
The Effectiveness of Task-Level Parallelism for High-Level Vision

Wilson Harvey, Dirk Kalp, Milind Tambe, David McKeown, Allen Newell
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pa 15213-3890

Abstract

Large production systems (rule-based systems) continue to suffer from
extremely slow execution which limits their utility in practical
applications as well as in research settings. Most investigations in
speeding up these systems have focused on match (or knowledge-search)
parallelism. Although gocd speed-ups have been achieved in this pnxzss,
these investigations have revealed the limitations on the total speed-up
available from this source. This limited speed-up is insufficient to alleviate
the problem of slow execution in large-scale production system
implementations. Such large-scale systems are expected to increase as
researchers develop increasingly more competent production systems.
In this paper, we focus on task-level parallelism, which is obtained by a
high-level decomposition of the production system. Speed-ups obtained

from task-level parallelism will multiply with the speed-ups obtained from
match parallelism. The vehicle for our investigation of task-level
parallelism is SPAM. a high-level vision system, implemented as a
production system. SPAM is a mature research system with a typical run
requiring between 50.000 to 400,000 production firings and an execution
time of tbe order of 10 to 100 cpu hours.
We report very encouraging speed-ups from task-level parallelism in
SPAM - our parallel implementation shows near linear speed-ups of over
12 fold using 14 processors and points the way to substantial (SO-100 fold)
speed-ups from task-level parallelism. We present a characterization of
task-level parallelism in production systems and describe our
methodology for selecting and applying a particular approach to
parallel&e SPAM. Additionally, we report the speed-ups obtained from
the use of shared virtual memory (network shared memory) in this
implementation. Overall, task-level parallelism has not received much
attention in the literature. Our experience illustrates that it is potentially a
very important tool for speeding up large-scale production systems’.

1. Introduction
Large production systems (rule-based systems) continue to

suffer from extremely slow execution which limits their utility in
practical applications as well as research settings. Most efforts at
speeding up these systems have focused on match (or knowledge-
search) parallelism in production systems [l, 4,7,9, 19,25.26].
Though good speed-ups have been achieved in this process, the
total speed-up available born this source is limited and is
insufficient to alleviate the problem of slow execution in large-
scale production systems. Such large-scale systems are expected
only to increase in the future [2,21], which will exacerbate the
problem of long run times.

In this paper, we focus on task-level parallelism, which is
obtained by a high-level decomposition of the production system.
Speed-ups obtained from task-level parallelism will multiply with
the speed-ups obtained from match parallelism. Our vehicle for
the investigation of task-level parallelism is SPAM [16, 17, 181, a
high-level vision system, implemented in a production system

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for

architecture. SPAM is a mature research system having over 600
productions, with a typical scene analysis task requiring between
50,000 to 400,000 production firings and an execution time of the
order of 10 to 100 cpu hours2. Unlike most other production
systems examined for studies in parallelism, it has embedded in it
a large computational demand related to the vision task that it
performs. This task-related computation is separate from the
computation performed for match in the system. This is evident
in the large non-match related processing time for this system.
While many production systems spend up to 90% of their time in
match, SPAM spends only about 30-50% of its time there.

In this paper, we show that the opportunities for task-level
parallelism in SPAM are high and provide a much larger payoff in
speed-up than match parallelism. We present a methodology to
arrive at a suitable parallel decomposition of the SPAM task that
results in near linear speed-ups of over 12 fold using 14
processors on a 16-processor shared-memory multiprocessor. Our
results indicate that a potential speed-up of 50 to 100 fold may be
achievable due to task-level parallelism. We also describe a set of
experiments and measurements on SPAM that allowed us to select
an appropriate grain of decomposition. These techniques should
be applicable to the analysis of other large production systems for
evaluating the opportunities for task-level parallelism. We further
show that match parallelism, when used in conjunction with task-
level parallelism, gives another multiplicative factor of speed-up
which is proportional to the size of the match component in the
overall execution time. In the SPAM system, this additional
multiplicative factor is around 1.5 to 2.

This paper is organized as follows: Section 2 provides some
background about production systems and SPAM, the image
interpretation system that is the focus of our analysis of task-level
parallelism. Section 3 discusses match parallelism and task-level
parallelism in production systems. Section 4 discusses the
implementation methodology used to determine appropriate levels
of decomposition for task-level parallelism. A new system,
SPAM/PSM, resulted from the application of this methodology
and its implementation is described in Section 5. Section 6
presents detail& results of experiments with match and task-level
parallelism (with varying grain sizes). Section 7 presents the
results of our experiments with virtual shared memory (or
network shared memory). Section 8 presents a summary of our
research results. Finally, Section 9 discusses some issues for
future work.

2. Background
In this section we provide a brief overview of OPS5 and

SPAM. SPAM is implemented in OPS5. hence the description of
OPS5 will be useful in understanding some of the issues in how
SPAM represents knowledge about spatial and structural
constraints used in computer vision. Besides providing

%ese mcasmunmts are taken front the Lip-based version of OPSS nmning on a
VAX/785 processor.

Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1990 ACM OS9791-350-7/90,/0003/0156 $1.50

background information, this section introduces the terminology
that will be used in the rest of this paper.

2.l.OPS5
An OPS5 [3] production system is composed of a set of if-Gen

rules, called productions, that make up the production memory.
and a database of temporary data structures, called the working
memory. The individual data structures are called working
memory elements (WMEs). and are lists of attribute-value pairs.
Each production consists of a conjunction of condition elements
(CEs) corresponding to the if part of the rule (also called the
left-hand side or LIB). and a set of actions corresponding to the
then part of the rule (also called the right-hand side or RHS).

The CEs in a production consist of attribute-value tests, where
some attributes may contain variables as values. The attribute-
value tests of a CE must all be matched by a WME for the CE to
match; the variables in the condition element may match any
value, but if the variable occurs in more than one CE of a
production, then all occurrences of the variable must match
identical values. When all the CEs of a production are matched,
the production is satisfied, and an instantiation of the production
(a list of WMEs that matched it), is created and entered into the
conflict set. The production system uses a selection procedure
called conflict-resoluhon to choose a production from the conflict
set, which is thenfired. When a production fires, the RHS actions
associated with that production are executed. The RHS actions
can add, remove or modify WMEs, or perform I/O.

The production system is executed by an interpreter that
repeatedly cycles through three steps: (1) Match (2) Conflict-
resolution (3) Act. The match procedure determines the set of
satisfied productions, the conflict-resolution procedure selects a
single instantiation, and the act procedure executes its RHS.
These three steps are collectively called the recognize-act cycle.

2.2. SPAM: A Production System Architecture For
Scene Interpretation

SPAM [16.17.18] is a production system architecture for the
interpretation of aerial imagery with applications to automated
cartography and digital mapping. It tests the hypothesis that the
interpretation of aerial imagery requires substantial knowledge
about the scene under consideration. Knowledge about the type
of scene - airport, suburban housing development, urban city -
aids in low-level and intermediate level image analysis, and will
drive high-level interpretation by constraining search for plausible
consistent scene models. SPAM has been applied in two task
areas: airport and suburban house scene analysis. The remainder
of thii section describes the SPAM architecture, and gives run-
time statistics that lead us to focus on two of its phases for
parallelization.

