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convert a subexponential problem space search into an exponentialAbstract
match problem ⎯ as shown in [18], matching expensive chunks is
NP-hard.Chunking, an experience based-learning mechanism, improves Soar’s

performance a great deal when viewed in terms of the number of A concern about degradation in performance due to learning has
subproblems required and the number of steps within a subproblem. This appeared widely in the EBL literature [4, 5, 9, 10, 21]. Various
high-level view of the impact of chunking on performance is based on an approaches have been used to deal with this degradation, most
ideal computational model, which says that the time per step is constant.

focusing on some form of cost-benefit analysis of the learnedHowever, if the chunks created by chunking are expensive, then they
material. In this article we present a solution to the problem ofconsume a large amount of processing in the match, i.e, indexing the
expensive chunks that is based on restricting the expressiveness ofknowledge-base, distorting Soar’s constant time-per-step model.  In these
the system’s representation language so as to guarantee that allsituations, the gain in number of steps does not reflect an improvement in

performance; in fact there may be degradation in the total run time of the chunks will be cheap.  In terms of a cost-benefit approach to
system. Such chunks form a major problem for the system, since absolutely learning, this amounts to guaranteeing that the cost of adding a
no guarantees can be given about its behavior. production will always be close to zero.  Thus, if the benefits are

never less than zero, an explicit on-the-fly cost-benefit analysis canThis article presents a solution to the problem of expensive chunks.  The
solution is based on the notion of restricting the expressiveness of Soar’s be avoided.
representational language to guarantee that chunks formed will require only a This article is organized as follows: Section 2 describes the
limited amount of matching effort.  We analyze the tradeoffs involved in

problem of expensive chunks in more detail.  Section 3 presents ourrestricting expressiveness and present some empirical evidence to support our
1 solution to the expensive chunks problem.  Section 4 takes an inanalysis.

depth look at the solution for a prototypical expensive chunks task:1. Introduction the Grid task. Section 5 provides further experimental results
The goal of the Soar project is to build a system capable of bearing on our solution.  Section 6 presents a counter-point, a task in

general intelligent behavior and autonomous existence [6]. Soar is which our solution is at its worst: the Tree task.  Finally, Section 7
based on formulating all symbolic goal-oriented behavior as search summarizes the results and presents some issues for future work.
in problem spaces.  The primitive acts of the system, called

2. The Problem of Expensive Chunksdecisions, are those required to pursue this search: the selection of
Intelligent systems, such as Soar, are based on symbolicproblem spaces, states, and operators, plus the application of

architectures [13] that partition the complete system into twooperators to states to generate new states.  The information necessary
independent domains.  Above the architecture is the cognitivefor the performance of these primitive acts can be provided in one of
domain of flexible symbol processing.  Below the architecture is thetwo ways: by the firing of productions, or by the recursive use of
implementation domain of fixed computational processes.  In Soar,problem space search in subgoals.  Both can result in adding new
problem space search occurs in the cognitive domain.  It is aobjects to the system’s working memory and in adding new
symbolic process that can itself be controlled by further symbolinformation about existing objects (encoded as attributes with
processing. The production match, on the other hand, is part of thevalues). Soar learns by converting subgoal-based search into
implementation domain.  It is a fixed process that runs to completionproductions that generate comparable results under similar
unaffected by the knowledge in the cognitive domain.conditions. The actions of the new productions are based on the

results of the subgoals.  The conditions are based on those working In concert with this distinction, it is possible to describe the
memory elements (wmes) in parent goals upon which the results affects of learning on task performance via two effects.  The
depended. This chunking process is a form of explanation-based cognitive effect is the change in the number of cognitive operations
learning (EBL) [14]. required to perform the task.  The computational effect is the change

