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Abstract 

Large production systems (rule-based systems) continue to suffer from 
extremely slow execution which limits their utility in practical 
applications as well as in research settings. Most investigations in 
speeding up these systems have focused on match (or knowledge-search) 
parallelism. Although gocd speed-ups have been achieved in this pnxzss, 
these investigations have revealed the limitations on the total speed-up 
available from this source. This limited speed-up is insufficient to alleviate 
the problem of slow execution in large-scale production system 
implementations. Such large-scale systems are expected to increase as 
researchers develop increasingly more competent production systems. 
In this paper, we focus on task-level parallelism, which is obtained by a 
high-level decomposition of the production system. Speed-ups obtained 

from task-level parallelism will multiply with the speed-ups obtained from 
match parallelism. The vehicle for our investigation of task-level 
parallelism is SPAM. a high-level vision system, implemented as a 
production system. SPAM is a mature research system with a typical run 
requiring between 50.000 to 400,000 production firings and an execution 
time of tbe order of 10 to 100 cpu hours. 
We report very encouraging speed-ups from task-level parallelism in 
SPAM - our parallel implementation shows near linear speed-ups of over 
12 fold using 14 processors and points the way to substantial (SO-100 fold) 
speed-ups from task-level parallelism. We present a characterization of 
task-level parallelism in production systems and describe our 
methodology for selecting and applying a particular approach to 
parallel&e SPAM. Additionally, we report the speed-ups obtained from 
the use of shared virtual memory (network shared memory) in this 
implementation. Overall, task-level parallelism has not received much 
attention in the literature. Our experience illustrates that it is potentially a 
very important tool for speeding up large-scale production systems’. 

1. Introduction 
Large production systems (rule-based systems) continue to 

suffer from extremely slow execution which limits their utility in 
practical applications as well as research settings. Most efforts at 
speeding up these systems have focused on match (or knowledge- 
search) parallelism in production systems [l, 4,7,9, 19,25.26]. 
Though good speed-ups have been achieved in this process, the 
total speed-up available born this source is limited and is 
insufficient to alleviate the problem of slow execution in large- 
scale production systems. Such large-scale systems are expected 
only to increase in the future [2,21], which will exacerbate the 
problem of long run times. 

In this paper, we focus on task-level parallelism, which is 
obtained by a high-level decomposition of the production system. 
Speed-ups obtained from task-level parallelism will multiply with 
the speed-ups obtained from match parallelism. Our vehicle for 
the investigation of task-level parallelism is SPAM [16, 17, 181, a 
high-level vision system, implemented in a production system 
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architecture. SPAM is a mature research system having over 600 
productions, with a typical scene analysis task requiring between 
50,000 to 400,000 production firings and an execution time of the 
order of 10 to 100 cpu hours2. Unlike most other production 
systems examined for studies in parallelism, it has embedded in it 
a large computational demand related to the vision task that it 
performs. This task-related computation is separate from the 
computation performed for match in the system. This is evident 
in the large non-match related processing time for this system. 
While many production systems spend up to 90% of their time in 
match, SPAM spends only about 30-50% of its time there. 

In this paper, we show that the opportunities for task-level 
parallelism in SPAM are high and provide a much larger payoff in 
speed-up than match parallelism. We present a methodology to 
arrive at a suitable parallel decomposition of the SPAM task that 
results in near linear speed-ups of over 12 fold using 14 
processors on a 16-processor shared-memory multiprocessor. Our 
results indicate that a potential speed-up of 50 to 100 fold may be 
achievable due to task-level parallelism. We also describe a set of 
experiments and measurements on SPAM that allowed us to select 
an appropriate grain of decomposition. These techniques should 
be applicable to the analysis of other large production systems for 
evaluating the opportunities for task-level parallelism. We further 
show that match parallelism, when used in conjunction with task- 
level parallelism, gives another multiplicative factor of speed-up 
which is proportional to the size of the match component in the 
overall execution time. In the SPAM system, this additional 
multiplicative factor is around 1.5 to 2. 

This paper is organized as follows: Section 2 provides some 
background about production systems and SPAM, the image 
interpretation system that is the focus of our analysis of task-level 
parallelism. Section 3 discusses match parallelism and task-level 
parallelism in production systems. Section 4 discusses the 
implementation methodology used to determine appropriate levels 
of decomposition for task-level parallelism. A new system, 
SPAM/PSM, resulted from the application of this methodology 
and its implementation is described in Section 5. Section 6 
presents detail& results of experiments with match and task-level 
parallelism (with varying grain sizes). Section 7 presents the 
results of our experiments with virtual shared memory (or 
network shared memory). Section 8 presents a summary of our 
research results. Finally, Section 9 discusses some issues for 
future work. 

2. Background 
In this section we provide a brief overview of OPS5 and 

SPAM. SPAM is implemented in OPS5. hence the description of 
OPS5 will be useful in understanding some of the issues in how 
SPAM represents knowledge about spatial and structural 
constraints used in computer vision. Besides providing 

%ese mcasmunmts are taken front the Lip-based version of OPSS nmning on a 
VAX/785 processor. 
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background information, this section introduces the terminology 
that will be used in the rest of this paper. 

2.l.OPS5 
An OPS5 [3] production system is composed of a set of if-Gen 

rules, called productions, that make up the production memory. 
and a database of temporary data structures, called the working 
memory. The individual data structures are called working 
memory elements (WMEs). and are lists of attribute-value pairs. 
Each production consists of a conjunction of condition elements 
(CEs) corresponding to the if part of the rule (also called the 
left-hand side or LIB). and a set of actions corresponding to the 
then part of the rule (also called the right-hand side or RHS). 

The CEs in a production consist of attribute-value tests, where 
some attributes may contain variables as values. The attribute- 
value tests of a CE must all be matched by a WME for the CE to 
match; the variables in the condition element may match any 
value, but if the variable occurs in more than one CE of a 
production, then all occurrences of the variable must match 
identical values. When all the CEs of a production are matched, 
the production is satisfied, and an instantiation of the production 
(a list of WMEs that matched it), is created and entered into the 
conflict set. The production system uses a selection procedure 
called conflict-resoluhon to choose a production from the conflict 
set, which is thenfired. When a production fires, the RHS actions 
associated with that production are executed. The RHS actions 
can add, remove or modify WMEs, or perform I/O. 