As with many vision systems, SPAM attempts to interpret the
2-dimensional image of a 3-dimensional scene. A typical input
image is shown in Figure 1. The particular goal of the SPAM
system is to interpret an image segmentation, composed of image
regions, as a collection of real-world objects. For example, the
output for the image in Figure 1 would be a model of the airport
scene, describing where the runway, taxiways, terminal-
building(s), etc., are all located. SPAM uses four basic types of
scene interpretation primitives: region, fragments, functional
areas, and models. SPAM performs scene interpretation by
transforming image regions into scene fragment interpretations. It
then aggregates these fragments into consistent and compatible
collections called functional areas. Finally, it selects sets of
functional areas to form models of the scene.

Figure 1: Aerial image of San Francisco Airport

I Phase 4 Model Generation
(MODEL) Eva%%ion

Phase 3
PAI

Phase 2
0-w

Phase 1
N-R

I Segmentation Region

Figure 2: Interpretation phases in SPAM.

As shown in Figure 2, each interpretation phase is executed in
the order given. SPAM drives from a local, low-Ievel set of
interpretations to a more global, high-level, scene interpretation.
There is a set of hard-wired productions for each phase that
control the order of rule executions, the forking of processes, and
other domain-independent tasks. However, this “bottom-up”
organization does not preclude interactions between phases. For
example, prediction of a fragment interpretation in

157

ftinctional-area (FA) phase will automatically cause SPAM to
reenter local-consistency check (LCC) phase for that fragment.
Other forms of top-down activity include stereo verification to
disambiguate conflicting hypotheses in model-generation
(MODEL) phase and to perform linear alignment in
region-to-fragment (RTF) phase.

I SPAM Phase. 1 RTF 1 LCC 1 FA 1 MODEL I Total 1

Total CPU
Time (hours)

1.5 144.5 7.3 0.71 154.01

Total
#Firings

11274 185950 10447 3085 210756

Effective
Roductions/Semnd

Total
Hypotheses

2.08 0.357 0.397 1.20 0.380

466 N/A 44 1 NIA

Table 1: San Fraocisw Airpt (log #63)

Table 2: Washingten Niuional Airpert (leg #405)

SPAM Phase

Roductioos/Second

RTP LCC FA MODEL Total

0.25 4.12 2.33 0.33 7.03

4713 36949 1503 3774 46939

5.24 2.30 0.160 3.02 1.85

199 N/A 21 1 N/A

Table 3: NASA Ames Moffett Field (log #415)

Another way to view the flow of processing in SPAM is that
knowledge is used to check for consistency among hypotheses;
contexts are created based on collections of consistent hypotheses,
and are then used to predict missing components. A collection of
hypotheses must combine to create a context from which a
prediction can be made. These contexts are refinements or spatial
aggregations in the scene. For example, a collection of mutually
consistent runways and taxiways might combine to generate a
runway functional area. The context of a runway functional area
then predicts that certain sub-areas within that functional area are
good candidates for fiidmg grassy areas or tarmac regions.
However, an isolated runway or taxiway hypothesis cannot
directly make these predictions. In SPAM the context determines
the prediction. This serves to decrease the combinatorics of
hypothesis generation and to allow the system to focus on those
areas with strong support at each level of the interpretation.

Tables 1, 2, and 3 give statistics for run-time and number of
production firings for each interpretation phase in SPAM for each

of the three airports used in this study: San Francisco
Internutional (SF) , Washington National (DC), and NASA Ames
Moffett Field (MOFF) . It is interesting to note that ICC and PA
phases account for most of the overall time in a complete run.
Further, within these phases much of the RHS evaluation is
performed outside OPSS using external processes. For example,
FA spends much of its time doing RHS evaluation outside of
OPS5. RTF, on the other hand spends most of its time within the
traditional OPS5 evaluation model and consumes less time than
FA, even though it executes a comparable number of productions.

As a result of this analysis, we decided to focus on parallelizing
the LCC and RTF phases. The choice of LCC was motivated by
the observation from the tables presented earlier, that LCC is by
far the most expensive phase in terms of amount of time spent,
number of productions, as well as number of production firings.
Another rationale for this approach is the observation that this
phase has the largest potential for growth. We believe that as new
knowledge is added to the existing SPAM system, the proportion
of time can only increase in the LCC phase. The RTP phase was
selected for parallelization since it fits the framework of a
traditional OPSS-system more closely than the other phases of
SPAM - it thus contrasts with the computation in LCC,
providing generality to the results presented.

It is interesting to consider the nature of computations
performed in the LCC and RTF phases and understand the
differences among them. The RTF phase performs a traditional
heuristic classification (or analysis) task [3]. It
classifies/subclassifies regions in a scene as fragments. For
example. it may classify linear regions in the scene as taxiways or
runways.

The ICC phase performs a constraint-satisfaction task In this
phase, knowledge of the structure or layout of the task domain
(i.e. airports or suburban housing developments) is used to
provide spatial constraints for evaluating consistency among
fragment hypotheses. For example, runways intersect taxiways
and terminal buildings are adjacent to parking apron are
examples of the kinds of constraints that are applied to the airport
scene segmentation. It is important to assemble a large collection
of such consistency knowledge since the results of these tests are
used to assemble fragment hypotheses found to be mutually
consistent as contexts for further interpretation within the
functional area phase.

3. Sources of ParalIelism in Production Systems
There are two sources of parallelism in production systems:

match parallelism and task-level parallelism (TLP). In this
section we first discuss existing results in match parallelism. We
then discuss task-level parallelism and introduce a taxonomy for
describing various approaches to achieving effective speed-ups.

3.1. Match Parallelism
In general, production systems spend most of their time (>

90%) in the match phase of the recognize-act cycle. This makes it
imperative that the match phase be speeded up as much as
possible. In the past few years, an increasing number of
researchers have explored many alternative ways to speed up the
match production
parallelism [A,?, 9, 19,22,25,26].

systems using

Our own efforts in speeding up the match have culminated in
ParaOPSS [9,13], an optimized C-based parallel implementation
of OPS5 for shared memory multi-processors. ParaOPS5
represents our current technology for achieving match parallelism

158

within systems such as SPAM. This implementation parallelizes
the highly efficient Rete [5] match algorithm. ParaOPS5 exploits
parallelism at a fme granularity: subtasks execute only about 100
instructions. ParaOPSS has been able to provide significant speed-
ups for OPS5 systems that are match-intensive. Figure 3 shows
the speed-ups achieved with our current implementation for three
different match intensive systems: Rubik, Weaver and Tourney.
The speed-ups are for an implementation on the Encore Multimax
and are reproduced from [9]. Though Rubii and Weaver are seen
to achieve good speed-ups, the speed-up in Tourney is quite low.
The speed-ups are a function of the characteristics of the
productions in the production system (see [S. 91.)