in the amount of time required to perform the individual cognitiveChunking improves Soar’s performance a great deal when viewed
steps. For Soar, the cognitive effect of chunking is the change in thein terms of the number of subproblems required and the number of
number of production actions that are executed, while thesteps within a subproblem [16]. However, despite the gain in
computational effect is the change in the time required per action.number of steps, there may be degradation in the total run time of the
Table 2-1 (modified from [18]) shows the cognitive effect, thesystem. In [18], we showed that this anomaly arises due to
computational effect (computed as time-per-action before learningexpensive chunks, i.e., learned productions that consume a large
/time-per-action after learning), the total speedup (this is speedup inamount of processing in the match.  At its worst, chunking can
total match time, ignoring the other processing performed by the
architecture) and the number of chunks learned for eight tasks
implemented in Soar. These measurements were done on Soar/PSM-
E [20], a system that uses a highly optimized implementation of the1This research was sponsored by the Defense Advanced Research Projects Agency (DOD) under contract
Rete production matcher.numbers F33615-87-C-1499 and N00039-86C-0033 (via subcontract from the Knowledge Systems

Laboratory, Stanford University), by the National Aeronautics and Space Administration under cooperative
As expected, chunking provides a large cognitive effect in all ofagreement number NCC 2-538, and by Encore Computer Corporation.  The views and conclusions

contained in this document are those of the authors and should not be interpreted as representing the official the tasks.  Learning causes the number of actions required to drop by
policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the US a factor of between 5 and 14. For four of the tasks (Syllogisms,
Government or the Encore Computer Corporation.
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Cognitive Computational Total Nbr of

effect effect Speedup Chunks

8-puzzle 6.53 0.15 0.99 11

N-Queens 5.21 0.06 0.32 3

Grid 13.54 0.06 0.85 14

Magic 6.59 0.04 0.25 5
Square

Syllogisms 11.59 0.89 10.27 10

Monkey 6.20 0.83 5.16 4

Waterjug 9.13 0.57 5.22 11

Farmer 11.09 0.45 5.04 14

Table 2-1: Effects of chunking on performance

Monkey, Waterjug, and Farmer) this cognitive effect is followed by
a concomitant speedup in the total match time. However, for the
other four tasks (8-Puzzle, N-Queens, Grid and Magic-Square) the
speedup in terms of total match time is less than 1 ⎯ the match time
has actually increased after chunking. This anomaly occurs because
of the computational effect; the time per action for these four tasks
increases by as much as a factor of 25 (for the Magic-Square).  This
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computational effect does not come about because of the increased
number of chunks ⎯ only five chunks are acquired in the Magic- Figure 2-1: An example production system and its k-search tree.
Square ⎯ but instead from the presence of individually expensive
chunks.

Expensive chunks are a problem for a number of reasons.  Firstly, large, the chunk will clearly be expensive.  Let’s look at both of
they cause the system to slow down with learning, a clearly these factors in a little more detail. (This analysis is a summary of
undesirable effect.  Secondly, they introduce NP-hard search into the the one presented in [18].) The depth of a production’s k-search tree
implementation domain (the matcher) where it cannot be controlled (H) is equivalent to the number of conditions in the production.  For
by additional knowledge.  Thirdly, they lead to gross violations of a chunk, this corresponds to the size of the footprint; that is, the
Soar’s ideal computational model, that the time per step in problem number of wmes in the supergoals examined by the problem-solver
solving should be constant. in producing results of the corresponding subgoal.  The branching

factor of a production’s k-search tree is a function of the number ofTo understand the origins of expensive chunks, it is useful to have
wmes that match each condition, and the amount of constrainta means of analyzing the production match that is independent of
provided by cross-condition variable tests.  In Soar, cross-conditionmany of the variations in match algorithms and implementations.
variable tests are used extensively to implement a linked-accessThe k-search model [18] is one such approach that covers match
restriction. This restriction says that before an object can be tested inalgorithms that find all possible solutions, without the aid of
a production, a path from a goal to that object (via attributes) mustheuristics. This includes widely used match algorithms such as
have already been tested.  Given this restriction, there remain onlyRete [2] and Treat [11]. The k-search model is based on the notion
two sources of branching factor in k-search trees: bad conditionof tokens, i.e., partial instantiations of productions.  Consider the
orderings, which can reduce the constraint provided by cross-production length-2 shown in Figure 2-1-a.  It contains three
condition variable tests; and attributes that have multiple valuesconditions and one action.  In the figure, the use of ^ indicates an

