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Large production systems (rule-based systems) continue to
suffer from extremely slow execution which limits their utility
in practical applications as well as in research settings. Most
investigations in speeding up these systems have focused on
match parallelism. These investigations have revealed that the
total speed-up available from this source is insufficient to alleviate
the problem of slow execution in large-scale production system
implementations. In this paper, we focus on task-level parallel-
ism, which is obtained by a high-level decomposition of the pro-
duction system. Speed-ups obtained from task-level parallelism
will multiply with the speed-ups obtained from match parallel-
ism. The vehicle for our investigation of task-level parallelism
is SPAM, a high-level vision system, implemented as a produc-
tion system. SPAM is a mature research system with a typical
run requiring between 50,000 and 400,000 production firings.
We report very encouraging speed-ups from task-level parallel-
ism in SPAM—our parallel implementation shows near linear
speed-ups of over 12-fold using 14 processors and points the
way to substantial (50- to 100-fold) speed-ups. We present a
characterization of task-level parallelism in production systems
and describe our methodology for selecting and applying a par-
ticular approach to parallelize SPAM. Additionally, we report
the speed-ups obtained from the use of virtual shared memory.
Overall, task-level parallelism has not received much attention
in the literature. Our experience illustrates that it is potentially
a very important tool for speeding up large-scale production

systems. © 1991 Academic Press, Inc.

1. INTRODUCTION

Large production systems (rule-based systems) continue
to suffer from extremely slow execution which limits their
utility in practical applications as well as research settings.
Most efforts at speeding up these systems have focused on
match (or knowledge-search) parallelism in production sys-
tems [1, 5, 8, 10, 20, 27, 28]. Though good speed-ups have
been achieved in this process, the total speed-up available
from this source is limited and is insufficient to alleviate the
problem of slow execution in large-scale production systems.
Such large-scale systems are expected only to increase in the
future [2, 23], which will exacerbate the problem of long
run times.

In this paper, we focus on task-level parallelism, which is
obtained by a high-level decomposition of the production
system. Speed-ups obtained from task-level parallelism will
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multiply with the speed-ups obtained from match parallel-
ism. Our vehicle for the investigation of task-level parallelism
is SPAM [17-191, a high-level vision system, implemented
in a production system architecture. SPAM is a mature re-
search system having over 600 productions, with a typical
scene analysis task requiring between 50,000 and 400,000
production firings and an execution time of the order of 10
to 100 cpu hours. It is a multiphase system, with each phase
displaying a different computational characteristic. Unlike
most other production systems examined for studies in par-
allelism, it has embedded in it a large computational demand
related to the vision task that it performs. This task-related
computation is separate from the computation performed
for match in the system. This is evident in the large non-
match-related processing time for this system. While many
production systems spend up to 90% of their time in match,
SPAM spends only about 30-50% of its time there.

In this paper, we show that the opportunities for task-level
parallelism in SPAM are high and provide a much larger
payoff in speed-up than match parallelism. We obtain near
linear speed-ups for two different phases—LCC and RTF—
of SPAM. For the LCC phase, we achieve a speed-up of over
12-fold using 14 processors on a 16-processor shared-memory
multiprocessor. Our results indicate that a potential speed-
up of 50- to 100-fold may be achievable due to task-level
parallelism. We further show that match parallelism, when
used in conjunction with task-level parallelism, gives another
multiplicative factor of speed-up which is proportional to
the size of the match component in the overall execution
time. In the SPAM system, this additional multiplicative
factor is around 1.5 to 2. Note that, for these parallelization
experiments, we reimplemented SPAM using an optimized,
C-based OPS5 implementation. All speed-ups reported here
are computed against this implementation of the SPAM sys-
tem run in uniprocessor mode. This baseline system provided
a 10- to 20-fold speed-up to begin with over the original
Lisp-based implementation used for SPAM. The speed-ups
due to parallelism are, thus, not artificially enhanced by any
hidden effect due to better implementation technology in
the new parallel system.

We also present a methodology to arrive at a suitable par-
allel decomposition of SPAM and describe a set of experi-

| These measurements are taken from the Lisp-based version of OPS5
running on a VAX/785 processor.
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ments and measurements on SPAM that allowed us to select
an appropriate grain of decomposition. These techniques
are applied to the two different phases of SPAM mentioned
above. These phases differ along at least two dimensions: the
type of task performed and the amount of time spent in
match. LCC is a constraint satisfaction task spending the
majority of its time in vision-related computation outside
of match. RTF is a typical Al classification task adhering
more closely to the conventional production system model
in terms of its match time. We expect that our techniques
should be applicable to the analysis of other large production
systems for evaluating the opportunities for task-level par-
allelism, regardless of the type of task performed or the
amount of time spent in match.

