Allen Newell and Peter
Steenkiste for many useful comments on earlier drafts of this paper.
We would also like to thank Kathy Swedlow for technical editing.

References

l-11

PI

131

[41

[61

E71

PI

[91

WI

[111

r121

P31

Acharya, A., Kalp, D., Tambe, M.
Cross Products and Long Chains.
Technical Report, Carnegie Mellon University Computer

Science Department, In preparation.

Brownston, L., Farrell, R., Kant, E., Martin, N.
Programming Expert Systems in OPS.5: An Introduction to

Rule-based Programming.
Addison-Wesley, 1985.

Dally, W. J.
Directions in Concurrent Computing.
In Proceedings of ICCD-86. October, 1986.

Dally, W. J.
Wire Efficient VLSI Multiprocessor Communication

Networks.
ln Stanford Conference on Advanced Research in ?XSI.

1987.

Dally, W. J., Chao, L., Chien, A., Hassoun, S., Horwat, W.,
Kaplan, J., Song, P., Totty, B., Wills, S.
Architecture of a Message-Driven Processor.
In International Symposium on Computer Architecture. 1987.

Dally, W. J.
A VLSI Architecure for Concurrent Data Structures.
PhD thesis, California Institute of Technology, 1987.

Forgy, C. L.
Rete: A fast algorithm for many pattern/many object pattern

match problem.
Artificial Intelligence 19: 17-37, 1982.

Forgy, C. L.
The OPS83 Report.
Technical Report 84-133, Carnegie Mellon University

Computer Science Department, May, 1984.

Gupta, A.
Parallelism in Production Systems.
PhD thesis, Carnegie Mellon University, March, 1986.

Gupta, A., Forgy, C. L., Kalp, D., Newell, A., Tambe, M. S.
Parallel OPS5 on the Encore Multimax.
In Proceedings of the International Conference on Parallel

Processing. August, 1988.

Hillyer, B. K. and Shaw, D. E.
Execution of OPS5 production systems on a Massively

Parallel Machine.
Journal of Parallel and Distributed Processing 3~236-268,

1986.

Hoare, C. A. R.
Communicating sequential processes.
Communications of ACM 21(8):666-677, 1978.

Kung, H. T., Steenkiste, P., Bitz, F.
The Nectar computer architecture.
Personal Communication.

[I41

Cl51

P61

D71

Cl81

P91

WI

WI

P4

Laird, J. E., Newell, A., & Rosenbloom, P. S.
Soar: An architecture for general intelligence.
Artificial Intelligence 33: l-64, 1987.

Mattem, F.
Algorithms for distributed termination detection.
Journal of Distributed Computing 2: 161-175, 1987.

Miranker, D. P.
TREAT: A New and Efficient Algorithm for AI Production

Systems.
PhD thesis, Columbia University, 1987.

Oflazer, K.
Partitioning in Parallel Processing of Production Systems.
PhD thesis, Carnegie-Mellon University, March, 1987.

Schreiner, F. , Zimmerman, G.
Pesa- 1 - A Parallel Architecture for Production Systems.
In International Conference on Parallel Processing. 1987.

Seitz, C., Athas, W., F’laig, C., Martin, A., Seizovic, J., Steele,
c., su, w.
The Architecture and Programming of the AMETEK 2010

Multicomputer.
In Hypercube concurrent computer and applications. 1988.

Sietz, C. L.
The Cosmic Cube.
Communications of ACM C-33(12), 1984.

Tambe, M. S., Kalp, D., Gupta, A., Forgy, C. L., M.&es, B.,
Newell, A.
Soar-PSM/E: Investigating match parallelism in a learning

production system.
In Proceedings of the PPEALS-88. 1988.

Tambe, M., Bitz, F., Steenkiste, P.
Production Systems on the Nectar: Simulation Results and

Analysis.
Technical Report, Carnegie Mellon University Computer

Science Department, In preparation.

692 Machine Architectures and Computer Languages for AI

