
Parallel OPS5 on the Encore Multimax

Anoop Gupta
Department of Computer Science, Stanford University, Stanford, CA 94305

Charles L. Forgy, Dirk Kalp, Allen Newell, and Milind Tambe
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213

2 August 1988

Abstract

Until now, most results reported for parallelism in production systems (rule-based systems) have been simulation
results -- very few real parallel implementations exist. In this paper, we present results from our parallel
implementation of OPS5 on the Encore multiprocessor. The implementation exploits very fine-grained parallelism
to achieve significant speed-ups. For one of the applications, we achieve 12.4 fold speed-up using 13 processes.
Our implementation is also distinct from other parallel implementations in that we parallelize a highly optimized
C-based implementation of OPS5. Running on a uniprocessor, our C-based implementation is 10-20 times faster
than the standard lisp implementation distributed by Carnegie Mellon University. In addition to presenting the
performance numbers, the paper discusses the amount of contention observed for shared data structures, and the
techniques used to reduce such contention.

1. Introduction
As the technology of production systems (rule-based systems) is maturing, larger and more complex expert

systems are being built both in industry and in universities. Often these large and complex systems are very slow in
their execution, and this limits their utility. Researchers have been exploring many alternative ways for speeding up
the execution of production systems. Some efforts have been focussing on high-performance uniprocessor
implementations [2, 10], while others have been focussing on high-performance parallel implementations
[3, 6, 11, 9, 12, 13, 14]. This paper focusses on parallel implementations.

Until now, most results reported for parallelism in production systems have been simulation results. In fact, very
few real parallel implementations exist. In this paper, we present results from our parallel implementation of OPS5
on an Encore Multimax shared-memory multiprocessor with sixteen CPUs. The implementation, called PSM-E
(Production System Machine project’s Encore implementation), exploits very fine-grained parallelism to achieve up
to 12.4 fold speed-up for match using 13 processes. Our implementation is distinct from other parallel
implementations in that we parallelize a highly optimized C-based implementation of OPS5. This is in contrast to
other efforts where slow lisp-based implementations are being parallelized. Running on a uniprocessor, our C-based
implementation is 10-20 times faster than the lisp implementation of OPS5 distributed by Carnegie Mellon
University. A consequence of parallelizing a highly-optimized implementation is that one must be very careful
about overheads, else the overheads may nullify the speed-up. One need not be as careful when parallelizing an
unoptimized implementation. In this paper, we first discuss the design of an optimized implementation of OPS5,
and then discuss the additions that were made for the parallel implementation. For the parallel implementation, we
discuss the synchronization mechanisms that were used, the contention observed for various shared data structures,

1and the techniques used to reduce such contention.

1This paper presents only a summary of the results. A more in depth analysis is presented in [5].

2

The paper is organized as follows. Section 2 presents some background information about the OPS5 language,
the Rete match algorithm, and the Encore Multimax multiprocessor. Section 3 gives an overview of the parallel
interpreter and then goes into the implementation details describing how the rules are compiled and how various
synchronization and scheduling issues are handled. Section 4 presents the results of the implementation on the
Encore multiprocessor. Finally, in Section 5 we summarize the results and conclude.

2. Background
This section is divided into three parts. The first subsection describes the basics of the OPS5 production-system

language -- the language which we have implemented in parallel. The second subsection describes the Rete
algorithm -- the algorithm that forms the basis for our parallel implementation. The third subsection describes the
Encore Multimax computer system -- the multiprocessor on which we have done the parallel implementation.

2.1. OPS5
An OPS5 [1] production system is composed of a set of if-then rules called productions that make up the

production memory, and a database of temporary assertions called the working memory. The assertions in the
working memory are called working memory elements (wmes). Each production consists of a conjunction of
condition elements corresponding to the if part of the rule (also called the left-hand side of the production), and a set
of actions corresponding to the then part of the rule (also called the right-hand side of the production). The actions
associated with a production can add, remove or modify working memory elements, or perform input-output. Figure
2-1 shows a production named find-colored-block with two condition elements in its left-hand side and one action in
its right-hand side.

(p find-colored-block
(goal ^type find-block ^color <c>)
(block ^id <i> ^color <c> ^selected no)

-->
(modify 2 ^selected yes))

Figure 2-1: A sample production.

The production system interpreter is the underlying mechanism that determines the set of satisfied productions
and controls the execution of the production system program. The interpreter executes a production system program
by performing the following recognize-act cycle:

• Match: In this first phase, the left-hand sides of all productions are matched against the contents of
working memory. As a result a conflict set is obtained, which consists of instantiations of all satisfied
productions. An instantiation of a production is an ordered list of working memory elements that
satisfies the left-hand side of the production.

• Conflict-Resolution: In this second phase, one of the production instantiations in the conflict set is
chosen for execution. If no productions are satisfied, the interpreter halts.

• Act: In this third phase, the actions of the production selected in the conflict-resolution phase are
executed. These actions may change the contents of working memory. At the end of this phase, the
first phase is executed again.

A working memory element is a parenthesized list consisting of a constant symbol called the class of the element
and zero or more attribute-value pairs. The attributes are symbols that are preceded by the operator ^. The values
are symbolic or numeric constants. For example, the following working memory element has class C1, the value 12
for attribute attr1 and the value 15 for attribute attr2.

(C1 ^attr1 12 ^attr2 15)

3

The condition elements in the left-hand side of a production are parenthesized lists similar to the working memory
elements. They may optionally be preceded by the symbol −. Such condition elements are called negated condition
elements. Condition elements are interpreted as partial descriptions of working memory elements. When a
condition element describes a working memory element, the working memory element is said to match the condition
element. A production is said to be satisfied when: (1) For every non-negated condition element in the left-hand
side of the production, there exists a working memory element that matches it; (2) For every negated condition
element in the left-hand side of the production, there does not exist a working memory element that matches it.