This paper is organized as follows: Section 2 provides some
background about production systems and SPAM, the image
interpretation system that is the focus of our analysis of task-
level parallelism. Section 3 discusses match parallelism and
task-level parallelism in production systems. Section 4 ex-
hibits our design methodology used to determine the task-
level parallelism in SPAM. A new system, SPAM /PSM, re-
sulted from the application of this methodology and its im-
plementation is described in Section 5. Section 6 presents
detailed results of experiments with match and task-level
parallelism (with varying grain sizes). Section 7 presents the
results of our experiments with virtual shared memory (or
network shared memory). Section 8 presents a summary of
our research results. Finally, Section 9 discusses some issues
for future work.

2. BACKGROUND

In this section we provide a brief overview of OPS5 and
SPAM. SPAM is implemented in OPS3, hence the descrip-
tion of OPS5 will be useful in understanding some of the
issues in how SPAM represents knowledge about spatial and
structural constraints used in computer vision. Besides pro-
viding background information, this section introduces the
terminology that will be used in the rest of this paper.

2.1. OPS5

An OPSS [4] production system is composed of a set of
if~then rules, called productions, that make up the production
memory, and a database of temporary data structures, called
the working memory. The individual data structures are
called working memory elements (WMEs), and are lists of
attribute-value pairs. Each production consists of a con-
junction of condition elements (CEs) corresponding to the
if part of the rule (also called the left-hand side or LHS),
and a set of actions corresponding to the then part of the
rule (also called the right-hand side or RHS).

The CEs in a production consist of attribute-value tests,
where some attributes may contain variables as values. The
attribute-value tests of a CE must all be matched by a WME
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for the CE to match; the variables in the condition element
may match any value, but if the variable occurs in more
than one CE of a production, then all occurrences of the
variable must match identical values. When all the CEs of
a production are matched, the production is satisfied, and
an instantiation of the production (a list of WMEs that
matched it), is created and entered into the conflict set. The
production system uses a selection procedure called conflict-
resolution to choose a production from the conflict set, which
is then fired. When a production fires, the RHS actions as-
sociated with that production are executed. The RHS actions
can add, remove, or modify WMEs, or perform 1/0.

The production system is executed by an interpreter that
repeatedly cycles through three steps: ( 1) Match, (2) Conflict-
resolution, (3) Act. The match procedure determines the set
of satisfied productions, the conflict-resolution procedure
selects a single instantiation, and the act procedure executes
its RHS. These three steps are collectively called the recog-
nize-act cycle.

2.2. SPAM: A Production System Architecture for Scene
Interpretation

SPAM [17-19]is a production system architecture for the
interpretation of aerial imagery with applications to auto-
mated cartography and digital mapping. It tests the hypoth-
esis that the interpretation of aerial imagery requires sub-
stantial knowledge about the scene under consideration.
Knowledge about the type of scene—airport, suburban
housing development, urban city—aids in low-level and in-
termediate-level image analysis, and will drive high-level in-
terpretation by constraining search for plausible consistent
scene models. SPAM has been applied in two task areas:
airport and suburban housing scene analyses. The remainder
of this section describes the SPAM architecture, and gives
run-time statistics that lead us to focus on two of its phases
for parallelization.

The SPAM system architecture uses the production system
framework to provide control in sequencing vision-related
tasks as it performs feature recognition and model building
within an image analysis. SPAM is distinctive from many
typical production system models in which knowledge search
is the only significant component. As mentioned in Section
1, SPAM spends more than 50% of its time in vision-related
tasks outside of the OPS5 framework. Such vision-related
tasks as image segmentation and the calculation of geometric
constraints can be represented and performed more effi-
ciently and effectively outside of OPSS5. In addition, a large
body of vision system software already exists to handle these
types of processing.

The heterogeneous organization characterized here by
SPAM may be appropriate to other domains where the map-
ping of complex analysis tasks is not suited to the represen-
tation provided by the production system framework. In this
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type of system organization, the RHS actions become essen-
tially external calls for information, specialized processing,
or database access that are necessarily best represented out-
side of the production system.

As with many vision systems, SPAM attempts to interpret
the 2-dimensional image of a 3-dimensional scene. A typical
input image is shown in Fig. 1. The image is segmented into
a collection of delineated objects in the scene. The goal of
SPAM is to produce an interpretation for the segmented
objects as a collection of real-world objects in the particular
domain. Knowledge about the domain drives the interpre-
tation process. For example, a final output for the image in
Fig. 1 would be a model of the airport scene, describing
where the runway, taxiways, terminal-building(s), etc., are
all located. The overlay on the image in Fig. 1 graphically
depicts this automatically generated airport model.

SPAM uses four basic types of scene interpretation prim-
itives—regions, fragments, functional areas, and models—
each of which is associated with a particular step in the in-
terpretation process. SPAM performs scene interpretation
by transforming image regions into scene fragment interpre-
tations. It then aggregates these fragments into consistent
and compatible collections called functional areas. Finally,
it selects sets of functional areas to form models of the scene.