Number of Match Processes

Figure 3: Speed-ups for OPS5 on the Encore Multimax [9].

Although systems such as ParaOPSS have achieved good
speed-ups, the total possible speed-up via match parallelism in
current production systems is limited (only 20 to 40 fold [7]).
This limit is imposed by:

1. The recognize-act cycle of OPSS: The OPS5 model
requires a synchronization in it’s resolve phase.
Thus match parallelism is limited to individual
cycles; we cannot extract match parallelism across
cycles.

2. Limited match effort per cycle: In every recognize-
act cycle, only a limited number of productions are
affected, i.e., the match effort per cycle is also quite
limited.

Furthermore, match parallelism is based on the assumption that
the match phase dominates the entire computation. However, it is
possible that the system under consideration is embedded in some
other computationally demanding environment. In such cases, it
is necessary to parallel& the rest of the computation besides
match. Consider a system that spends only 50% of its time in
match. Even if the match is made infinitely fast, the total speed-up
possible will be only a factor of two (Amdahl’s law).

3.2. Task-Level Parallelism
The limitations of match parallelism described in the previous

section encourage the investigation of task-level parallelism.
Task-level parallelism has also been referred to as application
paralleliim [7], concept parallelism 1231, and parallel rule
fiigs [12]. It refers to the use of knowledge about the problem
domain to create a task decomposition suitable for parallel
execution. Our choice of the term task-level parallelism for this
source of parallelism is partly historical and partly dictated by the
inadequacy of the other terms to cover the kind of parallelism
provided by production systems like Soar [141.

A system exploiting task-level parallelism would be
implemented on top of a system exploiting match parallelism. The
speed-ups obtained from these two sources can be independent
and therefore multiply. Task-level parallelism can be understood
better by considering the possible dimensions along which it can
be divided. These dimensions are explained in the following
paragraphs.

The fist dimension is based on synchronous/asynchronous
production firings. Synchronous production-fig systems
always require a synchronization in the resolve phase of the
recognize-act cycle. All the productions are matched in parallel.
In the resolve phase, one or more of the productions are selected
for fig. In the act phase, the selected productions are fiied in
parallel.

In asynchronous production-firing systems there is no
requirement for a synchronization in the resolve phase across
processors. Thus, these systems do not have distinct match,
resolve and act phases across the parallel system.

Synchronous systems are less capable of handling variances in
processing times for subtasks [20]. As shown in [20], given a
fixed amount of work, in the presence of variance, a synchronous
system quickly reaches saturation speed-ups, while an
asynchronous system can continue to exploit linear speed-ups. So,
in a production system embedded in an computationally intensive
environment, if executing the RHS of certain productions takes
much longer than others, the performance of the synchronous
system will degrade heavily. However, synchronous systems may
be preferred in the development and debugging stages.

The second dimension is based on implicitlexplicit detection of
parallelism. The parallelism is implicit if the system or the
compiler has to extract parallelism out of the existing OPS5 code.
This requires an analysis OF the interference caused by firing
productions in pa&cl.

Explicit parallelism refers to providing explicit information to
the system for exploiting task-level parallelism. Thus, the system
may be supplied with the information that certain parts of a given
task can be solved in parallel, or that certain productions can
always be fired in parallel.

In implicit parallelism, if the system engages in extracting this
parallelism at compile-time, then its extraction of parallelism has
to be very conservative, as the variable-bindings are unknown. If
parallelism is extracted at run-time, then there are overhead costs
paid at run-time. These overheads are sequential, and hence can
cause considerable slowdowns. A system for exploiting explicit
paralleliim is able to avoid these problems.

When the parallelism is implicit, the granularity is usually at
the level of productions; it seems difficult to discover a higher
level of granularity with implicit parallelism. With explicit
parallelism, the user has the freedom to choose the right
granularity. The level of granularity is a complex tradeoff of the
number of processors available, architectural parameters.

159

variances, data structures and task management overheads. The
granularity issue is discussed in Section 4.

The third dimension is based on distribution: rule
distributionlworking memory element distributionho distribution.
Thii separation is related to the implementation of a parallel
rule-tiring system. In the implementation of a parallel rule-ftig
system, it is possible to distribute the productions (rules) among
processors, where each production set has its own conflict set.
This distribution could be done automatically or with the help of
the user. However, optimal distribution of productions among
processors is a difficult problem.

A second approach is to allocate all the productions to each
processor; the working memory elements are then distributed
among the processors. A third approach involves no distribution
at all. Here, the parallel rule-firing is built into the control
structure of the system.

Table 4 shows the various dimensions and the classification of
various parallel rule-firing systems along these dimensions,
These dimensions will help to investigate the task-level
parallelism in SPAM/PSM. The table uses the names of authors
to represent systems that do not have any names. We also
indicate the third dimension that classifies the type of distribution
used: rule-distribution, working memory element distribution, or
none.

The SPAM/PSM system is the system described in thii paper;
the design choices are discussed in detail in Section 4. These
dimensions are not intended to be binary; rather, different systems
could take different positions along a continuum in these
dimensions. However, in the interests of clarity, the table makes a
binary division. For instance, the system in [23] is classified as
using implicit parahelism - however, it uses some explicit
parallelism. It should be noted that except for Soar and
SPAM/PSM, all other systems present simulation results on mini-
production systems (with 50 or less productions)3.

Dimensions Synchronous :: Distribution Asynchronous :: Distribution

Implicit Ishi& &
stolfo [121 :: RI&
Ishida [1 l] :: Rule
oshisanwo &
Dasicwicz 123): Rlllt

Explicit soar (141 :: None SPAMIPSM :: WhIE

Table 4: Dimensions of task-level parallelism.

4. ImpIementation Methodology
This section develops a methodology for applying task-level

parallelism within the context of SPAM. We use knowledge
about the task domain to specify several hierarchical task
decompositions of the problem in which parallelism can be
exploited. Thus, the characteristics of the SPAM task fit the
requirements for exploiting task-level parallelism along the
explicit dimension described in Section 3.2.

As described in Section 2.2, we will concentrate on the RTF
and LCC phases of SPAM for parallelization. The LCC phase,
because of its computationally intensive nature was the first one
to be parallelized. Therefore, our implementation methodology is

‘While we reported results of match par&.lism in Soar from a real
implementation in this conference last year; the results of task-level paralldism in
Soar are based on simulations D].

described in detail for LCC; the methodology for the RTF phase is
similar and only the relevant results from that phase are presented.