Like a working memory element, a condition element contains a class name and a sequence of attribute-value
pairs. However, the condition element is less restricted than the working memory element; while the working
memory element can contain only constant symbols and numbers, the condition element can contain variables,
predicate symbols, and a variety of other operators as well as constants. Variables are identifiers that begin with the
character "<" and end with ">" -- for example, <i> and <c> are variables. A working memory element matches a
condition element if they belong to the same class and if the value of every attribute in the condition element
matches the value of the corresponding attribute in the working memory element. The rules for determining
whether a working memory element value matches a condition element value are: (1) If the condition element value
is a constant, it matches only an identical constant. (2) If the condition element value is a variable, it will match any
value. However, if a variable occurs more than once in a left-hand side, all occurrences of the variable must match
identical values. (3) If the condition element value is preceded by a predicate symbol, the working memory element
value must be related to the condition element value in the indicated way.

The right-hand side of a production consists of an unconditional sequence of actions which can cause input-
output, and which are responsible for changes to the working memory. Three kinds of actions are provided to effect
working memory changes. Make creates a new working memory element and adds it to working memory. Modify

changes one or more values of an existing working memory element. Remove deletes an element from the working
memory.

2.2. The Rete Match Algorithm
In this subsection, we describe the Rete algorithm used for performing the match-phase in the execution of

production systems. The match-phase is critical because it takes 90% of the execution time and as a result it needs
to be speeded up most. Rete is a highly efficient algorithm for match that is also suitable for parallel
implementations. A discussion of alternative match algorithms can be found in [3]. The Rete algorithm gains its
efficiency from two optimizations. First, it exploits the fact that only a small fraction of working memory changes
each cycle by storing results of match from previous cycles and using them in subsequent cycles. Second, it exploits
the similarity between condition elements of productions (both within the same production and between different
productions) to reduce the number of tests that it has to perform to do match. It does so by performing common
tests only once.

The Rete algorithm uses a special kind of a data-flow network compiled from the left-hand sides of productions to
perform match. The network is generated at compile time, before the production system is actually run. Figure 2-2
shows such a network for productions p1 and p2, which appear in the top part of the figure. In this figure, lines have
been drawn between nodes to indicate the paths along which information flows. Information flows from the
top-node down along these paths. The nodes with a single predecessor (near the top of the figure) are the ones that
are concerned with individual condition elements. The nodes with two predecessors are the ones that check for
consistency of variable bindings between condition elements. The terminal nodes are at the bottom of the figure.
Note that when two left-hand sides require identical nodes, the algorithm shares part of the network rather than
building duplicate nodes.

4

constant-
test
nodes

mem-node

twoinp-node

twoinp-node

twoinp-node

mem-node

mem-node mem-node

mem-node

(p p2 (C2 ^attr1 15 ^attr2 <y>)
 (C4 ^attr1 <y>)
 -->
 (modify 1 ^attr1 12))

(p p1 (C1 ^attr1 <x> ^attr2 12)
 (C2 ^attr1 15 ^attr2 <x>)
 - (C3 ^attr1 <x>)
 -->
 (remove 2))

root

class=C1

attr2=12 attr1=15

class=C2

class=C3

class=C4

terminal-node

terminal-node
p1

p2

Figure 2-2: The Rete network.

To avoid performing the same tests repeatedly, the Rete algorithm stores the result of the match with working
memory as state within the nodes. This way, only changes made to the working memory by the most recent
production firing have to be processed every cycle. Thus, the input to the Rete network consists of the changes to
the working memory. These changes filter through the network updating the state stored within the network. The
output of the network consists of a specification of changes to the conflict set.

The objects that are passed between nodes are called tokens, which consist of a tag and an ordered list of

working-memory elements. The tag can be either a +, indicating that something has been added to the working
memory, or a −, indicating that something has been removed from it. No special tag for working-memory element
modification is needed because a modify is treated as a delete followed by an add. The list of working-memory
elements associated with a token corresponds to a sequence of those elements that the system is trying to match or
has already matched against a subsequence of condition elements in the left-hand side.

The data-flow network produced by the Rete algorithm consists of four different types of nodes. These are:
1. Constant-test nodes: These nodes are used to test if the attributes in the condition element which

have a constant value are satisfied. These nodes always appear in the top part of the network. They
have only one input, and as a result, they are sometimes called one-input nodes.

2. Memory nodes: These nodes store the results of the match phase from previous cycles as state within
them. The state stored in a memory node consists of a list of the tokens that match a part of the
left-hand side of the associated production. For example, the right-most memory node in Figure 2-2
stores all tokens matching the second condition-element of production p2.

3. Two-input nodes: These nodes test for joint satisfaction of condition elements in the left-hand side of
a production. Both inputs of a two-input node come from memory nodes. When a token arrives on the

5

left input of a two-input node, it is compared to each token stored in the memory node connected to the
right input. All token pairs that have consistent variable bindings are sent to the successors of the
two-input node. Similar action is taken when a token arrives on the right input of a two-input node.

4. Terminal nodes: There is one such node associated with each production in the program, as can be
seen at bottom of Figure 2-2. Whenever a token flows into a terminal node, the corresponding
production is either inserted into or deleted from the conflict set.