As shown in Fig. 2, each interpretation phase is executed
in the order given. SPAM drives from a local, low-level set
of interpretations to a more global, high-level, scene inter-
pretation. There is a set of hard-wired productions for each
phase that controls the order of rule executions, the pro-

FIG. 1. Aerial image of San Francisco Airport with final SPAM results
superimposed.
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FIG. 2. Interpretation phases in SPAM.

cessing of geometric computations, and other domain-in-
dependent tasks. However, this “bottom-up” organization
does not preclude interactions between phases. For example,
prediction of a fragment interpretation in the functional-area
(FA) phase will automatically cause SPAM to reenter the
local-consistency check (LCC) phase for that fragment. Other
forms of top-down activity include stereo verification to dis-
ambiguate conflicting hypotheses in the model-generation
(MODEL) phase and to perform linear alignment in the
region-to-fragment (RTF) phase.

Another way to view the flow of processing in SPAM is
that knowledge is used to check for consistency among hy-
potheses; contexts are created based on collections of con-
sistent hypotheses, and are then used to predict missing
components. A collection of hypotheses must combine to
create a context from which a prediction can be made. These
contexts are refinements or spatial aggregations in the scene.
For example, a collection of mutually consistent runways
and taxiways might combine to generate a runway functional
area. The context of a runway functional area then predicts
that certain subareas within that functional area are good
candidates in which grassy areas or tarmac regions may be
found. However, an isolated runway or taxiway hypothesis
cannot directly make these predictions. In SPAM the context
determines the prediction. This serves to decrease the com-
binatorics of hypothesis generation and to allow the system
to focus on those areas with strong support at each level of
the interpretation.

Tables I, II, and III give statistics for the run-time and the
number of production firings for each interpretation phase
in SPAM for each of the three airports used in this study:
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TABLE 1
San Francisco Airport (Log No. 63)
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TABLE Il
NASA Ames Moffett Field (Log No. 415)

SPAM phase RTF LCC FA MODEL  Total SPAM phase RTF 1LCC FA MODEL Total
Total CPU time Total CPU time
(hours) 1.5 144.5 7.3 0.71 154.01 (hours) 0.25 4.12 2.33 0.33 7.03
Total No. firings 11,274 185,950 10,447 3085 210,756  Total No. firings 4713 36,949 1503 3774 46,939
Effective productions/ Effective productions/
second 2.08 0.357  0.397 1.20 0.380 second 5.24 230  0.160 3.02 1.85
Total hypotheses 466 N/A 44 1 N/A  Total hypotheses 199 N/A 27 1 N/A

San Francisco International (SF), Washington National
(DC), and NASA Ames Moffett Field (MOFF). 1t is inter-
esting to note that the LCC and FA phases account for most
of the overall time in a complete run. Further, within these
two phases much of the RHS evaluation is performed outside
OPS5 using external processes. For example, FA spends
much of its time doing RHS evaluation outside of OPSS.
RTF, on the other hand, spends most of its time within the
traditional OPS35 evaluation model and consumes less time
than FA, even though it executes a comparable number of
productions.

As a result of this analysis, we decided to focus on par-
allelizing the LCC and RTF phases. The choice of LCC was
motivated by the observation from the tables presented ear-
lier, that LCC is by far the most expensive phase in terms
of amount of time spent, number of productions, as well as
number of production firings. Another rationale for this ap-
proach is the observation that this phase has the largest po-
tential for growth. We believe that as new knowledge is added
to the existing SPAM system, the proportion of time can
only increase in the LCC phase. The RTF phase was selected
for parallelization since it fits the framework of a traditional
OPS5 system more closely than the other phases of SPAM—
it thus contrasts with the computation in LCC, providing
generality to the results presented.

It is interesting to consider the nature of the computations
performed in the LCC and RTF phases and understand the
differences among them. The RTF phase performs a tradi-
tional heuristic classification (or analysis) task [4]. It clas-
sifies/subclassifies regions in a scene as fragments based upon
intrinsic properties of the region, such as shape, reflectance,

TABLE II
Washington National Airport (Log No. 405)

SPAM phase RTF LCC FA MODEL Total
Total CPU time
(hours) 2.5 17.9 7.3 0.33 28.03
Total No. firings 18,319 32,751 1483 1516 54,069
Effective productions/
second 2.03 0.508 0.056 1.27 0.536
Total hypotheses 247 N/A 57 1 N/A

and texture. For example, it may classify linear regions in
the scene as taxiways or runways.

The LCC phase performs a constraint-satisfaction task.
In this phase, knowledge of the structure or layout of the
task domain (i.e., airports or suburban housing develop-
ments) is used to provide spatial constraints for evaluating
consistency among fragment hypotheses. For example, run-
ways intersect taxiways and terminal buildings are adjacent
to parking aprons are examples of the kinds of constraints
that are applied to the airport scene segmentation. It is im-
portant to assemble a large collection of such consistency
knowledge since the results of these tests are used to assemble
fragment hypotheses found to be mutually consistent as
contexts for further interpretation within the functional area
phase.