The LCC phase applies geometric knowledge (constraints)
from the selected domain to the set of interpretations made from
the dataset. This application of geometric knowledge can be
logically decomposed into several levels, where the tasks within
each level are independent and can be performed in parallel. This
is illustrated in Figure 4. These levels of decomposition are
described below:

l LCC Phase: At the highest phase level, the
computation is for the entire LCC phase.

l Lewel 4: The phase level computation may be
decomposed into tasks at Level 4, where each task
applies multiple constraints to a single class of
objects. For instance, a task may apply multiple
constraints to all objects of class terminal building.

l Level 3: A single task at Level 4 may be decomposed
into multiple tasks at Level 3. A task at Level 3
applies multiple constraints to a single object within
the class of objects selected at Level 4. For example,
a Level 3 task may apply multiple constraints to a
single terminal building object.

l Level 2: A single task at Level 2 involves applying a
single constraint to a single object. Thus, a task at
Level 2 may apply a constraint such as, access roads
lead to terminal buildings, to a single terminal
building chosen for a task at Level 3.

l Level I: A single task at Level 2 may have several
components to check in applying a constraint to an
object. Thus a constraint such as, access roads lead to
terminal buildings, requires several roads be checked
against the terminal building. A task at Level 1 would
perform one of these constraint components.

..&..!&..j. ..--...... _ _ -...... _ -...... i;~-- -...i .._..... ~%Y&y;; ._..

..-...~..._........-......~~......~~~...-..-.....~.~.~.~......~...-.-.~...~.........._.....____________
LcvclThrca r------I inn OmpnfRulaaEs ..~......._........-................~~-....~.~.....~.~......~.......~.~......__......___._...___.______
LcvdTrn ly~IrI~Inn-[r~ s~Rulaa-m*.__......._~.......-.......~.....~~~......~.~..............-~-...~._._._...____________
~df3m nPIDolnoooool1oollloPllooollonooll1loolo rqlc-lQ=k

Figure 4: Levels of processing in SPAM LCC.

Withii a level, each task involves the firing of from 3 to 100
productions. As mentioned in Section 3.2, an implicit approach to
extracting parallelism would make it difficult to obtain parallelism
at a higher level of decomposition than individual production
firings. Therefore, for this application, an explicit approach to
parallelism is more appropriate.

With an explicit approach to parallelism, the choice of the right
level of decomposition, or the right granularity, for parallelization
must be made. This choice is determined by several factors:

1. Task granulari~: As the average time per task gets
smaller, task management overheads will have a
greater impact and communication overheads and
system resource contention wiII become more of a
bottleneck.

2. Ratio of toAs to processors: The achievable
parallelism is bounded by the number of available
processors. At lower task to processor ratios, a large
variance in task processing time will have a negative

160

impact on processor utilization and the speed-ups
obtained from parallelism. With higher ratios, the
impact is less pronounced.

3. Coe$Icient of variance: Defined as (stsndard
deviation/average) this provides a means of
normalizing, for different levels of decomposition,
the effect of variance in task granularity on
processor utiliiation. A high coefficient of variance
will reduce processor utilization, resulting in lower
speed-ups. Thii effect is more severe in synchronous
systems.

4. Decomposition effort: This is a somewhat subjective
measure. Proceeding down the hierarchy of levels,
each task at the current level must be decomposed
into several tasks at the next level of granularity.
Usually. more work is required to specify the
decomposition and design an implementation at the
lower levels. The benefits of the additional
parallelism that can be achieved at a lower level
relative to the effort required must be assessed.

In order to choose the right level of decomposition at which to
parallelize the SPAM XC phase, we instrumented the SPAM system
to obtain measurements at each level for the number of tasks and
their run-time average, standard deviation, and coefficient of
variance. The results of these measurements for each of the three
airport datasets is presented in Tables 5.6, and 74.

Table 5: Average, standard deviation and coeff. of variance for SF.

Level Average Standard Coefficient Number
time per task deviation of variance of tasks

@d b-4

Level 4 1308.66 641.72 0.490 9

Level 3 78.51 30.48 0.388 150

Level 2 24.04 9.51 0.396 490

Level 1 0.430 0.0677 0.157 27399

Table 6: Average, standard deviation and coeff, of variance for DC.

Using information from Tables 5. 6, and 7, the appropriate
level of granularity can now be chosen. For Level 4, the task to
processor ratio is smaller than one, so we immediately rejected
pursuing parallelism at this level. Levels 3 and 2 are very similar
to each other in that they have enough tasks, their variances are
not large, and the task granularities are much larger than the
expected task management and communication overheads. Both
levels, therefore. seemed to us to be worthwhile candidates. Level
3 seemed somewhat more desirable as less effort appeared to be

4s~~c the at’dysis is pdomcd using the cnigittd, exnpensive Lispbased SPAM
system, we have extracted B representative subset of the three airpcnt datasets to drive
the analysis.

Level Average Standanl Coefficient Number
time per task deviation of variance of tasks

(se4 (se4

Level 4 165.60 121.20 0.732 9

Level 3 20.07 8.02 0.399 74

Level 2 5.57 2.43 0.436 268

Level 1 0.349 0.0455 0.130 4274
i

Table 7: Average. standard deviation and coeff. of variance for MOFF.

required of us to achieve amounts of parallelism similar to that
available in Level 2.

Level I was rejected for several reasons. First and most
importantly, the additional effort involved in decomposing the
system at the granularity of Level 1 would not allow us to achieve
any more parallelism than at Level 2 or 3 because of the limitation
on the number of processors. Second, the task granularity is much
smaller and thus closer to the overheads for task management and
communication than any of the other levels. Finally, the task to
processor ratio is on the order of 1000. This can have a
detrimental affect due to the initialization overhead. Our
conclusion, then, was to exploit parallelism at the granularity of
Levels 2 or 3.

The decomposition methodology can be summarized as
follows:

l Analyze the baseline system and determine where the
time is going.

l Determine if the explicit dimension of TLP (Section
3.2) is appropriate.

l Characterize the computation in terms of independent
task decompositions at different granularities.

l Obtain measurements of the system characteristics for
each level of decomposition.

l Analyze the measurements to select a level of
decomposition for parallelization.

A similar analysis of the RTF phase was performed. This
resulted in a decomposition level providing approximately 60-100
tasks in the three datasets at roughly the same granularity as Level
2 of the LCC phase, and a low coefficient of variance of
approximately 0.3.

The second dimension of task-level parallelism addresses the
issue of synchronous versus asynchronous execution. With an
explicit decomposition at Level 3, there is no synchronization
requirement. Furthermore, asynchronous models help in reducing
the impact of variance. We therefore decided to decompose the
system so as to allow the asynchronous rule-firings.

The final dimension of task-level parallelism addresses the
issue of production versus working-memory partitioning. We
decided to use working-memory partitioning, as this facilitates the
explicit decomposition at the higher granularity.

5. SPAM/PSM Implementation
This section describes the SPAM/PSM system for exploiting

task-level parallelism in SPAM. The system is built on top of the
ParaOPS5 system described in Section 3.1. The SPAM/PSM
system is implemented on an 16-processor Encore Multimax, a
shared-memory multiprocessor based on the National
Semiconductor NS32332 processor (rated at approximately 1.5
MIPS), running the MACH operating system.