The most commonly used interpreter for OPS5 is the Rete-based Franz Lisp interpreter. In this interpreter a
significant loss in the speed is due to the interpretation overhead of nodes. In the OPS5 implementation we present
in this paper, the interpretation overhead has been eliminated by compiling the network directly into machine code.
While it is possible to escape to the interpreter for complex operations during match or for setting up the initial
conditions for the match, the majority of the match is done without an intervening interpretation level. This has led
to a speed-up of 10-20 fold over the Franz Lisp interpreter (see Table 4-4). In addition to this speed-up, our parallel
implementation gets further speed-up by evaluating different node activations in the Rete network in parallel.

2.3. Encore Multimax
In this subsection, we describe the Encore Multimax shared-memory multiprocessor -- the computer system on

which parallel OPS5 runs. The Multimax consists of 2-20 CPUs, each of which is connected to the shared-memory
through a high performance bus. The shared-memory is equally accessible to all of the processors, in that each
processor sees the same latency for memory accesses.

The processors used in our Encore Multimax are National Semiconductor NS32032 chips along with NS32081
floating point coprocessors, each processor capable of approximately 0.75 million instructions per second. There
are two processors packaged per board and they share 32 Kbytes of cache memory. The processor boards use a
combination of write-through strategy and bus-watching logic to keep the caches on different processor boards
consistent. The bus used on the Encore Multimax is called the Nanobus. It is a synchronous bus and it can transfer
8 bytes of new information every 80 nanoseconds, thus providing a data transfer bandwidth of 100 Mbytes/second.

The version of Encore Multimax available to us at CMU has 16 processors, 32 Mbytes of memory, and runs the
MACH operating system developed at Carnegie Mellon University. The operating system provides a UNIX-like
interface to the user, although the internals are different and several extensions have been made to support the
underlying parallel hardware. It provides facilities to automatically distribute processes amongst the available
processors and it provides facilities for multiple processes to share memory for communication and synchronization
purposes. The results reported in this paper correspond to this configuration of the Encore Multimax.

3. Organization and Details of the Parallel Implementation
When studying parallelism in production systems (or in any other application for that matter), it is important to

compute the speed-ups with respect to the performance of the most efficient uniprocessor implementations. It is
indeed quite easy to obtain large speed-ups with respect to inefficient implementations of the application, but such
results have little practical utility. In the case of OPS5, the most efficient uniprocessor implementations are
currently based on the Rete algorithm and they compile the Rete network directly into machine code and use global
register allocation. Such compilation into machine code gives approximately 10-20 fold speed-up over Rete-based
lisp implementations of OPS5 (see Table 4-4). For this reason, our parallel implementation of OPS5 on the Encore

2is also Rete-based and compiles the Rete network directly into (NS32032) machine code. Another effect of

2Note that the argument in the beginning of this paragraph does not say that one has to use the same algorithm (as the most efficient
uniprocessor one) for the parallel implementation. It just turns out in our case, that the efficient uniprocessor algorithm is also very good for
parallel implementation.

6

parallelizing a highly efficient implementation versus an inefficient one is that the number of instructions executed
in each parallel subtask (for the same task decomposition) is smaller in the highly efficient implementation. This is
equivalent to exploiting parallelism at a finer granularity, and as a result, the issues of synchronization and
scheduling are more critical.

3.1. High-Level Structure of the Parallel Implementation
The parallel OPS5 implementation on the Encore (PSM-E) consists of one control process and one or more match

processes. The number of match processes is a user specified parameter, but it is fixed for the duration of any
particular run. The system is generally used in a mode where the computer contains at least as many free processors
as there are processes in the matcher; this permits each process to be assigned to a distinct processor for the duration
of the run (provided the operating system is reasonably clever about assigning processes to processors).

The control process is responsible for performing conflict resolution, evaluating the right-hand side of rules,
handling input/output, and all the other functions of the interpreter except for performing match. It is also
responsible for starting up the match processes at the beginning of the run and killing them at the end of the run.
The match processes do nothing except perform the match. The match processes pipeline their operation with the
control process. Thus when RHS evaluation begins, the match processes are idle. However, as soon as the first
working memory change is computed, information about that change is passed to the match processes and they start
to work. The control process continues evaluating the RHS, and as more changes are computed, the information is
passed immediately to the match processes for them to handle as soon as they are able. When the control process
finishes evaluating the RHS, it becomes idle and waits for the match processes to finish. When the last match
process finishes, the control process performs conflict resolution and then begins evaluating the next RHS, thus

3starting the cycle over again.

To perform match, the match processes use the Rete algorithm described in Section 2.2. The match processes
exploit the dataflow-like nature of the Rete algorithm to achieve speed-up from parallelism. In particular, a single
copy of the Rete network is held in shared memory. The match processes cooperate to pass tokens through the
network and update the state stored in the memory nodes as indicated by the tokens. The match is broken into fairly
small units of work called tasks, where a task is an independently schedulable unit of work that may be executed in
parallel with other tasks. In our parallel implementation:

• Small groups of constant-test node activations constitute a task. Multiple constant-test nodes are
processed as a group, because individual constant-test node activations take only 3 machine instructions
to execute, and that is too fine a granularity.

• The memory nodes in the Rete network are coalesced with the two-input nodes that are below them.
Each activation of these coalesced two-input nodes constitutes a single task. The reasons for this
coalescing are discussed in [4]. As an example, the task corresponding to the left activation of a
two-input node involves: (i) the addition/deletion of the incoming token to the left memory node; (ii)
comparison of this token with all tokens in the opposite memory node checking for consistent variable
bindings; and (iii) scheduling of matching token pairs for execution as new tasks. Note that multiple
activations of the same two-input node constitute different tasks and these can be processed in parallel.