3. SOURCES OF PARALLELISM IN
PRODUCTION SYSTEMS

We can identify two sources of parallelism in production
systems: match parallelism and task-level parallelism ( 7LP).
In this section we first discuss existing results in match par-
allelism. We then discuss task-level parallelism and introduce
a taxonomy for describing various approaches to achieving
effective speed-ups.

3.1. Match Parallelism

In general, production systems spend most of their time
(more than 90%) in the match phase of the recognize-act
cycle. This makes it imperative that the match phase be
speeded up as much as possible. In the past few years, an
increasing number of researchers have explored many alter-
native ways to speed up the match in production systems
using parallelism [5, 8, 10, 20, 24, 27, 28].

Our own efforts in speeding up the match have culminated
in ParaOPS5 [10, 14}, an optimized C-based parallel imple-
mentation of OPS5 for shared-memory multiprocessors.
ParaOPS5 represents our current technology for achieving
match parallelism within systems such as SPAM. This im-
plementation parallelizes the highly efficient Rete [6] match
algorithm. ParaOPS35 exploits parallelism at a fine granular-
ity: subtasks execute only about 100 instructions. ParaOPS5
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has been able to provide significant speed-ups for OPSS sys-
tems that are match-intensive. Figure 3 shows the speed-ups
achieved with our current implementation for three different
match-intensive systems: Rubik, Weaver, and Tourney. The
speed-ups are for an implementation on the Encore Multi-
max and are reproduced from [10]. Though good speed-ups
are achieved in Rubik and Weaver, the speed-up in Tourney
is quite low. The speed-ups are a function of the character-
istics of the productions in the production system (see
[9, 10]).

Although systems such as ParaOPS5 have achieved good
speed-ups, the total possible speed-up via match parallelism
in current production systems is limited (only 20- to 40-fold
[81). This limit is imposed by:

1. The recognize-act cycle of OPS5: The OPS5 model
requires a synchronization in its resolve phase. Thus match
parallelism is limited to individual cycles; we cannot extract
match parallelism across cycles.

2. Limited match effort per cycle: In every recognize—act
cycle, only a limited number of productions are affected; i.e.,
the match effort per cycle is also quite limited.

Furthermore, the effectiveness of match parallelism is
based on the assumption that the match phase dominates
the entire computation. However, it is possible that the sys-
tem under consideration is embedded in some other com-
putationally demanding environment. In such cases, it is
necessary to parallelize the rest of the computation besides
match. Consider a system that spends only 50% of its time
in match. Even if the match is made infinitely fast, the total
speed-up possible will be only a factor of 2, as described by
Amdahl’s law.
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FIG. 3. Speed-ups for OPS5 on the Encore Multimax [10].
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3.2. Task-Level Parallelism

The limitations of match parallelism described in the pre-
vious section prompt the investigation of task-level paral-
lelism. Task-level parallelism has also been referred to as
application parallelism [8], concept parallelism [25], and
parallel rule firings [13]. Our choice of the term task-level
parallelism for this source of parallelism is partly historical
and partly dictated by the inadequacy of the other terms to
cover the kind of parallelism provided by production systems
like Soar [15].

Task-level parallelism refers to parallelism inherent in the
given task. Exploiting this task-specific parallelism often re-
quires the system designer to supply knowledge about the
particular problem domain to identify the parallelism. Some
systems, however, are able to automatically infer the sources
of parallelism inherent in a task by a static analysis of the
productions that implement the task or a run-time analysis
of the execution behavior of the task.

The essential distinction between match parallelism and
task-level parallelism is that match parallelism is independent
of the task domain. Match parallelism is a feature of the
underlying production system architecture that provides the
computational engine for executing any production system
application. This distinction, which may appear to be some-
what subtle at first glance, is a significant one—especially
with respect to the available parallelism. As we saw in Section
3.1, match parallelism is limited by the general nature of
production systems. However, task-level parallelism is not
constrained by such a fixed bound. It is limited only by the
inherent parallelism available in the task itself. In fact, as we
shall see, this parallelism can be substantial.

A system exploiting task-level parallelism could be im-
plemented on top of a system exploiting match parallelism.
The speed-ups obtained from these two sources are inde-
pendent and would therefore multiply. Task-level parallelism
can be better understood by considering the possible dimen-
sions along which it can be divided. The following is a dis-
cussion of three independent dimensions for task-level par-
allelism.

The first dimension is based on the implicit versus explicit
detection of parallelism. The parallelism is implicit if the
system or the compiler has to extract parallelism out of the
existing OPS5 code. This requires an analysis of the inter-
ference [12, 13, 21, 25] caused by firing productions in
parallel.

Explicit parallelism refers to providing explicit information
to the system for exploiting task-level parallelism. Thus, the
system may be supplied with the information that certain
parts of a given task can be solved in parallel, or that certain
productions can always be fired in parallel. This does require
some additional effort by the system designer to analyze and
understand the problem domain and select a suitable task
decomposition to exploit it.
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In implicit parallelism, the system automatically extracts
the parallelism in a domain-independent fashion. If it engages
in extracting this parallelism at compile-time, then its ex-
traction of parallelism has to be very conservative, as the
binding of variables in the productions with working memory
elements is not known until run-time. If this parallelism is
extracted at run-time, then there are overhead costs paid at
run-time to perform the interference analysis. These over-
heads are sequential, and hence can cause considerable
slowdowns. A system for exploiting explicit parallelism is
able to avoid these problems.