The production system is executed by an interpreter that 
repeatedly cycles through three steps: (1) Match (2) Conflict- 
resolution (3) Act. The match procedure determines the set of 
satisfied productions, the conflict-resolution procedure selects a 
single instantiation, and the act procedure executes its RHS. 
These three steps are collectively called the recognize-act cycle. 

2.2. SPAM: A Production System Architecture For 
Scene Interpretation 

SPAM [16.17.18] is a production system architecture for the 
interpretation of aerial imagery with applications to automated 
cartography and digital mapping. It tests the hypothesis that the 
interpretation of aerial imagery requires substantial knowledge 
about the scene under consideration. Knowledge about the type 
of scene - airport, suburban housing development, urban city - 
aids in low-level and intermediate level image analysis, and will 
drive high-level interpretation by constraining search for plausible 
consistent scene models. SPAM has been applied in two task 
areas: airport and suburban house scene analysis. The remainder 
of thii section describes the SPAM architecture, and gives run- 
time statistics that lead us to focus on two of its phases for 
parallelization. 

As with many vision systems, SPAM attempts to interpret the 
2-dimensional image of a 3-dimensional scene. A typical input 
image is shown in Figure 1. The particular goal of the SPAM 
system is to interpret an image segmentation, composed of image 
regions, as a collection of real-world objects. For example, the 
output for the image in Figure 1 would be a model of the airport 
scene, describing where the runway, taxiways, terminal- 
building(s), etc., are all located. SPAM uses four basic types of 
scene interpretation primitives: region, fragments, functional 
areas, and models. SPAM performs scene interpretation by 
transforming image regions into scene fragment interpretations. It 
then aggregates these fragments into consistent and compatible 
collections called functional areas. Finally, it selects sets of 
functional areas to form models of the scene. 

Figure 1: Aerial image of San Francisco Airport 

I Phase 4 Model Generation 
(MODEL) Eva%%ion 

Phase 3 
PAI 

Phase 2 
0-w 

Phase 1 
N-R 

I Segmentation Region 

Figure 2: Interpretation phases in SPAM. 

As shown in Figure 2, each interpretation phase is executed in 
the order given. SPAM drives from a local, low-Ievel set of 
interpretations to a more global, high-level, scene interpretation. 
There is a set of hard-wired productions for each phase that 
control the order of rule executions, the forking of processes, and 
other domain-independent tasks. However, this “bottom-up” 
organization does not preclude interactions between phases. For 
example, prediction of a fragment interpretation in 
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ftinctional-area (FA) phase will automatically cause SPAM to 
reenter local-consistency check (LCC) phase for that fragment. 
Other forms of top-down activity include stereo verification to 
disambiguate conflicting hypotheses in model-generation 
(MODEL) phase and to perform linear alignment in 
region-to-fragment (RTF) phase. 

I SPAM Phase. 1 RTF 1 LCC 1 FA 1 MODEL I Total 1 

Total CPU 
Time (hours) 

1.5 144.5 7.3 0.71 154.01 

Total 
#Firings 

11274 185950 10447 3085 210756 

Effective 
Roductions/Semnd 

Total 
Hypotheses 

2.08 0.357 0.397 1.20 0.380 

466 N/A 44 1 NIA 

Table 1: San Fraocisw Airpt (log #63) 

Table 2: Washingten Niuional Airpert (leg #405) 

SPAM Phase 

Roductioos/Second 

RTP LCC FA MODEL Total 

0.25 4.12 2.33 0.33 7.03 

4713 36949 1503 3774 46939 

5.24 2.30 0.160 3.02 1.85 

199 N/A 21 1 N/A 

Table 3: NASA Ames Moffett Field (log #415) 

Another way to view the flow of processing in SPAM is that 
knowledge is used to check for consistency among hypotheses; 
contexts are created based on collections of consistent hypotheses, 
and are then used to predict missing components. A collection of 
hypotheses must combine to create a context from which a 
prediction can be made. These contexts are refinements or spatial 
aggregations in the scene. For example, a collection of mutually 
consistent runways and taxiways might combine to generate a 
runway functional area. The context of a runway functional area 
then predicts that certain sub-areas within that functional area are 
good candidates for fiidmg grassy areas or tarmac regions. 
However, an isolated runway or taxiway hypothesis cannot 
directly make these predictions. In SPAM the context determines 
the prediction. This serves to decrease the combinatorics of 
hypothesis generation and to allow the system to focus on those 
areas with strong support at each level of the interpretation. 

Tables 1, 2, and 3 give statistics for run-time and number of 
production firings for each interpretation phase in SPAM for each 

of the three airports used in this study: San Francisco 
Internutional (SF) , Washington National (DC), and NASA Ames 
Moffett Field (MOFF) . It is interesting to note that ICC and PA 
phases account for most of the overall time in a complete run. 
Further, within these phases much of the RHS evaluation is 
performed outside OPSS using external processes. For example, 
FA spends much of its time doing RHS evaluation outside of 
OPS5. RTF, on the other hand spends most of its time within the 
traditional OPS5 evaluation model and consumes less time than 
FA, even though it executes a comparable number of productions. 

As a result of this analysis, we decided to focus on parallelizing 
the LCC and RTF phases. The choice of LCC was motivated by 
the observation from the tables presented earlier, that LCC is by 
far the most expensive phase in terms of amount of time spent, 
number of productions, as well as number of production firings. 
Another rationale for this approach is the observation that this 
phase has the largest potential for growth. We believe that as new 
knowledge is added to the existing SPAM system, the proportion 
of time can only increase in the LCC phase. The RTP phase was 
selected for parallelization since it fits the framework of a 
traditional OPSS-system more closely than the other phases of 
SPAM - it thus contrasts with the computation in LCC, 
providing generality to the results presented. 

It is interesting to consider the nature of computations 
performed in the LCC and RTF phases and understand the 
differences among them. The RTF phase performs a traditional 
heuristic classification (or analysis) task [3]. It 
classifies/subclassifies regions in a scene as fragments. For 
example. it may classify linear regions in the scene as taxiways or 
runways. 

The ICC phase performs a constraint-satisfaction task In this 
phase, knowledge of the structure or layout of the task domain 
(i.e. airports or suburban housing developments) is used to 
provide spatial constraints for evaluating consistency among 
fragment hypotheses. For example, runways intersect taxiways 
and terminal buildings are adjacent to parking apron are 
examples of the kinds of constraints that are applied to the airport 
scene segmentation. It is important to assemble a large collection 
of such consistency knowledge since the results of these tests are 
used to assemble fragment hypotheses found to be mutually 
consistent as contexts for further interpretation within the 
functional area phase. 