2(multi-attributes). Multi-attributes are used in representing open,attribute, and the use of <> indicates a variable.  Figure 2-1-b shows
unstructured sets in working memory. For example, in Figure 2-1-b,the working memory of the production system, which describes the
connected-to is a multi-attribute of the object B ⎯ points C, D, andgraph shown in Figure 2-1-c.  On the creation of the working
E exist as an unstructured set of points connected to point B. Figurememory element (current-position B), the production length-2 will
2-1-d illustrates how the k-search tree branches out in matchingmatch the working memory, generating tokens, such as: (2; x = B, z
points C, D and E connected to B.= C), (2; x = B, z = D) etc. The first number in the token indicates

the number of conditions matched and the other elements indicate 3. Eliminating Expensive Chunks
the bindings for the variables. Thus, tokens indicate what conditions Eliminating expensive chunks means that all of the chunks used
have matched and under what variable bindings. by the system in problem solving are cheap chunks. An ideal

solution would impose a fixed upper bound on the cost of eachThe tokens generated in the match can be represented in the form
chunk, allowing the system to achieve a constant time per step. Evenof a match tree, as shown in Figure 2-1-d (at each stage, only the
if a fixed bound is not possible, it would be preferable to let the costadditional variable bindings are shown).  This tree represents the
of the chunks be a small polynomial function rather than the existingsearch conducted by the matcher, using tokens, to match the
exponential function. Such chunks will require only a few additionalproduction. Since this search is done in the production system, i.e.,
tokens to match them and hence will only minimally distort thein the knowledge base, it is called k-search, to distinguish it from
constant time-per-step model.problem space search.  Measurements on Soar/PSM-E indicate that

the time spent per token is approximately constant.  Therefore, for Two techniques that initially look like potential solutions can be
Soar productions, the number of tokens in the k-search tree is a
reasonable estimate of the work done in performing match.

For a chunk with a k-search tree of depth H and a constant
2H Preferences ⎯ special control elements in Soar ⎯ can also contribute to the branchingk Hbranching factor of F, the match cost will be F >F tokens.∑ factor. However, their impact is much smaller than that of multi-attributes, and they will bek=1

ignored here.  A discussion of the relationship of preferences to expensive chunks can beThis is exponential in the depth of the tree (H), and if F and H are
found in [19].
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immediately ruled out by the inherently exponential nature of the constant factor.  But, the gain in carrying out the search in the
production match. One technique is the use of smarter match problem space lies in the ability to use control knowledge to
algorithms. This could involve either better automated condition terminate or control it. Moreover, chunking will gradually reduce
orderings, or other techniques such as selective backtracking [18]. A and ultimately eliminate this search.  Thus, the constant overheads of
better condition ordering can definitely reduce the amount of k- problem space search will also be eliminated from the unique-
search (see [18], for example), but cannot completely eliminate it, or attributes.
even make it non-exponential in general.  The same is also A secondary impact of unique-attributes is that the chunks that are
unfortunately true for the other smart match algorithms.  The other learned may be less general.  This occurs because a multi-attribute
technique that looks like a potential solution is the use of massive condition can match any element of an open set, while a unique-
parallelism. Given any amount of parallelism it is always possible to attribute condition can match only one possible element.  This issue
have an exponential match that will exceed the capacity of the is examined in detail in the following sections.
machine. A third technique, that of hand rewriting of expensive

Table 3-1 presents the total run time, before and after chunking,chunks, is ruled out by the need for the system to run autonomously.
with unique-attributes and multi-attributes, for the four expensiveThis is one key way in which the problem of expensive chunks
chunks tasks in Table 2-1. (Due to the differences indiffers from the more general problem of expensive productions.
implementations, these results are not directly comparable to those inWhen these three techniques are eliminated, four alternative
Table 2-1.) The parethesized numbers are the number of chunksstrategies remain:
learned. When the unique-attribute chunks were less general than