• Each individual terminal node activation constitutes a task.

In our current implementation, each task is represented by a data object called a token. The token in the parallel

3For simplicity, we are ignoring two kinds of optimizations that are possible. First, it is possible to overlap conflict-resolution with match.
Second, if speculative parallelism is used (we are willing to be wrong in our prediction sometimes and know how to recover from the error), it is
possible to make a guess about the production that will fire next and to evaluate its right-hand side before conflict-resolution is completely
finished. We choose to ignore these two optimizations for the present, because conflict-resolution and RHS evaluation are not the bottlenecks in
our current implementation.

7

implementation is essentially the same as that used in the sequential Rete matcher (as described in Section 2.2),
except that it has two extra items of information: the address of the node to which the token is to be sent, and if that
node is a two-input node, an indication of whether to send it to the left or right input. The list of tokens that are
awaiting processing is held in a central data structure called a task queue. The individual match processes perform
match by executing the following loop.

1. Remove a token from the task queue. If the queue is empty, wait until something is added.

2. Process the token. If new tokens are to be sent out, push them onto the task queue.

3. Go to step 1.

3.2. Implementation Details
All communication between processes (both the match processes and the control process) takes place via shared

memory. The virtual address spaces are set up so that the objects in shared memory have the same virtual address in
every process. Hence processes can simply pass pointers around in essentially the same way routines within a single
process can. For example, the tokens are created in shared memory, and the address of a given token is the same in
every virtual address space in the system. Thus when a process places a token onto the central task queue, all it
really has to do is to put the address of the token into the task queue. Figure 3-1 shows how the shared-memory is
used to communicate between the various processes.

locks
left
hash
table

right
hash
table

working
memory

conflict
set

r

MP MP MP

match processes

control
process

lock

lock
task
queue

token memories

shared memory

shared copy
of the
Rete network

Figure 3-1: Use of shared-memory by various processes.

Synchronization within the program is handled explicitly by executing interlocked test-and-set instructions. The
synchronization primitives provided by the operating system (for example, semaphores, barriers, signals, etc) are not
used because of the large overhead associated with them. When a process finds that it is locked out of a critical

8

region it spins on the lock, waiting for a chance to enter the region. In order to minimize the amount of bus traffic
generated by the spinning processes, a "test and test-and-set" synchronization mechanism is used. In this scheme, a
process uses ordinary memory-read instructions to test the status of a lock until it finds that it is free; then the
process uses a test-and-set interlocked instruction to re-read the lock and set it (if it is still free). Note that while the
lock is busy, the process spins out of its cache and does not use the bus. This is more efficient than using only the
"test-and-set" interlocked instruction for the lock. In this case, the process generates bus traffic to perform the
writes while it is busy waiting.

The control process communicates with the match processes primarily through the shared task queue. Whenever
the evaluation of an RHS results in a change to working memory, a token is created and marked as being destined
for the root node of the network. The control process pushes these tokens onto the task queue in exactly the same
way as the match processes push the tokens they create. The tokens are picked up and processed by waiting match
processes. When the evaluation of an RHS begins, the match processes are idle. The first token created by the
control process causes the match processes to start up. After the first token, the control process proceeds in parallel
with the match processes.

Depending on the granularity of tasks (number of instructions executed per task) that are scheduled using the task
queue and depending on the number of processors that are trying to access the task queue in parallel, it is quite
possible that a single task queue would become a bottleneck. For this reason, Gupta [4] proposed a hardware task
scheduler for scheduling the fine-grained tasks. So far we have not implemented the hardware scheduler, and in this
paper we present results only for the case when one or more software task queues are used.

After the control process finishes evaluating the RHS, it must wait for the match processes to finish before it can
perform the next conflict resolution operation. A global counter, TaskCount, is used to determine when all the
match processes have finished. This counter contains the sum of:

• the number of tokens that are currently on the task queue, and

• the number of tokens that are being processed by the match processes.
This count is maintained quite simply. Every time a token is put onto the task queue, the counter is incremented.
Every time a match process finishes working with a token, the counter is decremented. The match phase is finished
when the counter goes to zero.

Shifting our focus back to the evaluation of individual two-input node activations, we note that instead of having
separate memories for each two-input node, the matcher has two large hash tables which hold all the tokens for the
entire network. One hash table holds tokens for left memories of two-input nodes, and the other for right memories
of two-input nodes. An alternative scheme is to have separate hash tables for each two input node, but such a
scheme was considered to be wasteful of space. The hash function that is applied to the tokens takes into account:

• the values in the token which will have equality tests applied at the two-input node, and

• the unique identifier of the two-input node which stored the tokens.
This permits the two-input nodes to locate any tokens that are likely to pass the equal-variable tests quickly. It also
permits multiple activations of the same two-input node to be processed in parallel.

The processing performed by the individual node activations in the parallel implementation is similar to the
processing done in the sequential matcher with two exceptions:

• Code has been added to the two-input nodes to handle conjugate token pairs.

• Sections of code that access shared resources are protected by spin locks to insure that only one process
at a time can be accessing each resource.

9

A conjugate pair is a pair of tokens with opposite signs (an add token request and a delete token request), but
which refer to the same working memory element or list of working memory elements. Conjugate pairs arise in the
match operation for a variety of reasons, which are too complex to go into here (see [4]). They occur in both
sequential and parallel implementations of Rete, but they present much greater problems in a parallel system. The
reason for this is that in a parallel system it is not possible to insure that the tokens will be processed in the order in
which they are generated, and consequently in some cases a token with a − (delete) flag will arrive at a two-input
node before the corresponding token with the + (add) flag. The parallel matcher code handles this by saving the −
tokens that arrive early on an extra-deletes-list without otherwise processing the token. When the corresponding +
token arrives both tokens are discarded.