161

5.1. SPAM/PSM Architecture
Figure 5 gives a process hierarchy view of the SPAMIPSM

system. Viewed from the top level, the execution model consists
of a cotirol process, a set of task processes, and a queue of tasks
to be executed. The size and number of tasks in the queue reflects
the level of decomposition chosen for the particular SPAM phase.
As part of initialization, the control process builds the queue of
tasks. It then forks the task processes and, once they have
completed all the tasks, collects from them the results that will be
passed on to the next SPAM processing phase.

Figure 5: Organization of the SPAhWSM system.

Each of the task processes is a complete and independent
ParaOPS5 system. Thus, each task process has its own working
memory, conflict set, etc. Each task process has a production
memory, which represents all the productions in the system, and
effectively has a copy of the initial working memory supplied by
the control process. At system initialization time, each task
process can also fork a set of match processes (see Figure 5)
which will perform the match in parallel.

Execution of a particular SPAM phase involves a task process
removing a task from the queue and executing its ParaOPSS
system on that task. The task itself is just a working memory
element, which initializes the production system of the process.
Thus, each task can be characterized as the execution of an
independent OPS5 program.

In the absence of the match processes, a task process performs
the usual ParaOPSS role of match, conflict resolution, and
production ftig, to carry out the OPS5 recognize-act cycle. If
dedicated match processes are present, they perform the match
instead, providing a second and independent axis of parallelism in
the SPAM/PSM system. When there are no productions left to
fire, the task is complete, and the task process goes to the queue
for another task.

Thus, the SPAM/PSM system realizes our specifications:

1. Explicit parallelism: The decomposition of the task
at hand is explicitly specified. The task queue is
initialized with independent tasks, depending on the
level of decomposition, in the beginning of the run.

2.Asynchromus production firing: All the task
processes are independent ParaOPS5 systems.
Therefore, these processes can fire productions
without synchronizing with each other.

3. Working-memory element distribution: Each task
process has a copy of the entire set of productions.
The working memory is distributed among the
various task processes.

5.2. Measurement Techniques
The control process previously described is used to monitor

and time the processing. Measurement begins at the point after
which the control process has built the task queue and forked the
task processes, and all the task processes have performed their
initializations. Speed-ups are computed by comparing the
measured execution time against the execution time of the
BASELINE version, which consists of the control process, one task
process, and no dedicated match processes.

Because of the 16 processor limit, we measure the effects of
task-level parallelism and match parallelism in isolation. We
allocate one processor for the control process, which is used only
to time and not to perform tasks, and we allow one processor to
the operating system. This permits us to vary the number of task
processes from 1 to 14 in the isolated messurement of task-level
parallelism. Next we measure the effect of match parallelism in
isolation by using a single task process and varying the number of
dedicated match processes from 0 to 13.

We are then able to use these two separate measures of task-
level parallelism and match parallelism to predict the combined
effect of the two. However, with 14 available processors, we are
able to test only a subset of the possible combinations. For
example, 4 task processes, each having 2 dedicated match
processes. uses 12 processors (4 + (4 * 2)). Thus, dedicating 3
match processes requires 16 processors (4 + (4 * 3)) and,
therefore, cannot be accommodated.

6. Results and Analysis
This section presents the results of task-level parallelism in

LCC and RTF phases on three different airport datasets: SF, DC,
and MOFF. As described above, the speed-ups are obtained for
applying task-level parallelism and match parallelism in isolation
and then for a combination of the two. Again we provide detailed
results for LCC and then provide the summary of results for RTF.

It is important to note that all the speed-ups are computed
against a baseline system which represents an optimized
tmiprocessor implementation. The original SPAM system is
implemented in Lisp, using an unoptimized Lisp-based OPS5. It
forks independent processes to perform geometric computations
in the RHS. We ported this entire system to C and ParaOPS5 and
replaced the forked computational processes with C function calls.
This baseline system itself provides approximately a lo-20 fold
speed-up over the original Lisp-based implementation on the three
datasets used here.

6.1. The Baseline System for the LCC phase
The baseline version of the LCC phase of the system uses a

single task process to execute all the tasks in the system. The
results from this version are given in Table 8 and provide a
picture of the magnitude of the LCC phase. The column marked
DATASET gives the name of the airport and the decomposition
level used. The column marked TOTAL TIME shows the total time
to execute all the tasks from the queue for the given number of

162

tasks executed. The average time per task is then shown in the
next column. Finally, we further characterize the LCC phase with
the total number of productions flred (PRODS FIRED) and RHS
actions performed (RHS ACIIONS) .

Dataset Total NllIYlbU
of tasks

Average Prods
time per flied

task
04

I

SF Level 3 1433 283 5.07 33475 42383

SF Level 2 1423 941 1.51 32251 41159
I I I

DC Level 3 1 988 1 151 6.55 20059 3 1205

1 DCLevel2 1 956 1 490 I 1.95 I 19418 I 30564 I

1 MOFFLevel3 1 991 I 209 I 4.74 1 22203 1 23637 1

MOFF Level 2 973 700 1.39 21294 22728

Table 8: Measurements for baseline system on the datasc&.
(Represents the optimized, ParaOPSS-based, unipocessc~ version.)

The execution times in Table 8 provide the basis for computing
all of the speed-ups. For a given airport dataset, there is a small
difference in the total execution time between the two levels of
decomposition. These differences arise due to the differences in
the initial set of productions fired for generating the tusks for the
two levels.

6.2. Speed-ups due to Task-Level Parallelism in LCC
The results of applying task-level parallelism to LCC are

shown in Figure 6. The speed-up curves show near linear speed-
ups for both levels of decomposition. The speed-ups within a
level are almost the same among the three airport datasets. The
maximum speed-up achieved using 14 processors is 11.90 fold in
Level 3 and is 12.58 fold in Level 2.

Across the two levels, we see that the curves are consistently
better in Level 2, although by only a small factor (less than 10%).
While the difference is small, Level 3, with its higher granularity,
was expected to have the edge in speed-up, since its task
management overheads would be lower. However, the task
management overheads in both levels are very low: less than 25
seconds, or less than .l% of the processing time for all the tasks.
Moreover, the coefficient of variance for tasks at both levels was
seen to be the same in Section 4.

Further investigation of the individual processing times of the
tasks in the queue showed that there are a few tasks in each level
that have execution times that are an order of magnitude larger
than the average task in that level. Some of these tasks occur at
the end of the task queue and create a tail-end effect in which
processor utilization is low at the end of the phase. The relative
disparity of these large tasks is greater within Level 3 and thus
accounts for the slightly better speed-ups in Level 2.

One way to both negate this disparity and reduce the tail-end
effect would be to use a separate task queue for the larger tasks
and process them at the beginning of the phase. This would result
in better processor utilization and thus better speed-up curves in
both levels. SPAM can provide the necessary information to
identify the sizes of the tasks. This and other related issues of
scheduling tasks are subjects for future work.

awl I I I I I I
0 2 4 6 6 10 12

Spoodup at Level 3

3 iam
0

B
i2.m t

tam

hm

2.00

am I I I I I I I
2 4 6 0 2

Nimbar af :awk-hflplo~~~

Speedup at Lovol2

Figure 6: Speed-ups varying the number of task-level processes.