1. Selective learning/forgetting: A cost-benefit analysis is the multi-attribute ones, additional trials were run on the same taskperformed before (or after) adding a learned rule into the
until enough chunks had been learned to cover the same scope as thesystem’s knowledge base. The rule is added to the
multi-attribute chunks.  We see that the time to complete the taskknowledge base only if the analysis proves to be

positive [4, 5, 9, 10]. without chunking in both representations is comparable.  However,
2. Selective Matching: The matcher reasons about the three out of the four tasks with multi-attributes require more timeexpense of the learned rules and decides the best rule to

after learning than before it.  With the unique-attributebe matched at any point in time.  Thus the compiled rule
representation, all four tasks speed up, by factors between 3 and 9.always remains in the knowledge base.

3. Modifying learned rules: After learning a rule, its left- This is the case even when significantly more unique-attribute
hand side is simplified to reduce its match cost.  This may chunks are learned.be accomplished by processes such as removing
applicability conditions [21].

Eight N Grid Magic4. Restricting expressiveness: The system gives up some
puzzle queens squareexpressiveness of its language to guarantee that all

learned rules are cheap.  This tradeoff is similar to the
Multi-attribute 28.69 4.48 23.44 13.92tradeoff in the expressiveness of a representational
before chunkinglanguage and its computational tractability [8].

In this article, we investigate the strategy of restricting Multi-attribute 34.56 13.52 12.65 18.72
expressiveness for eliminating expensive chunks.  There are two after chunking (11) (3) (17) (5)
obvious candidates for this restriction: restricting the size of the

Unique-attribute 26.67 3.55 19.81 12.62footprint, and restricting the use of multi-attributes. A restriction on before chunking
the size of the footprint will bound the depth of the k-search tree.

Unique-attribute 8.88 0.40 3.09 2.72This will make the cost of the chunk be polynomial in the breadth of
after chunking (86) (3) (142) (5)the k-search tree.  However, if the bound is large the chunks will still

not be cheap, and if the bound is small, extensive modifications will
Table 3-1: The total run time in seconds before and after chunkingbe required to the production system and perhaps also to the

with two different representations.chunking mechanism. The other alternative ⎯ restricting the use of
multi-attributes ⎯ is more promising. Multi-attributes control the 4. The Grid Task: A Detailed Example
branching factor of the k-search tree.  If multi-attributes are Consider the example from the Grid task, shown in Figure 4-1-a.
eliminated completely, the branching factor of the k-search tree will To simplify our analysis, we assume that this grid is infinite. The
be reduced to one.  This will then limit the number of tokens in the task is to go from point A, to point B, a path of length four.  We will
k-search tree to the size of the footprint.  Thus, the cost of a chunk solve this task first using multi-attributes and then using unique-
will be linear in the number of conditions. This conforms to our attributes.
definition of cheap chunks.

What are the implications of such a restriction? Recall that multi-
attributes are used for representing open, unstructured sets in
working memory. This allows accessing (or searching) all elements
of the set by matching a single production; that is, by k-search rather
than by problem space search.  For instance, in Figure 2-1-d, all the
points connected to B are obtained via k-search.  But k-search in the
presence of multi-attributes is combinatoric. When combinatorics
occur in the k-search, then they cannot be controlled, potentially
causing exponential slowdowns.