Many resources in a parallel system have to be protected with mutual-exclusion locks -- the task queues, the count
of the number of active tokens, the conflict set, etc. Most of these are relatively straight-forward to protect and a
simple variation of standard spin locks is used. The exception is the locks used to control access to the token hash
tables. There are several different operations that are performed on the token hash tables, for example, searching for
matching tokens, adding and removing tokens, adding and removing conjugate tokens, and we would like many of
these operations to proceed in parallel without having any undesirable effects. Because of the importance of the
hash tables to the performance of the system, several locking schemes were implemented and tried. Two of these
schemes are described here.

The first scheme, the simple one, is easy to describe and it provides a departure point for describing the second
more complex one. We define a "line" as a pair of corresponding buckets (buckets with the same hash index) from
the left and right hash tables along with their associated extra-deletes lists. In this scheme, each line in the hash

4table has a flag controlling its use. The flag takes on two values: Free and Taken. When a process has to work
with the hash table, it examines the flag for the line it needs. If the flag is Free, it sets the flag to Taken and
proceeds to perform the necessary operations; when it finishes, it sets the flag back to Free. If a process finds the
flag set to Taken, it waits until the flag is set to Free. Of course, the act of testing and setting the flag must be an
atomic operation. This synchronization scheme works, but it is a potential bottleneck when several tokens arrive at
a node about the same time, and if all of them require access to the same hash table line.

The second scheme is a complex variant of the multiple-reader-single-writer locking scheme. It permits several
tokens to be processed in the same line at the same time, though even here, some serialization of the processing is
necessary when destructive modifications to the lists of tokens are performed. This scheme requires two locks, a
flag, and a counter for each line in the hash table. The flag takes on three values: Unused, Left, and Right, to
indicate respectively that the line is not currently being processed, that it is being used to process tokens arriving
from the left, or that it is being used to process tokens arriving from the right. The counter indicates how many
processes are using that line in the hash table; it is needed only so that the last process to finish using the line can set
the flag back to Unused. The first lock insures that only one process at a time can access the flag and the counter.
When a process first tries to use a line in the hash table, it gets this lock, and checks the flag. If the flag indicates
that tokens from the other side are being processed, the process releases the lock and put the token back onto the
task queue. If the flag allows the process to continue, it sets the flag if necessary, increments the counter, and
releases the lock. For the remaining time that the process uses this line in the hash table, it leaves the flag and the
counter untouched; finally, when the process finishes using the line it decrements the counter and if appropriate sets
the flag to Unused (again, all within a section of code protected by this lock). All this is to insure that tokens from
two different sides are not processed at the same time. The second lock is used to insure that only one process at a

4Note that any given operation on the token hash tables requires access to only a single line of the hash tables. In other words processing a
single node activation never requires access to multiple hash table lines.

10

time can be modifying the token lists. Recall that the first task in processing a two-input node is to update the list of
tokens stored in the memory node. To do this, the process gets the modification lock, searches the conjugate or
regular token list, and it either adds the token to or deletes it from one of these lists. When it has finished, it releases
the modification lock and proceeds with searching the tokens in the opposite hash-table bucket to find those that
satisfy the variable binding tests.

More complex locking schemes can be devised and, in fact, were implemented and tested. One other scheme that
was tried permitted more than one process to be searching the token lists to find tokens to delete; in this scheme the
only serialization of the tasks occurred when the actual destructive modification of the token list was performed. As
in all implementations, the main tradeoff to keep in mind is that in an attempt to speed-up the rare cases, one should
not slow-down the normal case.

3.3. RHS Evaluation and Conflict Resolution
In our system, the rules’ RHSs are compiled into a form of threaded code which is interpreted at run time [8].

Interpreting the threaded code is slower than executing the compiled code, but since RHS evaluation is not a
bottleneck to the performance, threaded code, which is simpler to compile was considered fast enough. Conflict
resolution in the system is handled by code written in the C language. This code is executed by the control process.

4. Results
We present results for the parallel execution of three production-system programs in this paper. These are:

• Weaver [7], a VLSI routing program by Rostom Joobbani with 637 rules.

• Rubik, a program that solves the Rubik’s cube by James Allen with 70 rules.

• Tourney, a program that assigns match schedules for a tournament by Bill Barabash from DEC with 17
rules.

We have chosen Weaver because it represents a fairly large program and it demonstrates that our parallel OPS5
can handle real systems. Rubik is a smaller program that demonstrates some of the strengths of our parallel
implementation and the Tourney program demonstrates some of the weaknesses of our parallel implementation.

4.1. Results for the Uniprocessor Implementations of OPS5
Before we did a parallel implementation on the Encore, we initially did several uniprocessor C-based

implementations of OPS5. In this subsection, we present results for two of these uniprocessor implementations, vs1
5and vs2, for the Microvax-II workstation. The performance results for vs1 and vs2 implementations are shown in

Table 4-1. The base version is vs1, and it is characterized by the use of linear lists to store tokens in node memories,
6just as uniprocessor lisp implementations do.

The second version, vs2, uses a global hash table to store all memory-node tokens, as discussed in the previous
section. If there are equality tests at the two-input node, the hash-table based scheme (i) reduces the number of
tokens that have to be examined in the opposite memory to locate those that have consistent variable bindings, and

5The results are presented for Microvax-II and not for Encore, because the uniprocessor implementations were done on the Microvax and only
one of these was later taken over to the Encore.