3. Sources of ParalIelism in Production Systems 
There are two sources of parallelism in production systems: 

match parallelism and task-level parallelism (TLP). In this 
section we first discuss existing results in match parallelism. We 
then discuss task-level parallelism and introduce a taxonomy for 
describing various approaches to achieving effective speed-ups. 

3.1. Match Parallelism 
In general, production systems spend most of their time (> 

90%) in the match phase of the recognize-act cycle. This makes it 
imperative that the match phase be speeded up as much as 
possible. In the past few years, an increasing number of 
researchers have explored many alternative ways to speed up the 
match production 
parallelism [A,?, 9, 19,22,25,26]. 

systems using 

Our own efforts in speeding up the match have culminated in 
ParaOPSS [9,13], an optimized C-based parallel implementation 
of OPS5 for shared memory multi-processors. ParaOPS5 
represents our current technology for achieving match parallelism 
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within systems such as SPAM. This implementation parallelizes 
the highly efficient Rete [5] match algorithm. ParaOPS5 exploits 
parallelism at a fme granularity: subtasks execute only about 100 
instructions. ParaOPSS has been able to provide significant speed- 
ups for OPS5 systems that are match-intensive. Figure 3 shows 
the speed-ups achieved with our current implementation for three 
different match intensive systems: Rubik, Weaver and Tourney. 
The speed-ups are for an implementation on the Encore Multimax 
and are reproduced from [9]. Though Rubii and Weaver are seen 
to achieve good speed-ups, the speed-up in Tourney is quite low. 
The speed-ups are a function of the characteristics of the 
productions in the production system (see [S. 91.) 

Number of Match Processes 

Figure 3: Speed-ups for OPS5 on the Encore Multimax [9]. 

Although systems such as ParaOPSS have achieved good 
speed-ups, the total possible speed-up via match parallelism in 
current production systems is limited (only 20 to 40 fold [7]). 
This limit is imposed by: 

1. The recognize-act cycle of OPSS: The OPS5 model 
requires a synchronization in it’s resolve phase. 
Thus match parallelism is limited to individual 
cycles; we cannot extract match parallelism across 
cycles. 

2. Limited match effort per cycle: In every recognize- 
act cycle, only a limited number of productions are 
affected, i.e., the match effort per cycle is also quite 
limited. 

Furthermore, match parallelism is based on the assumption that 
the match phase dominates the entire computation. However, it is 
possible that the system under consideration is embedded in some 
other computationally demanding environment. In such cases, it 
is necessary to parallel& the rest of the computation besides 
match. Consider a system that spends only 50% of its time in 
match. Even if the match is made infinitely fast, the total speed-up 
possible will be only a factor of two (Amdahl’s law). 

3.2. Task-Level Parallelism 
The limitations of match parallelism described in the previous 

section encourage the investigation of task-level parallelism. 
Task-level parallelism has also been referred to as application 
paralleliim [7], concept parallelism 1231, and parallel rule 
fiigs [12]. It refers to the use of knowledge about the problem 
domain to create a task decomposition suitable for parallel 
execution. Our choice of the term task-level parallelism for this 
source of parallelism is partly historical and partly dictated by the 
inadequacy of the other terms to cover the kind of parallelism 
provided by production systems like Soar [ 141. 

A system exploiting task-level parallelism would be 
implemented on top of a system exploiting match parallelism. The 
speed-ups obtained from these two sources can be independent 
and therefore multiply. Task-level parallelism can be understood 
better by considering the possible dimensions along which it can 
be divided. These dimensions are explained in the following 
paragraphs. 

The fist dimension is based on synchronous/asynchronous 
production firings. Synchronous production-fig systems 
always require a synchronization in the resolve phase of the 
recognize-act cycle. All the productions are matched in parallel. 
In the resolve phase, one or more of the productions are selected 
for fig. In the act phase, the selected productions are fiied in 
parallel. 

In asynchronous production-firing systems there is no 
requirement for a synchronization in the resolve phase across 
processors. Thus, these systems do not have distinct match, 
resolve and act phases across the parallel system. 

Synchronous systems are less capable of handling variances in 
processing times for subtasks [20]. As shown in [20], given a 
fixed amount of work, in the presence of variance, a synchronous 
system quickly reaches saturation speed-ups, while an 
asynchronous system can continue to exploit linear speed-ups. So, 
in a production system embedded in an computationally intensive 
environment, if executing the RHS of certain productions takes 
much longer than others, the performance of the synchronous 
system will degrade heavily. However, synchronous systems may 
be preferred in the development and debugging stages. 

The second dimension is based on implicitlexplicit detection of 
parallelism. The parallelism is implicit if the system or the 
compiler has to extract parallelism out of the existing OPS5 code. 
This requires an analysis OF the interference caused by firing 
productions in pa&cl. 

Explicit parallelism refers to providing explicit information to 
the system for exploiting task-level parallelism. Thus, the system 
may be supplied with the information that certain parts of a given 
task can be solved in parallel, or that certain productions can 
always be fired in parallel. 

In implicit parallelism, if the system engages in extracting this 
parallelism at compile-time, then its extraction of parallelism has 
to be very conservative, as the variable-bindings are unknown. If 
parallelism is extracted at run-time, then there are overhead costs 
paid at run-time. These overheads are sequential, and hence can 
cause considerable slowdowns. A system for exploiting explicit 
paralleliim is able to avoid these problems. 

When the parallelism is implicit, the granularity is usually at 
the level of productions; it seems difficult to discover a higher 
level of granularity with implicit parallelism. With explicit 
parallelism, the user has the freedom to choose the right 
granularity. The level of granularity is a complex tradeoff of the 
number of processors available, architectural parameters. 
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variances, data structures and task management overheads. The 
granularity issue is discussed in Section 4. 

The third dimension is based on distribution: rule 
distributionlworking memory element distributionho distribution. 
Thii separation is related to the implementation of a parallel 
rule-tiring system. In the implementation of a parallel rule-ftig 
system, it is possible to distribute the productions (rules) among 
processors, where each production set has its own conflict set. 
This distribution could be done automatically or with the help of 
the user. However, optimal distribution of productions among 
processors is a difficult problem. 