6.3. Speed-ups Due to Match Parallelism in LCC
Figure 7 shows the results for applying match parallelism to

each of the tasks in a parallel decomposition for level 3. Match
parallelism is obtained by dedicating processes to perform the
match within the OPS5 recognize-act cycle. Since the baseline
version of the system has only a task process and no dedicated
match processes, it is represented in both graphs at position 0 on
the horizontal axis. From the graphs, we see that applying match
parallelism to the LCC phase yields very different speed-up results
from those achieved using task-level parallelism. As stated in
Section 3, the theoretical maximum speed-up that can be obtained
is limited according to the percentage of total execution time
spent in match, which is less than 50% in LCC.

The dotted lines on the graphs show the theoretical speed-up

163

4.00

0 2 4 0 0 10 f2 14
Number of Dedkoted Mdch Row-

Speedup at Level 3: Asymptotic limits SF=1.95 D&1.36 MOFF=1.94

Figure 7: Speed-ups varying the number of match processes.

limits. For Level 3, these limits are 1.95, 1.36, and 1.54 for SF,
DC, and MOFF respectively. We were able to obtain respective
speed-ups of 1.71, 1.28, and 1.45 which represent 88%, 94%. and
94% of the corresponclmg asymptotic limits. In all three cases, the
speed-ups peaked using 6 or less match processes. The results for
level 2 are similar (see [lo]).

6.4. Multiplicative Speed-ups in LCC
To validate the multiplicative effect of the two independent

axes of parallelism [24]. the system was run using task-level and
match parallelism in consort. While the scope of the experiments
was limited by the small number of processors, the speed-ups
obtained in these combined runs were consistent with the speed-
ups predicted by the multiplication of speed-ups from the two
separate sources. Table 9 shows the results of some of these
combined runs on SF for Level 2. The top row of the table varies
the number of dedicated match processes from 0 to 4. The left
column of the table varies the number of task processes from 1 to
7. The first row of numbers in the table gives the speed-ups from
match parallelism in isolation. The first column of numbers in the
table gives the speed-ups from task-level parallelism in isolation.

The table entry at (TaskI, Match) represents the baseline
version of the system. Each of the other table entries shows the
achieved multiplicative speed-up from the combined sources with
the predicted speed-up in parentheses directly below. For
example, the entry (Task4 Match$ represents the use of 4 task
processes with each having 2 dedicated match processes. The
achieved speed-up for this configuration is 5.82 fold and the
predicted speed-up is 5.96 (3.98’1.50). Table entries marked with
an asterisk could not be measured due to a lack of processors on
the machine (see Section 5.2). For example, (Task4, Match+
requires 17 processors: 1 control process, 4 task-level processes,
and 12 (= 4*3) dedicated match processes. The table shows the
achieved speed-ups to be very close to the predicted speed-ups.
Similar results were obtained for DC and MOFF.

Match Match, Match, Match, Match,

I Task,
I

1
I

1.21 1 1.50 1 1.60 1 1.68 1

1 Task4 1 3*98 1 (i:::) 1 (;:;:) 1 (6.;7) 1 (619) 1

1 Task5 1 4.93 1 (::if, 1 (719) 1 (7l9) 1 (8;s) 1

1 Task6 1 5’89 1 (t:?;) 1 (8;3) 1 (912) 1 (9;O) 1

Table 9: Multiplicative speed-ups in SPAM/PSM for SF Level 2.
Parenthesized numbers are the predicted speedups.

6.5. Results from the RTF phase
From a static analysis of the productions, the RTF phase was

expected to be match intensive and hence provide speedups in
step with the results of traditional OPS5 based systems. Recall
that the RTF phase of SPAM is a traditional heuristic
classification task, mapping regions in an image to interpretations
called fragments. However, measurements revealed that match
constituted 60% of the execution time. This is closer to more
traditional OPS5 systems; although traditional OPS5 systems
spend an even higher percentage of their time in match. Our
results showed that, as expected, the speedups from match
parallelism are limited to a factor of 2.5 as shown in Figure 8.
However, task-level parallelism still provides good speedups.

Although task-level parallelism provides good speed-ups in the
RTF phase, these speed-ups appear to be a little lower than the
speed-ups provided in the LCC phase. This occurs partly because
RTF tasks are fewer and finer-grained than the LCC tasks. Part of
the reason is also that these results come from a more optimized
version of SPAM/PSM. This phenomenon of measuring speedups
on somewhat different versions of the two phases is actually a part
of a more general phenomenon - we have been working with
SPAM/PSM system for almost 2 years now. When working with
a large system like SPAM/PSM over an extended period of time,
speed-ups available in the system vary. Such variations have
occurred due to optimizations and changes in the underlying
SPAM system, the SPAM/PSM environment. as well as changes
in the operating system. These changes typically reduce the
granularity of the computation, reducing the speed-up by a small
amount. Therefore, we expect that if the speed-ups in RTF had
been computed with the earlier version of SPAM/PSM, they
would have been a little higher.

7. Experiments with the Shared Virtual Memory
System
The speed-up curves for task-level and match parallelism

graphically indicate that the benefits from task-level parallelism
are much more significant than from match parallelism. We
believe that the potential for additional speed-ups in SPAM from
task-level parallelism is quite high; an expectation of 50 to 100
fold does not seem unreasonable, since:

164

a3 g 14.00 14.00

w
12.66 12.66

10.00 10.00

a00 a00

Lo6 Lo6

4.00 4.00

200 2.66

a00 a00
0 0 2 2 4 4 6 6 # # 10 10 12 12 14 14

Number of Task-level Rocoueo

m-F: speedup at Level 2

! Loom-n7-ml
-- 12.60

10.60

6.00

6.00

I I I I I I I I
4.66

0.00
0 2 4 6 14

hUmbet if Dedd~ AWch’k-

RTF: Speedup at Level2: A6ymptotic Limit6 SF=231 D&2.25 hlOFF~227

Figure 8: Speed-ups varying the number of task-level and
match processes for the RTF phase.

1. The tasks in all decompositions are independent of
one another.

2. Several hundred tasks are available in all
decompositions.

3. The task queue management overheads measured
are very low, especially with respect to the task
granularity, and thus are not a factor. A centralized
task queue may potentially become a bottleneck for
an increasing number of processes; currently, this is
not the case.