6Note that memory nodes are not shared in either vs1 or vs2 versions of OPS5, unlike in the Franzlisp version of OPS5. This optimization was
not used in vs1 or vs2 because it is not possible to share memory nodes in the parallel implementations of OPS5 (see [4]), and we did not want to
spend the effort just for the uniprocessor implementations.

11

Table 4-1: Uniprocessor versions on Microvax-II.

PROGRAM List-based
memories

VS1

Weaver 101.5

Rubik 235.2

323.7

(sec)

Hash-based
memories

VS2

85.8

96.9

93.5

(sec)

371173

554051

72040Tourney

Total number
of node
activations

Total number
of WM-changes
processed

1528

8350

987

(ii) for deletes, it reduces the number of tokens that have to be examined in the same memory to locate the token to
be deleted. The statistics for the reduction in tokens examined in the opposite memory for the three programs are
given in Table 4-2. Note the statistics are computed only for those node activations where the opposite memory is
not empty. The statistics for the reduction in tokens examined in the same memory for delete requests are given in
Table 4-3. As can be seen from the two tables, the savings are substantial, especially for the Tourney program. The
time-saving effect of hash-based memories can be seen from numbers in Table 4-1.

Table 4-2: Number of tokens examined in opposite memory.

hash mem

10.1

31.0

47.6

7.7

3.8

5.9

lin mem

PROGRAM

Weaver

Rubik

Tourney

hash mem

5.2

1.6

270.1

1.0

1.8

23.3

lin mem

Tokens in opp mem
for left actvns

Tokens in opp mem
for right actvns

Table 4-3: Number of tokens examined in same memory for deletes.

hash memlin mem

PROGRAM

Weaver

Rubik

Tourney

hash memlin mem

Tokens in same mem
for left actvns

Tokens in same mem
for right actvns

6.2 3.6 7.0 5.1

23.5 2.6 8.1 3.7

254.4 40.1 3.8 2.9

The second last column in Table 4-1 gives the total number of wme-changes processed during the run for which
data are presented, and the last column gives the total number of node activations processed during the run (this is
also equal to the number of tasks that are pushed/popped from the task queue in the parallel version). Dividing the

12

time in column vs2 by the number of tasks, we get the average duration for which a task executes. This has
implications for the amount of synchronization and scheduling overhead that may be tolerated in the parallel
implementation. Doing this division we get that the average duration of a task for Weaver is 230 microseconds (or
approximately 115 machine instructions, as the VAX executes about 500,000 instructions per second), for Rubik is
175 microseconds, and for Tourney is 1300 microseconds.

Finally, Table 4-4 gives the speed-up that our uniprocessor C-based implementation achieves over the widely
available Franzlisp-based OPS5 implementation when running on the Microvax-II. As the table shows, we get a
speed-up of about 10-20 fold over the Franzlisp based implementation. The problem in the past has been that due to
lack of availability of better uniprocessor performance numbers, researchers have ended up comparing the
performance of their highly optimized parallel OPS5 implementations with the slow Franzlisp-based
implementation. We think that such apples to oranges comparison can be misleading, and we hope that in the future
the performance of parallel implementations would be compared to the performance of this optimized uniprocessor
implementation.

Table 4-4: Speed-up of C-based over Franzlisp-based implementation.

PROGRAM Hash-based
memories

VS2

(sec)

85.8

96.9

93.5

Weaver

Rubik

Lisp-based
implemen.
(sec)

Speed-up

1104.0

1175.0

2302.0

12.9

12.1

24.6

VS-lisp

VS-lisp/VS2

Tourney

4.2. Results for the Multiprocessor Implementation of OPS5
While the uniprocessor C-based implementations of OPS5 were done on the Microvax-II, the parallel version was

done on the Encore Multimax multiprocessor. In this section, we present speed-up numbers for our implementation
on the Encore and the results of our experiments as we varied (i) the number of task queues that were used and (ii)
the locking structures used for token hash-table buckets.

Table 4-5 shows results for the case when a single task queue is used and when simple locks (described in Section
3.2) are used with the token hash-table buckets. The first column simply gives the name of the programs. The
second column gives the time taken to do the match when only one process is used (time for conflict-resolution and
RHS evaluation is not included). The timing numbers in the second column correspond to version vs2 discussed
earlier. The numbers here are larger than the corresponding numbers in Table 4-1 because the NS32032 processor
used in Encore is slower than the Microvax-II processor and because of the presence of extra synchronization and
scheduling code in the parallel implementation. The numbers given in the remaining columns are speed-up figures
with respect to the time given in the second column. The number of processes used in the parallel match are given
in the second row from the top in the table. These numbers are expressed as "1+k", where the "1" indicates the
control process and the "k" indicates the number of match processes. The third row from the top indicates the
number of task queues used, which is one for all entries in this table.

In Table 4-5, the speed-up for the case when number of processes is "1+1" is in two cases greater than one. This
is because the set of node activations is different when the RHS evaluation and match are proceeding in parallel
(even though match is being done by only one process), as compared to the case when match does not start until

13

Table 4-5: Speed-up for single task queue and simple hash-table locks.

PROGRAM
Uniproc
Execution
Time

(sec)

Weaver

Rubik

1+1 1+3 1+5 1+7 1+11 1+13

1 Que 1 Que 1 Que 1 Que 1 Que 1 Que

Speed-ups with multiple processes

Tourney

119.9

257.9

98.0

1.02 2.55 3.65 3.97 3.91 3.90

1.00 2.80 4.47 5.48 6.18 6.30

1.10 1.90 2.59 2.43 2.412.70

RHS evaluation is completely finished. The speed-up with multiple match processes is also quite disappointing for
all three programs and especially for Tourney. Possible reasons are: (i) contention for access to the single task
queue, (ii) contention for access to the hash-table buckets, and (iii) low intrinsic parallelism in the programs. We
now explore the effects of removing the first two bottlenecks by using multiple task queues and by using more
complex hash-table locking schemes.