Thus, the restriction on multi-attributes implies that open,
unstructured sets cannot be represented directly in working memory.
All sets in working memory have to be structured (trees, lists or (b)(a)

A

B

A

B

some other task-specific structures). We refer to the new restricted
attributes as unique-attributes. The principle impact of going with Figure 4-1: The Grid task.
unique-attributes is the removal of the combinatorial k-search from
the matcher ⎯ all combinatorics now occur as search in problem
spaces. There are some fixed overheads associated with the problem In the multi-attribute version, the grid is represented using
space search of the unique-attributes (selection of states, operators connected as a multi-attribute of a point on the grid. Any point Y
etc.). These overheads can cause the system to slow down by a
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adjacent to a point X on the grid is represented as: (point X of length four in the earlier case.
^connected Y). Thus, this is an unstructured set of connections Table 4-1 summarizes the cost and generality of the two
between a point and all its immediate neighbors. The problem space representations. The generality is measured in terms of the number
has only one operator: move. If the current position is at point x, then of transfers in an nxn grid. The length of the path traversed in the
for each point y connected to point x, the operator move will be grid is assumed to be p. Comparing the multi-attributes and unique-
instantiated. The problem solver will solve the problem using some attributes, we see that a single multi-attribute chunk has a level of

2heuristics, or outside guidance, generating a k-search tree of tokens generality that is (p+1) times more than the generality achieved by a
as shown in Figure 4-1-b.  This generates 16 tokens, four tokens for single unique-attribute chunk. Thus to achieve the same

2each step (even if the heuristics don’t work well, the system will performance, the unique-attribute system has to learn (p+1) chunks.
generate only four tokens per step). However, even after learning all those chunks, the cost of matching

The chunk formed in solving the task is shown in Figure 4-2-a. all of the productions is only a polynomial number of tokens in the
The chunk says that if the goal is to reach a point <d>, and if the unique-attribute system. It is exponential in the multi-attribute
current position is point <x>, and if there is a path of length four system; i.e., the multi-attributes have produced an expensive chunk.
between them, then prefer the instantiated move operator along that

Cost in Generality # chunks Cost inpath. The chunk does not consider the points along which the path
tokens in transfers for same tokens withgoes or the direction the path takes. The chunk will therefore transfer

per chunk per chunk generality all chunksto all pairs of points with a path length of four between them. Figure
4-2-b shows the k-search tree formed in matching the chunk.  Each p+1 2 2 p+1Multi (4 − 4)/3 n *(p+1) 1 (4 − 4)/3
condition multiplies the number of tokens by four, which is the

2 2 2number of points connected to any given point.  Since there are four Unique p n (p+1) (p+1) *p
conditions in the chunk (for a path of length four), the total number

Table 4-1: The cost and generality of various representationsof tokens is 340 (= 4 + 16 + 64 + 256) tokens.  Comparing this with
for the Grid task with a fixed p.the four tokens per step in the original problem solving, we see that

the chunk is expensive.  The 340 tokens correspond to all possible To understand why the unique-attribute version has an advantage,
paths originating from point A that have a length of four. consider a problem with a path length p = 4. There are only a

polynomial number of destinations on the grid that can be reached
2from a source: (p+1) = 25. However, there are an exponential

pnumber of paths from the source to these destinations: 4 = 256.
When given the goal of reaching one particular position, the
expensive chunk tries to find all possible paths of length four. It
discovers all 256 paths to all of the 25 positions; an excessive
amount of k-search, since only one path to one position is required.
This k-search of all paths to each of the positions gives rise to the
exponential factor.  On the other hand, the chunks acquired by the
unique-attribute version learn only one path to each of those
positions. This avoids the useless computation of finding all paths to
each position. Even after learning all the chunks in this
representation, the total amount of k-search done is proportional to
the number of destinations (25), and not to the total number of paths
to each of the destinations (256).  Thus, the multi-attribute
representation uses k-search to gain generality. However, in the grid
example, much of the generality is essentially superfluous. This
excessive generality is a typical characteristic of expensive
chunks [18]. A unique-attribute system is able to avoid such
excessive k-search, which ultimately delivers only superfluous
generality.

The restriction on multi-attributes does not imply that a Soar
system has lost all of its sources of generality. Other sources of
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(point <y> ^right <z>)

(b)
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generality, which are independent of the amount of k-search, can still
be exploited. For example:Figure 4-2: The Grid task with multi-attributes.

1. Implicit generalization: Chunks are based only on those
aspects of the situation that were referenced during
problem solving in the subgoal to produce results [7].