A second approach is to allocate all the productions to each 
processor; the working memory elements are then distributed 
among the processors. A third approach involves no distribution 
at all. Here, the parallel rule-firing is built into the control 
structure of the system. 

Table 4 shows the various dimensions and the classification of 
various parallel rule-firing systems along these dimensions, 
These dimensions will help to investigate the task-level 
parallelism in SPAM/PSM. The table uses the names of authors 
to represent systems that do not have any names. We also 
indicate the third dimension that classifies the type of distribution 
used: rule-distribution, working memory element distribution, or 
none. 

The SPAM/PSM system is the system described in thii paper; 
the design choices are discussed in detail in Section 4. These 
dimensions are not intended to be binary; rather, different systems 
could take different positions along a continuum in these 
dimensions. However, in the interests of clarity, the table makes a 
binary division. For instance, the system in [23] is classified as 
using implicit parahelism - however, it uses some explicit 
parallelism. It should be noted that except for Soar and 
SPAM/PSM, all other systems present simulation results on mini- 
production systems (with 50 or less productions)3. 

Dimensions Synchronous :: Distribution Asynchronous :: Distribution 

Implicit Ishi& & 
stolfo [ 121 :: RI& 
Ishida [ 1 l] :: Rule 
oshisanwo & 
Dasicwicz 123): Rlllt 

Explicit soar (141 :: None SPAMIPSM :: WhIE 

Table 4: Dimensions of task-level parallelism. 

4. ImpIementation Methodology 
This section develops a methodology for applying task-level 

parallelism within the context of SPAM. We use knowledge 
about the task domain to specify several hierarchical task 
decompositions of the problem in which parallelism can be 
exploited. Thus, the characteristics of the SPAM task fit the 
requirements for exploiting task-level parallelism along the 
explicit dimension described in Section 3.2. 

As described in Section 2.2, we will concentrate on the RTF 
and LCC phases of SPAM for parallelization. The LCC phase, 
because of its computationally intensive nature was the first one 
to be parallelized. Therefore, our implementation methodology is 

‘While we reported results of match par&.lism in Soar from a real 
implementation in this conference last year; the results of task-level paralldism in 
Soar are based on simulations D]. 

described in detail for LCC; the methodology for the RTF phase is 
similar and only the relevant results from that phase are presented. 

The LCC phase applies geometric knowledge (constraints) 
from the selected domain to the set of interpretations made from 
the dataset. This application of geometric knowledge can be 
logically decomposed into several levels, where the tasks within 
each level are independent and can be performed in parallel. This 
is illustrated in Figure 4. These levels of decomposition are 
described below: 

l LCC Phase: At the highest phase level, the 
computation is for the entire LCC phase. 

l Lewel 4: The phase level computation may be 
decomposed into tasks at Level 4, where each task 
applies multiple constraints to a single class of 
objects. For instance, a task may apply multiple 
constraints to all objects of class terminal building. 

l Level 3: A single task at Level 4 may be decomposed 
into multiple tasks at Level 3. A task at Level 3 
applies multiple constraints to a single object within 
the class of objects selected at Level 4. For example, 
a Level 3 task may apply multiple constraints to a 
single terminal building object. 

l Level 2: A single task at Level 2 involves applying a 
single constraint to a single object. Thus, a task at 
Level 2 may apply a constraint such as, access roads 
lead to terminal buildings, to a single terminal 
building chosen for a task at Level 3. 

l Level I: A single task at Level 2 may have several 
components to check in applying a constraint to an 
object. Thus a constraint such as, access roads lead to 
terminal buildings, requires several roads be checked 
against the terminal building. A task at Level 1 would 
perform one of these constraint components. 

..&..!&..j. ..--...... _ . . . . . . . . _ -...... _ -...... i;~ . . . . . . . . . . . . ..-- -...i .._..... ~%Y&y;; ._.. 

..-...~..._........-......~~......~~~...-..-.....~.~.~.~......~...-.-.~...~.........._.....____________ 
LcvclThrca r------I inn OmpnfRulaaEs ..~......._........-................~~-....~.~.....~.~......~.......~.~......__......___._...___.______ 
LcvdTrn ly~IrI~Inn-[r~ s~Rulaa-m . . . . . . ..*.__......._~.......-.......~.....~~~......~.~..............-~-...~. . . . . .._._._...____________ 
~df3m nPIDolnoooool1oollloPllooollonooll1loolo rqlc-lQ=k 

Figure 4: Levels of processing in SPAM LCC. 

Withii a level, each task involves the firing of from 3 to 100 
productions. As mentioned in Section 3.2, an implicit approach to 
extracting parallelism would make it difficult to obtain parallelism 
at a higher level of decomposition than individual production 
firings. Therefore, for this application, an explicit approach to 
parallelism is more appropriate. 

With an explicit approach to parallelism, the choice of the right 
level of decomposition, or the right granularity, for parallelization 
must be made. This choice is determined by several factors: 

1. Task granulari~: As the average time per task gets 
smaller, task management overheads will have a 
greater impact and communication overheads and 
system resource contention wiII become more of a 
bottleneck. 

2. Ratio of toAs to processors: The achievable 
parallelism is bounded by the number of available 
processors. At lower task to processor ratios, a large 
variance in task processing time will have a negative 
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impact on processor utilization and the speed-ups 
obtained from parallelism. With higher ratios, the 
impact is less pronounced. 

3. Coe$Icient of variance: Defined as (stsndard 
deviation/average) this provides a means of 
normalizing, for different levels of decomposition, 
the effect of variance in task granularity on 
processor utiliiation. A high coefficient of variance 
will reduce processor utilization, resulting in lower 
speed-ups. Thii effect is more severe in synchronous 
systems. 

4. Decomposition effort: This is a somewhat subjective 
measure. Proceeding down the hierarchy of levels, 
each task at the current level must be decomposed 
into several tasks at the next level of granularity. 
Usually. more work is required to specify the 
decomposition and design an implementation at the 
lower levels. The benefits of the additional 
parallelism that can be achieved at a lower level 
relative to the effort required must be assessed. 

In order to choose the right level of decomposition at which to 
parallelize the SPAM XC phase, we instrumented the SPAM system 
to obtain measurements at each level for the number of tasks and 
their run-time average, standard deviation, and coefficient of 
variance. The results of these measurements for each of the three 
airport datasets is presented in Tables 5.6, and 74. 