Table 4-6 presents results for the case when multiple task queues are used, while retaining simple hash-table
locks. The speed-up increases significantly for both Weaver and Rubik, indicating that the contention for pushing
and popping task queues must have been a bottleneck. The speed-up for Weaver for 1+13 processes goes up from
3.9-fold to 8.2-fold and that for Rubik goes up from 6.3-fold to 11.4-fold. The speed-up for Tourney remains about
the same at 2.4-fold. To get more insight into these results, we instrumented the task queue to get data on
contention. The results are shown in Table 4-7. The table shows the contention among the processes for the
centralized task queue as the number of match processes is increased. We see from the table that as the number of
processes is increased, there is indeed significant contention for the single task queue in case of Weaver and Rubik.
For Tourney, there does not seem to be significant contention for the task queue, and that is why the speed-up does
not increase when multiple task queues are used. The contention numbers drop from 24.62, 26.89, and 8.93 for
single task queue to 4.85, 6.12, and 4.75 for eight task queues for Weaver, Rubik, and Tourney respectively when 13
match processes are used.

Table 4-6: Speed-up for multiple task queues and simple hash-table locks.

PROGRAM
Uniproc
Execution
Time

(sec)

Weaver

Rubik

1+1 1+3 1+5 1+7 1+11 1+13

1 Que 2 Que 4 Que 8 Que 8 Que 8 Que

Speed-up with multiple processes

Tourney

118.2 1.02 2.88 4.51 5.80 7.56 8.15

253.6 1.07 3.93 6.41 8.49 10.66 11.42

97.7 1.12 2.02 2.17 2.33 2.47 2.30

Examining the speed-up for Rubik in Table 4-6, it is interesting to note that we get 3.9-fold speed-up for Rubik
using only 3 match processes. In this case, the speed-up is larger than the number of match processes because when

14

Table 4-7: Contention for the centralized task queue. Measured by the number
of times a process spins on the lock before it gets access to the task queue.

PROGRAM

Weaver

Rubik

1+1 1+3 1+5 1+7 1+11 1+13

1 Que 1 Que 1 Que 1 Que 1 Que 1 Que

Tourney

contention for the central task queue

1.03 2.68 6.31 11.58 20.05 24.62

1.01 2.63 5.92 10.58 22.66 26.89

1.00 2.53 3.94 7.22 8.931.57

the Rete network is evaluated in parallel, it is quite possible that the total number of node activations evaluated and
their complexity is less than that in the sequential implementation. Of course, the final result of the match is still the
same as the sequential implementation.

Table 4-8: Speed-up for multiple task queues and multiple-reader-single-writer hash-table locks.

PROGRAM
Uniproc
Execution
Time

(sec)

Weaver

Rubik

1+1 1+3 1+5 1+7 1+11 1+13

1 Que 2 Que 4 Que 8 Que 8 Que 8 Que

Speed-ups with multiple processes

Tourney

134.9

289.4

100.8

1.02 3.02 4.63 6.14 8.18 9.02

1.04 3.98 6.40 9.01 11.33 12.35

1.07 2.06 2.58 2.40 2.57 2.67

In Table 4-8 we present results for the case when multiple task queues are used and when complex multiple-
reader-single-writer locks (described in Section 3.2) are used for controlling entry to the token hash tables. We
expected the complex locks to benefit those programs that (i) generate cross-products, that is, there are multiple
activations of the same two-input node from the same side that need concurrent processing, and (ii) have long lists
of tokens in hash-table buckets, where the complex locks help by allowing multiple processes to read the opposite
memory at the same time. However, programs for which the above two conditions are not true may slow down
when complex locks are used, because of the extra overhead that they incur due to complex locks. Table 4-9
presents some results about contention when simple locks are used versus contention when complex locks are used.
We see that the contention for the hash-table buckets decreases for all three programs when complex locks are used,
although the increase in speed-up is not much. However, Table 4-9 does give an indication as to why we are getting
very poor speed-up for the Tourney program. The poor speed-up for the Tourney program is due to the large
contention for the hash-table locks resulting from multiple node activations trying to access the same hash-table
bucket. This, in turn, is the result of a few culprit productions in Tourney that have condition elements with no
common variables. By modifying two such productions using domain specific knowledge, we could increase the
speed-up achieved using 1+13 processes from 2.7-fold to 5.1-fold.

15

Table 4-9: Contention for token hash-table locks. Measured by the number of
times a process spins on a lock before it gets access to the hash-table bucket.

12 processes 12 processesPROGRAM

Weaver

Rubik

6 processes 6 processes

left right left right left right left right

20.4 1.0 51.2 1.4 4.7 2.0 15.7 2.1

11.0 1.1 23.0 1.5 3.7 2.0 12.9 2.1

137.1 4.9 377.7 15.7 49.9 2.9 134.9 33.3Tourney

contention with simple locks contention with mrsw locks

5. Conclusions
In this paper we have presented the details of a parallel implementation of OPS5 running on the Encore Multimax.

The first observation is that it is important to speed-up an optimized sequential implementation, otherwise most of
the benefits are lost. For example, speeding-up the Franzlisp implementation by 10-20 fold from parallelism just
brings us to the uniprocessor speed of the C-based implementation. Furthermore, the issues in parallelizing an
optimized implementation are different from those in an unoptimized implementation, because only very limited
overheads can be tolerated in an optimized implementation.