The limitations on the number of processors on the Encore
Muhimax led us into investigating the shared virtual memory

system. A shared virtual memory system can provide a virtual
address space among all processors in a loosely-coupled
multiprocessor [6, 151. Our local computing environment has two
separate Encore Multimax machines, each with 16 processors.
Recently. the shared memory server became available on these
machines [6], providing a 32 processor (16 from each Encore)
shared virtual memory machine. (However, the MACH kernel
and the shared virtual memory system tend to occupy 2 processors
on each of the Encores; thus, in reality this is a 28 processor
shared virtual memory machine.) The latency across the two
Encores with the virtual shared memory is reported to be 50
ms [6], much lower than the granularity of the SPAM/PSM tasks.
Furthermore, the SPAM/PSM tasks are independent, with the
processes requiring minimal communication through the task
queue. Therefore, the SPAM/PSM system appeared to be an ideal
candidate for experimenting with the shared virtual memory
system.

Shared virtual memory systems have only recently started
receiving attention in the literature [6, 151. In particular, there
appear to be no reports in the literature on experiences with such a
system for large-scale applications like SPAM. Therefore, we
think our experiences with shared virtual memory, although
somewhat preliminary, will be of interest.

Introducing the shared virtual memory in the SPAM/PSM
system turned out to be more complex than our initial expectation.
In the shared virtual memory system, the programmer has to be
sensitive to the allocation of data-structures to pages to avoid
contention. This contention problem was made acute due to false
contention, i.e., two or more processes across the Encores
contending for objects located on the same page though not
shared between them. At first, no attention was paid to this
problem - however, the overhead incurred from constantly page
faulting across the network due to false contention, brought our
system to a halt just during the initialization. Two separate
approaches were employed to solve thii problem. We organized
our data-structures in the address space in order to eliminate the
contention across Encores. The designers of the shared virtual
memory system proceeded to provide some optimizations and
heuristics in the netmemory server to minimize the amount of data
sent over the network to service a page fault. For example,
instead of shipping a full 8K page, the server ships only small,
64-byte segments of the page that has been modified.

After the elimination of the false contention problem, and the
introduction of other optimizations, real speed-ups were possible.
The speedup results are shown in Figure 9. The following
observations can be made about these results:

1. Two separate speed-up curves are shown in Figure
9. The first one was obtaind from the shared virtual
memory system. The second was obtained from the
pure task-level parallelism system, i.e., the system
without the shared virtual memory (the speed-up
curve from this system is indicated in Figure 9 as
Pure TLP.) The comparison of these two curves
shows that real speed-ups are indeed possible with
the shared virtual memory system - underscoring
the usefulness of the shared virtual memory system
for large applications. However, these speed-ups
came only after many rounds of optimizations in our
system and in the shared virtual memory server. A
point here is that the speedup for the pure task-level
parallelism system is seen to be lower than the
speed-ups shown in Figure 6. This change in
speedup occurred because these experiments were

165

3 25.0

1 0,
20.0

15.0

10.0

5.0

0.0

0.

O-

a-

O-

0.

O-
0

Number of Task-level Ptvcesses (2nd Encore over 13)

Speedup at Level 3

Figure 9: Speed-ups varying the number of processes using
the virtual shared memory server.

We presented a methodology for obtaining a parallel task
decomposition in SPAM/PSM. We parallelized two of SPAM’s
phases and obtained near linear speed-ups with a maximum of
over 12 fold using 14 Processors. Further, with the use of the
shared virtual memory system, even higher speed-up was
obtained. The results obtained indicate that speed-ups on the
order of 50 to 100 fold from task level parallelism might be
realized on a machine with a comparably large number of
processors. We believe that the success achieved with the
SPAM/PSM system gives hope to designers of other rule-based
systems to realize systems with much lower execution times by
applying task-level parallelism. Also the potential for very large
speed-ups indicated here should serve as encouragement to the
designers of large-scale multiprocessor systems.

performed with a more recent (and optimized)
version of SPAM/PSM. The speed-ups for the
shared virtual memory system are also from this
recent optimized version (see Section 6.5 for a
discussion of this effect).

2. As we can see from Figure 9. the speed-ups for the
shared virtual memory system are close to the pure
task-level parallelism system, as long as all the
processes are running on a single Encore. As soon as
we add a process on the remote Encore, we see an
abrupt chmge in the curve - which produces a
translational effect on the curve. This translational
effect is equivalent to the loss of about 1.5
processors. This performance hit comes from the
overheads of communication across the network.

A relevant consideration is the difficulty in specifying an
explicit decomposition in our methodology for task-level
parallelism. Our experience has been that this decomposition is
fairly straightforward and can be arrived at relatively quickly. We
demonstrated the applicability of this explicit decomposition in
two diverse phases of SPAM. One of these phases performs a
traditional classification task (RTF). while the other performs a
constraint-satisfaction task (LCC). The RTF phase fits more
closely into the framework of a traditional OPS5 system. In both
phases, the explicit decomposition is made based on the data upon
which the system must operate - giving rise to levels of
decomposition. We saw that the choice of the correct level at
which to exploit parallelism is based upon a number of factors:
among these are the task granularity, task management and
communication overheads, the variance in task processing times,
and the ratio of total tasks to processors.

3. We were only able to provide results for 22 There is a tradeoff involved in explicit parallelism. It avoids
processors - 13 on the first Encore and 9 on the possible run-time overheads or synchronization issues.
second. Our application placed severe demands on SPAM/PSM allows asynchronous production firings, escaping the
the MACH kernel. preventing us from using all the synchronization requirement of the OPS5 recognize-act cycle.
processors. These robustness issues are being However, there is a cost associated with it in the form of
addressed by the designers of the shared virtual additional analysis required of the system designer to generate a
memory system. decomposition.

4. In our final optimized system, only a single task
queue is present. The contention for this task queue
is minimal Separate experiments were performed
on these task queues, which indicated that
introducing separate task queues (one for each
Encore) would not change the results.

On the whole, the framework for exploiting task-level
parallelism presented in thii paper seems most suitable for
parallelizing knowledge-intensive systems that exhibit weak
interaction between the individual subtasks of the task. This
framework is especially useful for systems with a large
computational demand separate from the demand imposed by
match.

8. Summary and Conclusions
Most investigations of speeding up production systems via

parallelism have been focused on match parallelism. While these
have provided good speedups, the total speedup available from
this source is limited and is insufficient to alleviate the problems
of inefficiency in large scale production systems. In fact, in

SPAM, speedup from match parallelism is limited to about a
factor of 2. In this paper we have focused on task-level
parallelism. The speedups obtained from task-level parallelism
will multiply with those obtained from match parallelism. We
characterized task-level parallelism in production systems along
three dimensions and, from that, selected an explicit, data-driven,
asynchronous approach for exploiting it. The system we
presented, SPAMJPSM. is a real, computationally demanding,
high-level vision system that relies on knowledge-based
reasoning. With the SPAM/PSM system, we showed that an
explicit approach to task-level parallelism can yield significant
speed-ups.

9. Future Work
Although all of SPAM is currently implemented in ParaOPSS,

the benefits from task-level parallelism are not fully available to
the SPAM researchers. Providing ParaOPS5 with task-level
parallelism as a useful tool requires moving beyond the current

166

experimental setup for task-level parallelism. For instance,
currently the initialization subphase within the local-consistency
phase consumes a large amount of processing time. and needs to
be optimized and/or parallelized.