When the parallelism is implicit, the granularity is usually
at the level of productions; it seems difficult to discover a
higher level of granularity with implicit parallelism. With
explicit parallelism, the user has the freedom to choose the
right granularity. The level of granularity is a complex trade-
off of the number of processors available, architectural pa-
rameters, variances, data structures, and task management
overheads. The granularity issue is discussed in Section 4.3.

The second dimension is based on synchronous versus
asynchronous production firings. Synchronous production-
firing systems always require a synchronization in the resolve
phase of the recognize-act cycle. All the productions can be
matched in parallel. But synchronization must occur in the
resolve phase in order to select the production or set of pro-
ductions to fire next. In the act phase, the selected produc-
tions can be fired in parallel.

In asynchronous production-firing systems there is no re-
quirement for a synchronization in the resolve phase across
processors. Thus, these systems do not have distinct match,
resolve, and act phases across the parallel system.

Synchronous systems are less capable of handling variances
in processing times for subtasks [22]. As shown in [22],
given a fixed amount of work, in the presence of variance,
a synchronous system quickly reaches saturation speed-ups,
while an asynchronous system can continue to exploit linear
speed-ups. So, in a production system embedded in a com-
putationally intensive environment, if executing the RHS of
certain productions takes much longer than others, the per-
formance of the synchronous system will degrade heavily.
However, synchronous systems may be preferred in the de-
velopment and debugging stages.
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The third dimension concerns the distribution of produc-
tions (rules) and working memory over the processors. There
are three choices: rule distribution, working memory element
distribution, and no distribution. These choices of distribution
relate to the approach used to partition the processing to
best exploit the parallelism.

To better understand this, one might reasonably view the
productions as components of an algorithm and working
memory elements as the data. The choice of which to par-
tition depends on whether one can readily identify a parti-
tioning and whether its component parts have enough uni-
formity in their processing times to achieve good parallel
performance.

Rule distribution involves a partitioning of the productions
in the system among the processors, where each production
set has its own conflict set. This distribution could be done
automatically [21] or with the help of the user. However,
optimal distribution of productions among processors is a
difficult problem [24].

A second approach is to allocate all the productions to
each processor; the working memory elements are then dis-
tributed among the processors. In contrast with rule distri-
bution, which is typically determined at compile time, work-
ing memory element distribution is usually performed dy-
namically as the system executes and thus incurs some extra
run-time overheads. However, these overheads may be very
small.

The third approach is no distribution and is more or less
a default choice in which no attempt is made to partition
either productions or working memory across the processors.
Some systems do not admit to a disciplined partitioning
scheme on these bases. In this case, one often finds more ad
hoc approaches to opportunistically exploit parallelism.

Table 1V shows the various dimensions and the classifi-
cation of various parallel rule-firing systems along these di-
mensions. These dimensions will help to investigate the task-
level parallelism in SPAM/PSM. The table uses the names
of authors to represent systems that do not have any names.
We also indicate the third dimension that classifies the type
of distribution used: rule distribution, working memory ele-
ment distribution, or none.

The SPAM/PSM system is the system described in this

TABLE IV
Dimensions of Task-Level Parallelism

Dimensions Synchronous Distribution Asynchronous Distribution
Implicit Ishida and Stolfo [13] Rule CREL [21] Rule
Ishida {12] Rule
Oshisanwo and Dasiewicz {25] Rule
Baker and Miller [3] Rule
Explicit Soar [15] None SPAM/PSM WME
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paper; the design choices are discussed in detail in Section
4. These dimensions are not intended to be binary; rather,
different systems could take different positions along a con-
tinuum in these dimensions. However, in the interests of
clarity, the table makes a binary division. For instance, the
system in [25] is classified as using implicit parallelism—
however, it uses some explicit parallelism. it should be noted
that except for Soar and SPAM /PSM, all other systems pres-
ent simulation results on miniproduction systems (with 50
or less productions).?

Table IV shows that much of the work in task-level par-
allelism is based on the implicit and synchronous dimensions
of task-level parallelism [13, 12,25, 3].In [3], an interesting
extension for OPSS is presented to allow parallel execution
of multiple actions. In [21], an attempt is made to introduce
asynchronous execution. They allow asynchronous execution
of rules in different groups (called clusters), but require syn-
chronization within a single cluster. Most of these systems
make use of the techniques introduced in [13] for discovering
implicit parallelism. The SPAM /PSM system differs from
all these systems in that (i) it uses explicit decomposition
and (ii) it uses working memory element distribution for
achieving parallelism. Our results will illustrate that the
SPAM /PSM approach is effective in achieving good speed-
ups via task-level parallelism.