In the unique-attribute version, each location points to its four 2. Decomposition: If a task is decomposed into smaller
subtasks, then chunking the smaller subtasksadjacent locations using specific unique-attributes: up, down, left and
independently provides another source of generality.right. Instead of one operator move, there are four distinct operators,

move-up, move-left, move-right and move-down. Again, the problem 5. Experimental Analysis
solver moves from A to B using heuristics or outside guidance, Using two tasks from Table 2-1 ⎯ Grid and 8-Puzzle ⎯ this
generating the tree of tokens shown in Figure 4-1-b.  The chunk section experimentally demonstrates how restricting multi-attributes
formed with this representation is shown in Figure 4-2-c. It says that eliminates expensive chunks and excessive k-search.  To this end,
if the goal is to move to a point <d> from the point <x> and if the each task was run independently with multi-attributes and with
connection between the two points is through the specific relation unique-attributes. For each representation and task, the system was
described (up-right-up-right), then choose the appropriate operator: first run without chunking.  The system was then allowed to chunk
move-up. The k-search tree formed is shown in Figure 4-2-d.  There on the problem, after which it was then run on the same problem;
are only four tokens formed in this case ⎯ much cheaper than the that is, after having chunked on the problem.  A sequence of such
chunk in the multi-attribute case. However, the chunk will transfer experiments was performed with the unique-attributes representation
only if the two points are connected in a specific manner: to accumulate a set of chunks yielding the same level of generality as
up-right-up-right in this case, as opposed to any arbitrary connection achieved with the multi-attribute representation.
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the unique-attributes version isn’t completely consonant with theFigure 5-1 shows the computational effect ⎯ the change in time
ideal computational model is that, though the chunks are individuallyper action ⎯ with the addition of chunks for the two tasks (the
cheap, each one does add something to the total match cost.  Wedetails of the representations used can be found in [19]). The first
refer to this as the average growth effect, the distortion in Soar’sgraph in Figure 5-1 is from the Grid task.  The multi-attribute
computational model due to the addition of a large number ofrepresentation learns 17 chunks (the large number of chunks ⎯ 17
chunks. One potential solution to this problem is parallelism.⎯ is caused by the variety of subgoals that are being chunked) and
Recent work has shown that chunking increases the concurrency, orcauses a computational effect of about .11; that is the time per action
available parallelism, in the system [17]. We expect that with futurehas gone up by about a factor of 9. The unique-attribute version
research in parallel production systems [3, 20], it will be possible torequires learning on more problems to reach the same level of
convert the increase in concurrency into real parallelism, allowinggenerality (each star (*) represents one problem).  In the process, it
Soar to preserve its constant time per step model (if the number ofaccumulates 142 chunks, but the computational effect is much more
chunks remains bounded (see Section 6)).limited (about .42).  The graph for the 8-Puzzle can be interpreted in

a similar manner. Table 3-1 showed how the unique-attribute version is more
efficient after reaching the same level of generality as the multi-
attribute version, but it didn’t show the finer-grained behavior of
what happens during the learning process.  Specifically, it didn’t
address the issue of the extra time spent by the unique-attributes
version in acquiring the extra chunks.  To understand this issue, a set
of randomly-generated problems in the 8-Puzzle domain were run
under both versions.  Both versions started off with zero chunks, and
solved the set of problems with chunking turned on, i.e., chunking
continuously across the set of problems.  Thus, the systems used the
chunks learned in one problem to solve the subsequent problems;
simultaneously learning more chunks in situations where the earlier
chunks did not apply.

The first graph in Figure 5-2 shows the number of decisions
required by the two versions over the sequence of problems.
Decisions are typically used in Soar to measure the amount of search
carried out by the system.  The curves show that initially both
systems take a large number of decision cycles to reach the goal.
However, this pattern changes quickly as the increased generality
provided by the multi-attribute chunks reduces by a greater amount
the number of decisions required for the problems.  As more
problems are solved, and more unique-attribute chunks are acquired,
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the difference in number of decisions gets increasingly small. The
second graph in Figure 5-2 compares the amount of total time
required by the two versions of the 8-Puzzle task.  In contrast to the
picture presented for decision cycles, here the performance of the
unique-attribute version completely dominates the performance of
the multi-attribute version.