Table 5: Average, standard deviation and coeff. of variance for SF. 

Level Average Standard Coefficient Number 
time per task deviation of variance of tasks 

@d b-4 

Level 4 1308.66 641.72 0.490 9 

Level 3 78.51 30.48 0.388 150 

Level 2 24.04 9.51 0.396 490 

Level 1 0.430 0.0677 0.157 27399 

Table 6: Average, standard deviation and coeff, of variance for DC. 

Using information from Tables 5. 6, and 7, the appropriate 
level of granularity can now be chosen. For Level 4, the task to 
processor ratio is smaller than one, so we immediately rejected 
pursuing parallelism at this level. Levels 3 and 2 are very similar 
to each other in that they have enough tasks, their variances are 
not large, and the task granularities are much larger than the 
expected task management and communication overheads. Both 
levels, therefore. seemed to us to be worthwhile candidates. Level 
3 seemed somewhat more desirable as less effort appeared to be 

4s~~c the at’dysis is pdomcd using the cnigittd, exnpensive Lispbased SPAM 
system, we have extracted B representative subset of the three airpcnt datasets to drive 
the analysis. 

Level Average Standanl Coefficient Number 
time per task deviation of variance of tasks 

(se4 (se4 

Level 4 165.60 121.20 0.732 9 

Level 3 20.07 8.02 0.399 74 

Level 2 5.57 2.43 0.436 268 

Level 1 0.349 0.0455 0.130 4274 
i 

Table 7: Average. standard deviation and coeff. of variance for MOFF. 

required of us to achieve amounts of parallelism similar to that 
available in Level 2. 

Level I was rejected for several reasons. First and most 
importantly, the additional effort involved in decomposing the 
system at the granularity of Level 1 would not allow us to achieve 
any more parallelism than at Level 2 or 3 because of the limitation 
on the number of processors. Second, the task granularity is much 
smaller and thus closer to the overheads for task management and 
communication than any of the other levels. Finally, the task to 
processor ratio is on the order of 1000. This can have a 
detrimental affect due to the initialization overhead. Our 
conclusion, then, was to exploit parallelism at the granularity of 
Levels 2 or 3. 

The decomposition methodology can be summarized as 
follows: 

l Analyze the baseline system and determine where the 
time is going. 

l Determine if the explicit dimension of TLP (Section 
3.2) is appropriate. 

l Characterize the computation in terms of independent 
task decompositions at different granularities. 

l Obtain measurements of the system characteristics for 
each level of decomposition. 

l Analyze the measurements to select a level of 
decomposition for parallelization. 

A similar analysis of the RTF phase was performed. This 
resulted in a decomposition level providing approximately 60-100 
tasks in the three datasets at roughly the same granularity as Level 
2 of the LCC phase, and a low coefficient of variance of 
approximately 0.3. 

The second dimension of task-level parallelism addresses the 
issue of synchronous versus asynchronous execution. With an 
explicit decomposition at Level 3, there is no synchronization 
requirement. Furthermore, asynchronous models help in reducing 
the impact of variance. We therefore decided to decompose the 
system so as to allow the asynchronous rule-firings. 

The final dimension of task-level parallelism addresses the 
issue of production versus working-memory partitioning. We 
decided to use working-memory partitioning, as this facilitates the 
explicit decomposition at the higher granularity. 

5. SPAM/PSM Implementation 
This section describes the SPAM/PSM system for exploiting 

task-level parallelism in SPAM. The system is built on top of the 
ParaOPS5 system described in Section 3.1. The SPAM/PSM 
system is implemented on an 16-processor Encore Multimax, a 
shared-memory multiprocessor based on the National 
Semiconductor NS32332 processor (rated at approximately 1.5 
MIPS), running the MACH operating system. 
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5.1. SPAM/PSM Architecture 
Figure 5 gives a process hierarchy view of the SPAMIPSM 

system. Viewed from the top level, the execution model consists 
of a cotirol process, a set of task processes, and a queue of tasks 
to be executed. The size and number of tasks in the queue reflects 
the level of decomposition chosen for the particular SPAM phase. 
As part of initialization, the control process builds the queue of 
tasks. It then forks the task processes and, once they have 
completed all the tasks, collects from them the results that will be 
passed on to the next SPAM processing phase. 

Figure 5: Organization of the SPAhWSM system. 

Each of the task processes is a complete and independent 
ParaOPS5 system. Thus, each task process has its own working 
memory, conflict set, etc. Each task process has a production 
memory, which represents all the productions in the system, and 
effectively has a copy of the initial working memory supplied by 
the control process. At system initialization time, each task 
process can also fork a set of match processes (see Figure 5) 
which will perform the match in parallel. 

Execution of a particular SPAM phase involves a task process 
removing a task from the queue and executing its ParaOPSS 
system on that task. The task itself is just a working memory 
element, which initializes the production system of the process. 
Thus, each task can be characterized as the execution of an 
independent OPS5 program. 

In the absence of the match processes, a task process performs 
the usual ParaOPSS role of match, conflict resolution, and 
production ftig, to carry out the OPS5 recognize-act cycle. If 
dedicated match processes are present, they perform the match 
instead, providing a second and independent axis of parallelism in 
the SPAM/PSM system. When there are no productions left to 
fire, the task is complete, and the task process goes to the queue 
for another task. 

Thus, the SPAM/PSM system realizes our specifications: 

1. Explicit parallelism: The decomposition of the task 
at hand is explicitly specified. The task queue is 
initialized with independent tasks, depending on the 
level of decomposition, in the beginning of the run. 

2.Asynchromus production firing: All the task 
processes are independent ParaOPS5 systems. 
Therefore, these processes can fire productions 
without synchronizing with each other. 

3. Working-memory element distribution: Each task 
process has a copy of the entire set of productions. 
The working memory is distributed among the 
various task processes. 

5.2. Measurement Techniques 
The control process previously described is used to monitor 

and time the processing. Measurement begins at the point after 
which the control process has built the task queue and forked the 
task processes, and all the task processes have performed their 
initializations. Speed-ups are computed by comparing the 
measured execution time against the execution time of the 
BASELINE version, which consists of the control process, one task 
process, and no dedicated match processes. 