4, DESIGN METHODOLOGY

This section develops a methodology for applying task-
level parallelism within the context of SPAM. As discussed
in Section 2.2, we will concentrate on the RTF and LCC
phases of SPAM for parallelization. The LCC phase, because
of its computationally intensive nature, was the first one to
be parallelized. Therefore, our methodology is described in
detail for LCC; the methodology for the RTF phase is similar
and only the relevant results from that phase are presented.

2 While we reported results of match parallelism in Soar from a real im-
plementation in [28], the results of task-level parallelism in Soar are based
on simulations [8].

In examining a given problem domain and arriving at a
system design, we are not so much faced with making a
choice of which approach to use in each of the dimensions
of task-level parallelism described in Section 3.2. Rather, we
are faced with determining what the system characteristics
are and what the opportunities are for effectively exploiting
the inherent parallelism. The dimensions of task-level par-
allelism serve to focus this identification of the computational
characteristics of the problem domain and then guide the
design of the system to best exploit the parallelism based on
these characteristics.

However, as pointed out in Section 3.2, the alternatives
in some of the dimensions of task-level parallelism have at-
tendant problems which influence the view one takes in
characterizing the problem domain. For example, in the dis-
tribution dimension, the difficulty in determining optimal
rule partitioning motivates one to avoid it. Thus a bias is
made for working memory distribution if the system can be
characterized in this way.

In this section, our design methodology begins with a
characterization of the SPAM computation. With this char-
acterization, we identify the dimensions along which we will
exploit the task-level parallelism in SPAM. Finally, having
identified an explicit decomposition of SPAM, we address
the selection of the right level of decomposition to use in the
parallel system and conclude with a summary of our decom-
position methodology.

4.1. Characterizing the SPAM Computation

As described in Section 2.2, the SPAM system exhibits a
hierarchical processing structure with distinct levels of or-
ganization. For a given SPAM phase, the organization of the
processing is characterized by the set of objects and their
relationships according to the level of detail at which they
are being examined. Higher levels tend to aggregate objects
and generalize relationships while lower levels identify further
refinements of these. We can use this knowledge about the
task domain to specify several hierarchical task decompo-
sitions of the problem in which parallelism can be exploited.
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The LCC phase applies geometric knowledge (constraints)
from the selected domain (airport here) to the set of inter-
pretations made from the dataset. This application of geo-
metric knowledge can be logically decomposed into several
levels, where the tasks within each level are independent and
can be performed in parallel. The decomposition proceeds
from higher to lower levels of granularity at which the lower
levels expose more details of the computation and subdivide
the processing into smaller pieces or tasks. This is illustrated
in Fig. 4. These levels of decomposition are described below:

o LCC phase: At the highest phase level, the computation
is for the entire LCC phase.

« Level 4: The phase level computation may be decom-
posed into tasks at Level 4, where each task applies multiple
constraints to a single class of objects. For instance, a task
may apply multiple constraints to all objects of class terminal
building.

« Level 3: A single task at Level 4 may be decomposed
into multiple tasks at Level 3. A task at Level 3 applies mul-
tiple constraints to a single object within the class of objects
selected at Level 4. For example, a Level 3 task may apply
multiple constraints to a single terminal building object.

- Level 2: A single task at Level 2 involves applying a
single constraint to a single object. Thus, a task at Level 2
may apply a constraint such as access roads lead to terminal
buildings to a single terminal building chosen for a task at
Level 3.

» Level I: A single task at Level 2 may have several com-
ponents to check in applying a constraint to an object. Thus
a constraint such as access roads lead to terminal buildings
requires several roads be checked against the terminal build-
ing. A task at Level 1 would perform one of these constraint
components.

4.2. Identifving the Dimensions of Task-Level Parallelism

The characterization of SPAM in Section 4.1 yielded an
explicit decomposition of the system into several hierarchical
levels. Thus, the characteristics of SPAM fit the requirements
for exploiting task-level parallelism along the explicit di-
mension described in Section 3.2. Within a decomposition
level, each task involves the firing of from 3 to approximately
100 productions. As mentioned in Section 3.2, an implicit
approach to extracting parallelism would make it difficult to
obtain parallelism at a higher level of decomposition than
individual production firings. Therefore, for this application,
an explicit approach to parallelism is appropriate.

The second dimension of task-level parallelism addresses
the issue of synchronous versus asynchronous execution. In
our explicit decomposition, the tasks at each level are in-
dependent and there is no synchronization requirement. This
allows us to exploit asynchronous production firings across
the parallel system. As stated in Section 3.2, asynchronous
models help in reducing the impact of variance.
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The final dimension of task-level parallelism is concerned
with production versus working memory partitioning. As
discussed earlier in this section, working memory partitioning
is to be preferred. The processing on the data objects in the
task decompositions provides a natural mapping to working
memory element distribution. We also see in the next sub-
section that the variance in processing time among the tasks
within several of the task decompositions is small. This uni-
formity in processing time among the tasks is useful in
achieving good parallel performance and further supports
the use of the more easily specified working memory parti-
tioning,

4.3. Choosing the Right Level of Decomposition

With an explicit approach to parallelism, the choice of
the right level of decomposition, or the right granularity, for
parallelization must be made. This choice is determined by
several factors:

1. Task granularity: As the average time per task gets
smaller, task management overheads will have a greater im-
pact and communication overheads and system resource
contention will become more of a bottleneck.