Results from Section 6 show that large amounts of parallelism
can be exploited in SPAM, and thus, significantly larger numbers
of processors could be employed in exploiting the parallelism.
Shared-bus multi-processors like the Encore Multimax cannot
support such a large number of processors. Investigations of
shared virtual memory systems were motivated due to this
concern and they have provided promising results. However, we
need to obtain speed-ups with even larger numbers of processors.
We also need to analyze the current speed-ups from the shared
virtual memory system in detail, accounting for the various
overheads. In addition, other scalable parallel architectures need
to be evaluated for exploiting match and task-level parallelism in
production systems. Toward this end, we are currently
investigating implementations on message-passing computers [11.

Our long term plan is the investigation of task-level parallelism
in systems besides SPAM. We hope such investigations will help
us refine the general methodology for exploiting task-level
parallelism in production systems.

10. Acknowledgements
We’d like to thank Anurag Acharya, Charles Forgy, Anoop

Gupta, Brian Milnes and members of the Digital Mapping Lab for
helpful discussions. Special thanks to Joseph Barrera and David
Black of the MACH group for their help with the shared virtual
memory. Matt Diamond provided invaluable programming
assistance, and Kathy Swedlow helped make our prose a bit more
understandable.

This research was partially supported by the Air Force Office
of Scientific Research, under Grant AFOSR-89-0199, and by the
Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 4976. monitored by the Air Force Avionics Laboratory
Under Contract F33615-87-C-1499. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Aii Force Office of Scientific
Research, or of the Defense Advanced Research Projects Agency,
or of the United States Government.

References
[11 Acharya, A. and Tambe, M. Production systems on message passing

computers: Simulation results and analysis. Proceedings of the
International Conference on Parallel Processing, Augusr, 1989.

[2] Bachant. J. and McDermott, J. “Rl Revisited: Four years in the
trenches”. AfMagazine 5,3 (1984), 21-32.

[3] Brownston, L., Farrell, R., Kant, E., and Martin, N.. Programming
Expert Systems in OPSS: An introduction to rule-based programming.
Addison-Wesley, Reading, Massachusetts, 1985.

[4] Butler, P. L. Allen. J. D., and Bouldi, D. W. Parallel architecture for
OPS5. Proceedings of the Fifteenth International Symposium on
Computer Architecture, 1988. pp. 452-457.

151 Forgy, C. L. OP.% User’s Manual. Tech. Rept. CMU-CS-81-135,
Computer Science Department, Carnegie Mellon University, July, 1981.

[6] Forin, A., Barrera, J.. Sanzi. R. The Shared Memory Server.
Proceedings of USENIX -- Winter 89.1989. pp. 229-243.

[7] Gupta, A. Parallelism in Production Systems. Ph.D. Th., Computer
Science Depanment, Carnegie Mellon University, March 1986.

[S] Gupta. A., Forgy, C. L.. Kalp. D.. Newell, A., and Tambe. M. Parallel
OPSS on the Encore Multimax. Proceedings of the International
Conference on Parallel Processing, August. 1988. pp. 271-280.

[9] Gupta, A., Tambe, M.. Kalp, D., Forgy, C. L., andNewell, A.
“Parallel implementation of OPS5 on the Encore Multiprocessor: Results
and analysis”. International Journal of Parallel Programming 17.2
(1989).

[lo] Harvey, W.. Kalp, D.. Tambe. M., McKeown. D., and Newell, A.
Measuring the Effectiveness of Task-Level Parallelism for High-Level
Vision. Tech. Rept. CMU-CS-89-125, School of Computer Science,
Carnegie MelIon University, March, 1989.

[ll] I&da, T. Methods and Effectiveness of Parallel Rule Firings.
Proceedings of the Sixth IEEE conference on Artificial Intelligence
Applications, 1990.

1121 Ishida, T. and Stolfo, S. Towards the parallel execution of rules in
production system programs. Proceedings of the International Conference
on Parallel Programming, August, 1985, pp. 568-574.

[13] Kalp, D., Tambe. M., Gupta. A., Forgy. C.. Newell, A., Acharya, A.,
Milnes, B., and Swedlow, K. Parallel OPSS User’s Manual. Tech. Rept.
CMU-CS-88-187, Ccmputer Science Department, Carnegie Mellon
University, November, 1988.

[14] Laird, J. E., Newell, A., and Rosenbloom, P. S. “Soar: An
architecture for general intelligence”. Arlificial Inlelligence 33, 1 (1987),
l-64.

[15] Li, K. JVY: A Shared Virtual Memory System for Parallel
Ccmputing. Proceedings of International Conference On Parallel
Processing, 1988, pp. 94-101.

[161 McKeom, D.M.. Harvey, W.A.. W&on. L. “Automating
Knowledge Acquisition For Aerial linage Interpretation”. Computer
V&on, Graphics andlmage Processing 46.1 (April 1989), 37-81.

[171 McKeown, D.M.. Halvey. W. A., and McDennc~. I. “Rule based
interpretation of aerial imagery”. IEEE Tranrrrctions on Pattern Analysis
and Machine lnrelligence 7.5 (1985). 570-585.

[181 McKeown. D., McVay, W., and Lucas. B. “Stereo verification in
aerial image analysis”. Optical Engineering 25,3 (1986), 333-346.

[191 Miranker. D. P. Treat: A New and Eficient Mofch Algorithm for AI
Production Systems. Ph.D. ‘l%., Computer Science Department, Columbia
University, 1987.

[20] Mohan, I. Performance of Parollel Programs: Model a& analyses.
Ph.D. Th., Computer Science Dcpamnent, Carnegie Mellon University,
July 1984.

[21] Newell, A.. Un$ied Theories of Cognition. Harvard University
Press, Cambridge, Massachusetts. 1989. In press.

[22] Oflazer. K. Partitioning in Parallel Processing of Production
System. Ph.D. Th., Computer Science Department, Carnegie Mellon
University, March 1987.

[‘23] Oshisanwo, A. and Dasiewicz, P. A parallel model and architecture
for production systems. Proceedings of the International Conference on
Parallel Processing, August, 1987, pp. 147-153.

[24] Reddy, R. and Newell, A. Multiplicative speedup of systems. In
Jones, A., Ed., Perspectives on Computer Science, Academic Press. New
York, New York, 1977, pp. 183-198.

[25] Schreiner, F. and Ziiennan, G. Pesa-1: A parallel architecture for
production systems. Proceedings of the International Conference on
Parallel Processing, August, 1987, pp. 166-169.

[26] Tambe. M.. Kalp, D.. Gupta, A., Forgy, CL., Milnes, B.G., and
Newell, A. Soarn>SM-E: Investigating match parallelism in a leaming
production system. Proceedings of the ACM/SIGPLAN Symposium on
Parallel Programming: Experience with applications, languages, and
systems, July, 1988, pp. 146-160.

167