Because of the 16 processor limit, we measure the effects of 
task-level parallelism and match parallelism in isolation. We 
allocate one processor for the control process, which is used only 
to time and not to perform tasks, and we allow one processor to 
the operating system. This permits us to vary the number of task 
processes from 1 to 14 in the isolated messurement of task-level 
parallelism. Next we measure the effect of match parallelism in 
isolation by using a single task process and varying the number of 
dedicated match processes from 0 to 13. 

We are then able to use these two separate measures of task- 
level parallelism and match parallelism to predict the combined 
effect of the two. However, with 14 available processors, we are 
able to test only a subset of the possible combinations. For 
example, 4 task processes, each having 2 dedicated match 
processes. uses 12 processors (4 + (4 * 2)). Thus, dedicating 3 
match processes requires 16 processors (4 + (4 * 3)) and, 
therefore, cannot be accommodated. 

6. Results and Analysis 
This section presents the results of task-level parallelism in 

LCC and RTF phases on three different airport datasets: SF, DC, 
and MOFF. As described above, the speed-ups are obtained for 
applying task-level parallelism and match parallelism in isolation 
and then for a combination of the two. Again we provide detailed 
results for LCC and then provide the summary of results for RTF. 

It is important to note that all the speed-ups are computed 
against a baseline system which represents an optimized 
tmiprocessor implementation. The original SPAM system is 
implemented in Lisp, using an unoptimized Lisp-based OPS5. It 
forks independent processes to perform geometric computations 
in the RHS. We ported this entire system to C and ParaOPS5 and 
replaced the forked computational processes with C function calls. 
This baseline system itself provides approximately a lo-20 fold 
speed-up over the original Lisp-based implementation on the three 
datasets used here. 

6.1. The Baseline System for the LCC phase 
The baseline version of the LCC phase of the system uses a 

single task process to execute all the tasks in the system. The 
results from this version are given in Table 8 and provide a 
picture of the magnitude of the LCC phase. The column marked 
DATASET gives the name of the airport and the decomposition 
level used. The column marked TOTAL TIME shows the total time 
to execute all the tasks from the queue for the given number of 
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tasks executed. The average time per task is then shown in the 
next column. Finally, we further characterize the LCC phase with 
the total number of productions flred (PRODS FIRED) and RHS 
actions performed (RHS ACIIONS) . 

Dataset Total NllIYlbU 
of tasks 

Average Prods 
time per flied 

task 
04 

I 

SF Level 3 1433 283 5.07 33475 42383 

SF Level 2 1423 941 1.51 32251 41159 
I I I 

DC Level 3 1 988 1 151 6.55 20059 3 1205 

1 DCLevel2 1 956 1 490 I 1.95 I 19418 I 30564 I 

1 MOFFLevel3 1 991 I 209 I 4.74 1 22203 1 23637 1 

MOFF Level 2 973 700 1.39 21294 22728 

Table 8: Measurements for baseline system on the datasc&. 
(Represents the optimized, ParaOPSS-based, unipocessc~ version.) 

The execution times in Table 8 provide the basis for computing 
all of the speed-ups. For a given airport dataset, there is a small 
difference in the total execution time between the two levels of 
decomposition. These differences arise due to the differences in 
the initial set of productions fired for generating the tusks for the 
two levels. 

6.2. Speed-ups due to Task-Level Parallelism in LCC 
The results of applying task-level parallelism to LCC are 

shown in Figure 6. The speed-up curves show near linear speed- 
ups for both levels of decomposition. The speed-ups within a 
level are almost the same among the three airport datasets. The 
maximum speed-up achieved using 14 processors is 11.90 fold in 
Level 3 and is 12.58 fold in Level 2. 

Across the two levels, we see that the curves are consistently 
better in Level 2, although by only a small factor (less than 10%). 
While the difference is small, Level 3, with its higher granularity, 
was expected to have the edge in speed-up, since its task 
management overheads would be lower. However, the task 
management overheads in both levels are very low: less than 25 
seconds, or less than .l% of the processing time for all the tasks. 
Moreover, the coefficient of variance for tasks at both levels was 
seen to be the same in Section 4. 

Further investigation of the individual processing times of the 
tasks in the queue showed that there are a few tasks in each level 
that have execution times that are an order of magnitude larger 
than the average task in that level. Some of these tasks occur at 
the end of the task queue and create a tail-end effect in which 
processor utilization is low at the end of the phase. The relative 
disparity of these large tasks is greater within Level 3 and thus 
accounts for the slightly better speed-ups in Level 2. 

One way to both negate this disparity and reduce the tail-end 
effect would be to use a separate task queue for the larger tasks 
and process them at the beginning of the phase. This would result 
in better processor utilization and thus better speed-up curves in 
both levels. SPAM can provide the necessary information to 
identify the sizes of the tasks. This and other related issues of 
scheduling tasks are subjects for future work. 
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Figure 6: Speed-ups varying the number of task-level processes. 

6.3. Speed-ups Due to Match Parallelism in LCC 
Figure 7 shows the results for applying match parallelism to 

each of the tasks in a parallel decomposition for level 3. Match 
parallelism is obtained by dedicating processes to perform the 
match within the OPS5 recognize-act cycle. Since the baseline 
version of the system has only a task process and no dedicated 
match processes, it is represented in both graphs at position 0 on 
the horizontal axis. From the graphs, we see that applying match 
parallelism to the LCC phase yields very different speed-up results 
from those achieved using task-level parallelism. As stated in 
Section 3, the theoretical maximum speed-up that can be obtained 
is limited according to the percentage of total execution time 
spent in match, which is less than 50% in LCC. 

The dotted lines on the graphs show the theoretical speed-up 
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Figure 7: Speed-ups varying the number of match processes. 

limits. For Level 3, these limits are 1.95, 1.36, and 1.54 for SF, 
DC, and MOFF respectively. We were able to obtain respective 
speed-ups of 1.71, 1.28, and 1.45 which represent 88%, 94%. and 
94% of the corresponclmg asymptotic limits. In all three cases, the 
speed-ups peaked using 6 or less match processes. The results for 
level 2 are similar (see [lo]). 