2. Ratio of tasks to processors: The achievable parallelism
is bounded by the number of available processors. At lower
task to processor ratios, a large variance in task processing
time will have a negative impact on processor utilization
and the speed-ups obtained from parallelism. With higher
ratios, the impact is less pronounced.

3. Coefficient of variance: Defined as (standard deviation/
average), this provides a means of normalizing, for different
levels of decomposition, the effect of variance in task gran-
ularity on processor utilization. A high coefficient of variance
will reduce processor utilization, resulting in lower speed-
ups. This effect is more severe in synchronous systems.

4. Decomposition effort: This is a somewhat subjective
measure. Proceeding down the hierarchy of levels, each task
at the current level must be decomposed into several tasks
at the next level of granularity. Usually, more work is re-
quired to specify the decomposition and design an imple-
mentation at the lower levels. The benefits of the additional
parallelism that can be achieved at a lower level relative to
the effort required must be assessed.

In order to choose the right level of decomposition at which
to parallelize the SPAM LCC phase, we instrumented the
SPAM system to obtain measurements at each level for the
number of tasks and their run-time average, standard devia-
tion, and coefficient of variance. The results of these mea-
surements for each of the three airport datasets are presented
in Tables V, VI, and VII.?

3 Since the analysis is performed using the original, expensive Lisp-based
SPAM system, we have extracted a representative subset of the three airport
datasets to drive the analysis.
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TABLE V

Average, Standard Deviation, and Coeflicient
of Variance for SF
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TABLE VII

Average, Standard Deviation, and Coefficient
of Variance for MOFF

Average Standard Average Standard
time/task deviation Coefficient of Number of time/task deviation Coefficient of Number of
Level (s) (s) variance tasks Level (s) (s) variance tasks
4 875.27 525.92 0.601 9 4 165.60 121.20 0.732 9
3 65.65 29.51 0.449 120 3 20.07 8.02 0.399 74
2 20.90 8.48 0.406 377 2 5.57 243 0.436 268
1 0.489 0.0782 0.159 16,104 1 0.349 0.0455 0.130 4274

Using information from Tables V, VI, and VIIL, the ap-
propriate level of granularity can now be chosen for our
target architecture, an Encore Multimax with 16 processing
elements. For Level 4, the task-to-processor ratio is smaller
than one, so we immediately rejected pursuing parallelism
at this level. Levels 3 and 2 are very similar to each other in
that they have enough tasks, their variances are not large,
and the task granularities are much larger than the expected
task management and communication overheads. Both lev-
els, therefore, seemed to us to be worthwhile candidates.
Level 3 seemed somewhat more desirable as less effort ap-
peared to be required of us to achieve amounts of parallelism
similar to that available in Level 2.

Level 1 was rejected for several reasons. First and most
importantly, the additional effort involved in decomposing
the system at the granularity of Level 1 would not allow us
to achieve any more parallelism than at Level 2 or 3 because
of the limitation on the number of processors. Second, the
task granularity is much smaller and thus closer to the over-
heads for task management and communication than any
of the other levels. Finally, the task-to-processor ratio is on
the order of 1000. This can have a detrimental effect due to
the initialization overhead. Our conclusion, then, was to ex-
ploit parallelism at the granularity of Level 2 or 3.

Our decomposition methodology can be summarized as
follows:

« Analyze the baseline system and determine where the
time is going.

TABLE V1
Average, Standard Deviation, and Coefficient
of Variance for DC
Average Standard
time/task deviation Coefficient of Number of
Level (s) (s) variance tasks
4 1308.66 641.72 0.490 9
3 78.51 30.48 0.388 150
2 24.04 9.51 0.396 490
1 0.430 0.0677 0.157 27,399

« Determine if the explicit dimension of task-level par-
allelism (Section 3.2) is appropriate.

« Characterize the computation in terms of independent
task decompositions at different granularities.

« Obtain measurements of the system characteristics for
each level of decomposition.

« Analyze the measurements to select a level of decom-
position for parallelization.

A similar analysis of the RTF phase was performed. This
resulted in a decomposition level providing approximately
60100 tasks in the three datasets at roughly the same gran-
ularity as Level 2 of the LCC phase, and a low coefficient of
variance of approximately 0.3.

5. SPAM/PSM IMPLEMENTATION

This section describes the SPAM/PSM system for ex-
ploiting task-level parallelism in SPAM. The system is built
on top of the ParaOPS5 system described in Section 3.1. The
SPAM /PSM system is implemented on an 16-processor En-
core Multimax, a shared-memory multiprocessor based on
the National Semiconductor NS32332 processor (rated at
approximately 1.5 MIPS), running the MACH operating
system.