The second observation we make is that it is possible to obtain significant speed-ups for OPS5 using fine-grained
parallelism on a shared-memory multiprocessor. We get up to 12.4 fold speed-up for Rubik using 13 match
processes. However, this does not work for all programs. The Tourney program, because of the presence of
cross-products [4], resisted all our attempts to obtain higher speed-up. The average length of the individual tasks in
our parallel implementation varies between 100-700 machine instructions for the three programs that we studied. In
trying to exploit this fine-grained parallelism, we found that the scheduling of tasks on processors was a major
bottleneck. We found it essential to use multiple task queues (instead of a single task queue) to obtain reasonable
speed-up. For the Rubik program, going from one task queue to multiple task queues increased the speed-up from
6.3-fold to 11.4-fold.

The other variation that we explored to reduce the contention for shared data structures was in the complexity of
locks used for hash-based memory nodes. We used both simple spin-locks and complex multiple-reader-single-
writer locks. We observed that special note must be taken of rare-case versus normal-case execution. Trying to
handle rare cases efficiently can slow down the normal case, and can result in overall poorer performance. For
example, the provision of complex hash-table locks reduced the contention for the hash-table buckets, but it slowed
down the overall execution speed of the programs.

6. Acknowledgments
This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.

4864, monitored by the Air Force Avionics Laboratory under Contract N00039-85-C-0134 and by the Encore
Computer Corporation. Anoop Gupta is also supported by DARPA contract MDA903-83-C-0335 and an award
from the Digital Equipment Corporation.

16

References

1. Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Programming Expert Systems in OPS5: An
Introduction to Rule-Based Programming. Addison-Wesley, 1985.

2. Charles L. Forgy. The OPS83 Report. Tech. Rept. CMU-CS-84-133, Carnegie-Mellon University, Pittsburgh,
May, 1984.

3. Anoop Gupta, Charles Forgy, Allen Newell, and Robert Wedig. Parallel Algorithms and Architectures for
Production Systems. 13th International Symposium on Computer Architecture, June, 1986.

4. Anoop Gupta. Parallelism in Production Systems. Ph.D. Th., Carnegie-Mellon University, March 1986. Also
available from Morgan Kaufmann Publishers Inc..

5. Anoop Gupta, Charles Forgy, Dirk Kalp, Allen Newell, and Milind Tambe. Parallel Implementation of OPS5 on
the Encore Multiprocessor: Results and Analysis. To appear in International Journal of Parallel Programming.

6. Bruce K. Hillyer and David E. Shaw. "Execution of OPS5 Production Systems on a Massively Parallel
Machine". Journal of Parallel and Distributed Computing 3 (1986), 236-268.

7. Rostam Joobbani and Daniel P. Siewiorek. Weaver: A Knowledge-Based Routing Expert. Design Automation
Conference, 1985.

8. Peter M. Kogge. "An Architectural Trail to Threaded-Code Systems". Computer March (1982).

9. Edward J. Krall and Patrick F. McGehearty. "A Case Study of Parallel Execution of a Rule-Based Expert
System". International Journal of Parallel Programming 15, 1 (1986), 5-32.

10. Theodore F. Lehr. The Implementation of a Production System Machine. Hawaii International Conference on
System Sciences, January, 1986.

11. Daniel P. Miranker. TREAT: A New and Efficient Algorithm for AI Production Systems. Ph.D. Th., Columbia
University, 1987.

12. Kemal Oflazer. Parallel Execution of Production Systems. International Conference on Parallel Processing,
IEEE, August, 1984.

13. Raja Ramnarayan, Gerhard Zimmerman, and Stanley Krolikoski. PESA-1: A Parallel Architecture for OPS5
Production Systems. Hawaii International Conference on System Sciences, January, 1986.

14. M.F.M. Tenorio and D.I. Moldovan. Mapping Production Systems into Multiprocessors. International
Conference on Parallel Processing, IEEE, 1985.

i

Table of Contents
1. Introduction 1
2. Background 2

2.1. OPS5 2
2.2. The Rete Match Algorithm 3
2.3. Encore Multimax 5

3. Organization and Details of the Parallel Implementation 5
3.1. High-Level Structure of the Parallel Implementation 6
3.2. Implementation Details 7
3.3. RHS Evaluation and Conflict Resolution 10

4. Results 10
4.1. Results for the Uniprocessor Implementations of OPS5 10
4.2. Results for the Multiprocessor Implementation of OPS5 12

5. Conclusions 15
6. Acknowledgments 15
References 16

ii

List of Figures
Figure 2-1: A sample production. 2
Figure 2-2: The Rete network. 4
Figure 3-1: Use of shared-memory by various processes. 7

iii

List of Tables
Table 4-1: Uniprocessor versions on Microvax-II. 11
Table 4-2: Number of tokens examined in opposite memory. 11
Table 4-3: Number of tokens examined in same memory for deletes. 11
Table 4-4: Speed-up of C-based over Franzlisp-based implementation. 12
Table 4-5: Speed-up for single task queue and simple hash-table locks. 13
Table 4-6: Speed-up for multiple task queues and simple hash-table locks. 13
Table 4-7: Contention for the centralized task queue. Measured by the number of times 14

a process spins on the lock before it gets access to the task queue.
Table 4-8: Speed-up for multiple task queues and multiple-reader-single-writer hash- 14

table locks.
Table 4-9: Contention for token hash-table locks. Measured by the number of times a 15

process spins on a lock before it gets access to the hash-table bucket.