6.4. Multiplicative Speed-ups in LCC 
To validate the multiplicative effect of the two independent 

axes of parallelism [24]. the system was run using task-level and 
match parallelism in consort. While the scope of the experiments 
was limited by the small number of processors, the speed-ups 
obtained in these combined runs were consistent with the speed- 
ups predicted by the multiplication of speed-ups from the two 
separate sources. Table 9 shows the results of some of these 
combined runs on SF for Level 2. The top row of the table varies 
the number of dedicated match processes from 0 to 4. The left 
column of the table varies the number of task processes from 1 to 
7. The first row of numbers in the table gives the speed-ups from 
match parallelism in isolation. The first column of numbers in the 
table gives the speed-ups from task-level parallelism in isolation. 

The table entry at (TaskI, Match) represents the baseline 
version of the system. Each of the other table entries shows the 
achieved multiplicative speed-up from the combined sources with 
the predicted speed-up in parentheses directly below. For 
example, the entry (Task4 Match$ represents the use of 4 task 
processes with each having 2 dedicated match processes. The 
achieved speed-up for this configuration is 5.82 fold and the 
predicted speed-up is 5.96 (3.98’1.50). Table entries marked with 
an asterisk could not be measured due to a lack of processors on 
the machine (see Section 5.2). For example, (Task4, Match+ 
requires 17 processors: 1 control process, 4 task-level processes, 
and 12 (= 4*3) dedicated match processes. The table shows the 
achieved speed-ups to be very close to the predicted speed-ups. 
Similar results were obtained for DC and MOFF. 

Match Match, Match, Match, Match, 

I Task, 
I 

1 
I 

1.21 1 1.50 1 1.60 1 1.68 1 

1 Task4 1 3*98 1 (i:::) 1 (;:;:) 1 (6.;7) 1 (619) 1 

1 Task5 1 4.93 1 (::if, 1 (719) 1 (7l9) 1 (8;s) 1 

1 Task6 1 5’89 1 (t:?;) 1 (8;3) 1 (912) 1 (9;O) 1 

Table 9: Multiplicative speed-ups in SPAM/PSM for SF Level 2. 
Parenthesized numbers are the predicted speedups. 

6.5. Results from the RTF phase 
From a static analysis of the productions, the RTF phase was 

expected to be match intensive and hence provide speedups in 
step with the results of traditional OPS5 based systems. Recall 
that the RTF phase of SPAM is a traditional heuristic 
classification task, mapping regions in an image to interpretations 
called fragments. However, measurements revealed that match 
constituted 60% of the execution time. This is closer to more 
traditional OPS5 systems; although traditional OPS5 systems 
spend an even higher percentage of their time in match. Our 
results showed that, as expected, the speedups from match 
parallelism are limited to a factor of 2.5 as shown in Figure 8. 
However, task-level parallelism still provides good speedups. 

Although task-level parallelism provides good speed-ups in the 
RTF phase, these speed-ups appear to be a little lower than the 
speed-ups provided in the LCC phase. This occurs partly because 
RTF tasks are fewer and finer-grained than the LCC tasks. Part of 
the reason is also that these results come from a more optimized 
version of SPAM/PSM. This phenomenon of measuring speedups 
on somewhat different versions of the two phases is actually a part 
of a more general phenomenon - we have been working with 
SPAM/PSM system for almost 2 years now. When working with 
a large system like SPAM/PSM over an extended period of time, 
speed-ups available in the system vary. Such variations have 
occurred due to optimizations and changes in the underlying 
SPAM system, the SPAM/PSM environment. as well as changes 
in the operating system. These changes typically reduce the 
granularity of the computation, reducing the speed-up by a small 
amount. Therefore, we expect that if the speed-ups in RTF had 
been computed with the earlier version of SPAM/PSM, they 
would have been a little higher. 

7. Experiments with the Shared Virtual Memory 
System 
The speed-up curves for task-level and match parallelism 

graphically indicate that the benefits from task-level parallelism 
are much more significant than from match parallelism. We 
believe that the potential for additional speed-ups in SPAM from 
task-level parallelism is quite high; an expectation of 50 to 100 
fold does not seem unreasonable, since: 
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Figure 8: Speed-ups varying the number of task-level and 
match processes for the RTF phase. 

1. The tasks in all decompositions are independent of 
one another. 

2. Several hundred tasks are available in all 
decompositions. 

3. The task queue management overheads measured 
are very low, especially with respect to the task 
granularity, and thus are not a factor. A centralized 
task queue may potentially become a bottleneck for 
an increasing number of processes; currently, this is 
not the case. 

The limitations on the number of processors on the Encore 
Muhimax led us into investigating the shared virtual memory 

system. A shared virtual memory system can provide a virtual 
address space among all processors in a loosely-coupled 
multiprocessor [6, 151. Our local computing environment has two 
separate Encore Multimax machines, each with 16 processors. 
Recently. the shared memory server became available on these 
machines [6], providing a 32 processor (16 from each Encore) 
shared virtual memory machine. (However, the MACH kernel 
and the shared virtual memory system tend to occupy 2 processors 
on each of the Encores; thus, in reality this is a 28 processor 
shared virtual memory machine.) The latency across the two 
Encores with the virtual shared memory is reported to be 50 
ms [6], much lower than the granularity of the SPAM/PSM tasks. 
Furthermore, the SPAM/PSM tasks are independent, with the 
processes requiring minimal communication through the task 
queue. Therefore, the SPAM/PSM system appeared to be an ideal 
candidate for experimenting with the shared virtual memory 
system. 

Shared virtual memory systems have only recently started 
receiving attention in the literature [6, 151. In particular, there 
appear to be no reports in the literature on experiences with such a 
system for large-scale applications like SPAM. Therefore, we 
think our experiences with shared virtual memory, although 
somewhat preliminary, will be of interest. 

Introducing the shared virtual memory in the SPAM/PSM 
system turned out to be more complex than our initial expectation. 
In the shared virtual memory system, the programmer has to be 
sensitive to the allocation of data-structures to pages to avoid 
contention. This contention problem was made acute due to false 
contention, i.e., two or more processes across the Encores 
contending for objects located on the same page though not 
shared between them. At first, no attention was paid to this 
problem - however, the overhead incurred from constantly page 
faulting across the network due to false contention, brought our 
system to a halt just during the initialization. Two separate 
approaches were employed to solve thii problem. We organized 
our data-structures in the address space in order to eliminate the 
contention across Encores. The designers of the shared virtual 
memory system proceeded to provide some optimizations and 
heuristics in the netmemory server to minimize the amount of data 
sent over the network to service a page fault. For example, 
instead of shipping a full 8K page, the server ships only small, 
64-byte segments of the page that has been modified. 