The first graph in Figure 5-3 shows the time per decision for the
two systems.  The point corresponding to the zeroth problem
corresponds to the time per decision prior to learning. The main
message of this graph is that time per decision remains fairly
constant in the unique-attribute version, while it takes some fairly
large jumps in the multi-attribute version.  The second graph in
Figure 5-3 shows the cumulative times for the two systems on the 20
problems. The unique attribute system consistently outperforms the
multi-attribute system. Very similar results were obtained for the
grid task (see [19].)

6. The Tree Task: A Counterpoint
In the Grid task there was a trade-off between expressiveness and

efficiency, but the amount of efficiency gained far outweighed the
amount of expressiveness lost. However, this is not always the case.
In the worst case there is a one-one trade-off between the two
factors. A good example of this is the Tree task.  The Tree task is
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just like the Grid task except that the structure to be searched is a
Figure 5-1: Time/action for the Grid and 8-Puzzle tasks. tree, and the path to be found is always from the root to one of the

leaves. In this task, a single multi-attribute chunk, learned for one
branch of the tree, can transfer to all other branches of the tree.  A

From the two graphs, we see that though the unique-attribute unique-attribute chunk, on the other hand, remains specific to a
version may require more chunks to gain the same generality, it particular branch of the tree.  Table 6-1 presents the cost and the
posits a big gain by avoiding excessive k-search (graphs for tokens generality of the chunks learned in this task, for a tree of depth three
per action present a similar picture).  The two graphs also show quite and a branching factor of two.
clearly the ability of the unique-attribute version to stay relatively

One observation that can be made from this table is that the costclose to the ideal computational model of constant time per step, and
of matching all eight unique-attribute chunks (one chunk per path) isthe inability of the multi-attribute version to do so. The reason that
equal to the cost of matching the one multi-attribute chunk.  Thus,
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Figure 5-3: Time/decision and cumulative time for the 8-Puzzle task.
Figure 5-2: Decision cycles and time for the 8-Puzzle task.

Cost in Generality # chunks Cost in
there is no excessive k-search involved in the multi-attribute chunk. tokens in transfers for same tokens with
A second observation is that the lower generality of the unique- per chunk per chunk generality all chunks
attribute chunks demands an exponential number of chunks to cover

Multi 8 8 1 8the level of generality of one multi-attribute chunk.  The obvious
question that this raises is if the unique-attribute version is going to Unique 3 1 8 8
have to acquire an exponential match anyway (to match the
exponential number of productions), why not acquire it all at once Table 6-1: The cost and generality of various representations

for the tree task.via the multi-attribute chunk.  The answer to this question lies in the
issue of protection.  The multi-attribute chunk can add an arbitrarily finite number of chunks that the system will ever be able to acquire.
large exponential cost in a single learning trial.  In contrast, the Under these circumstances the system can work in arbitrarily large
unique-attribute version learns about the individual branches as they exponential domains, but it will never have enough time to learn
are experienced.  The match cost always increases gradually (at everything about the domain (as opposed to learning everything
worst), and remains bounded by the number of branches that have about the domain quickly, but never having enough time to use it).
been experienced.  At worst the number of branches that have been

How often is this worst case likely to arise?  Observe that theexperienced is equal to the number in the tree, but in many domains
large (exponential in the depth) tree structure must be present inonly a small portion of the entire exponential space is ever
working memory for performing this task.  An exponential amountexperienced.
of time must be spent in generating such an exponential structure. It

A related point is that the system is also protected from learning is unlikely that the problem solver will be able to generate very large
an exponential number of chunks by its finite lifetime. If the structures in its lifetime.  On the contrary, in the earlier grid
chunking rate is approximately constant over time, then there is a
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example, the size of the structure is limited, but the matching of the allow us to gain a better understanding of the interaction between
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