After the elimination of the false contention problem, and the 
introduction of other optimizations, real speed-ups were possible. 
The speedup results are shown in Figure 9. The following 
observations can be made about these results: 

1. Two separate speed-up curves are shown in Figure 
9. The first one was obtaind from the shared virtual 
memory system. The second was obtained from the 
pure task-level parallelism system, i.e., the system 
without the shared virtual memory (the speed-up 
curve from this system is indicated in Figure 9 as 
Pure TLP.) The comparison of these two curves 
shows that real speed-ups are indeed possible with 
the shared virtual memory system - underscoring 
the usefulness of the shared virtual memory system 
for large applications. However, these speed-ups 
came only after many rounds of optimizations in our 
system and in the shared virtual memory server. A 
point here is that the speedup for the pure task-level 
parallelism system is seen to be lower than the 
speed-ups shown in Figure 6. This change in 
speedup occurred because these experiments were 
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Figure 9: Speed-ups varying the number of processes using 
the virtual shared memory server. 

We presented a methodology for obtaining a parallel task 
decomposition in SPAM/PSM. We parallelized two of SPAM’s 
phases and obtained near linear speed-ups with a maximum of 
over 12 fold using 14 Processors. Further, with the use of the 
shared virtual memory system, even higher speed-up was 
obtained. The results obtained indicate that speed-ups on the 
order of 50 to 100 fold from task level parallelism might be 
realized on a machine with a comparably large number of 
processors. We believe that the success achieved with the 
SPAM/PSM system gives hope to designers of other rule-based 
systems to realize systems with much lower execution times by 
applying task-level parallelism. Also the potential for very large 
speed-ups indicated here should serve as encouragement to the 
designers of large-scale multiprocessor systems. 

performed with a more recent (and optimized) 
version of SPAM/PSM. The speed-ups for the 
shared virtual memory system are also from this 
recent optimized version (see Section 6.5 for a 
discussion of this effect). 

2. As we can see from Figure 9. the speed-ups for the 
shared virtual memory system are close to the pure 
task-level parallelism system, as long as all the 
processes are running on a single Encore. As soon as 
we add a process on the remote Encore, we see an 
abrupt chmge in the curve - which produces a 
translational effect on the curve. This translational 
effect is equivalent to the loss of about 1.5 
processors. This performance hit comes from the 
overheads of communication across the network. 

A relevant consideration is the difficulty in specifying an 
explicit decomposition in our methodology for task-level 
parallelism. Our experience has been that this decomposition is 
fairly straightforward and can be arrived at relatively quickly. We 
demonstrated the applicability of this explicit decomposition in 
two diverse phases of SPAM. One of these phases performs a 
traditional classification task (RTF). while the other performs a 
constraint-satisfaction task (LCC). The RTF phase fits more 
closely into the framework of a traditional OPS5 system. In both 
phases, the explicit decomposition is made based on the data upon 
which the system must operate - giving rise to levels of 
decomposition. We saw that the choice of the correct level at 
which to exploit parallelism is based upon a number of factors: 
among these are the task granularity, task management and 
communication overheads, the variance in task processing times, 
and the ratio of total tasks to processors. 

3. We were only able to provide results for 22 There is a tradeoff involved in explicit parallelism. It avoids 
processors - 13 on the first Encore and 9 on the possible run-time overheads or synchronization issues. 
second. Our application placed severe demands on SPAM/PSM allows asynchronous production firings, escaping the 
the MACH kernel. preventing us from using all the synchronization requirement of the OPS5 recognize-act cycle. 
processors. These robustness issues are being However, there is a cost associated with it in the form of 
addressed by the designers of the shared virtual additional analysis required of the system designer to generate a 
memory system. decomposition. 

4. In our final optimized system, only a single task 
queue is present. The contention for this task queue 
is minimal Separate experiments were performed 
on these task queues, which indicated that 
introducing separate task queues (one for each 
Encore) would not change the results. 

On the whole, the framework for exploiting task-level 
parallelism presented in thii paper seems most suitable for 
parallelizing knowledge-intensive systems that exhibit weak 
interaction between the individual subtasks of the task. This 
framework is especially useful for systems with a large 
computational demand separate from the demand imposed by 
match. 

8. Summary and Conclusions 
Most investigations of speeding up production systems via 

parallelism have been focused on match parallelism. While these 
have provided good speedups, the total speedup available from 
this source is limited and is insufficient to alleviate the problems 
of inefficiency in large scale production systems. In fact, in 

SPAM, speedup from match parallelism is limited to about a 
factor of 2. In this paper we have focused on task-level 
parallelism. The speedups obtained from task-level parallelism 
will multiply with those obtained from match parallelism. We 
characterized task-level parallelism in production systems along 
three dimensions and, from that, selected an explicit, data-driven, 
asynchronous approach for exploiting it. The system we 
presented, SPAMJPSM. is a real, computationally demanding, 
high-level vision system that relies on knowledge-based 
reasoning. With the SPAM/PSM system, we showed that an 
explicit approach to task-level parallelism can yield significant 
speed-ups. 

9. Future Work 
Although all of SPAM is currently implemented in ParaOPSS, 

the benefits from task-level parallelism are not fully available to 
the SPAM researchers. Providing ParaOPS5 with task-level 
parallelism as a useful tool requires moving beyond the current 
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experimental setup for task-level parallelism. For instance, 
currently the initialization subphase within the local-consistency 
phase consumes a large amount of processing time. and needs to 
be optimized and/or parallelized. 

Results from Section 6 show that large amounts of parallelism 
can be exploited in SPAM, and thus, significantly larger numbers 
of processors could be employed in exploiting the parallelism. 
Shared-bus multi-processors like the Encore Multimax cannot 
support such a large number of processors. Investigations of 
shared virtual memory systems were motivated due to this 
concern and they have provided promising results. However, we 
need to obtain speed-ups with even larger numbers of processors. 
We also need to analyze the current speed-ups from the shared 
virtual memory system in detail, accounting for the various 
overheads. In addition, other scalable parallel architectures need 
to be evaluated for exploiting match and task-level parallelism in 
production systems. Toward this end, we are currently 
investigating implementations on message-passing computers [ 11. 

Our long term plan is the investigation of task-level parallelism 
in systems besides SPAM. We hope such investigations will help 
us refine the general methodology for exploiting task-level 
parallelism in production systems. 
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