Task
Queue
Control
Process
Task Task Task
Process Process Process

Match Match
Process Process Process l

FIG.S. Organization of the SPAM/ PSM system.
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5.1. SPAM /PSM Architecture

Figure 5 gives a process hierarchy view of the SPAM/
PSM system. Viewed from the top level, the execution model
consists of a control process, a set of task processes, and a
queue of tasks to be executed. The size and number of tasks
in the queue reflect the level of decomposition chosen for
the particular SPAM phase. As part of initialization, the
control process builds the queue of tasks. It then forks the
task processes and, once they have completed all the tasks,
collects from them the results that will be passed on to the
next SPAM processing phase.

Each of the task processes is a complete and independent
ParaOPS5 system. Thus, each task process has its own
working memory, conflict set, etc. Each task process has a
production memory, which represents all the productions in
the system, and effectively has a copy of the initial working
memory supplied by the control process. At system initial-
ization time, each task process can also fork a set of match
processes (see Fig. 5) which will perform the match in par-
allel.

Execution of a particular SPAM phase involves a task
process removing a task from the queue and executing its
ParaOPS5 system on that task. The task itself is just a working
memory element, which initializes the production system of
the process. Thus, each task can be characterized as the ex-
ecution of an independent OPS5 program.

In the absence of the match processes, a task process per-
forms the usual ParaOPS5 role of match, conflict-resolution,
and production firing, to carry out the OPS5 recognize-act
cycle. If dedicated match processes are present, they perform
the match instead, providing a second and independent axis
of parallelism in the SPAM/PSM system. When there are
no productions left to fire, the task is complete, and the task
process goes to the queue for another task.

Thus, the SPAM /PSM system realizes our specifications:

1. Explicit parallelism: The decomposition of the problem
is explicitly specified. The task queue is initialized with in-
dependent tasks, depending on the level of decomposition,
in the beginning of the run.

2. Asynchronous production firing: All the task processes
are independent ParaOPS5 systems. Therefore, these pro-
cesses can fire productions without synchronizing with each
other.

3. Working memory element distribution: Each task pro-
cess has a copy of the entire set of productions. The working
memory is distributed among the various task processes.

5.2. Measurement Techniques

The control process previously described is used to mon-
itor and time the processing. Measurement begins at the point
after which the control process has built the task queue and
forked the task processes, and all the task processes have
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performed their initializations. Speed-ups are computed by
comparing the measured execution time against the execu-
tion time of the BASELINE version, which consists of the
control process, one task process, and no dedicated match
processes.

Because of the 16-processor limit, we measure the effects
of task-level parallelism and match parallelism in isolation.
We allocate one processor for the control process, which is
used only to time and not to perform tasks, and we allow
one processor to the operating system. This permits us to
vary the number of task processes from 1 to 14 in the isolated
measurement of task-level parallelism. Next we measure the
effect of match parallelism in isolation by using a single task
process and varying the number of dedicated match processes
from 0 to 13.

We are then able to use these two separate measures of
task-level parallelism and match parallelism to predict the
combined effect of the two. However, with 14 available pro-
cessors, we are able to test only a subset of the possible com-
binations. For example, 4 task processes, each having 2 ded-
icated match processes, use 12 processors (4 + (4*2)). Thus,
dedicating 3 match processes requires 16 processors (4 +
(4%3)) and, therefore, cannot be accommodated.

6. RESULTS AND ANALYSIS

This section presents the results of task-level parallelism
in the LCC and RTF phases on three different airport da-
tasets: SF, DC, and MOFF. As described above, the speed-
ups are obtained for applying task-level parallelism and
match parallelism in isolation and then for a combination
of the two. Again, we provide detailed results for LCC and
then provide the summary of results for RTF.

It is important to note that all the speed-ups are computed
against a baseline system which represents an optimized un-
iprocessor implementation. The original SPAM system is
implemented in Lisp, using an unoptimized Lisp-based
OPS5. and has an interface to C in order to perform geo-
metric computations and other specialized vision processing
through external calls made in the RHS. We ported this entire
system to C and ParaOPS5 to obtain our baseline system.
This baseline system itself provides approximately a 10- to
20-fold speed-up over the original Lisp-based implementa-
tion on the three datasets used here.

6.1. The Baseline System for the LCC Phase

The baseline version of the LCC phase of the system uses
a single task process to execute all the tasks in the system.
The results from this version are given in Table VIII and
provide a picture of the magnitude of the LCC phase. The
column marked Dataset gives the name of the airport and
the decomposition level used. The column marked Total
time shows the total time to execute all the tasks from the
queue for the given number of tasks executed. The average
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TABLE VIII

Measurements for Baseline System on the Datasets “

Total Average Effective
time Number time/task  Prods. prods./ RHS
Dataset (s) of tasks (s) fired second  actions
SF
level 3 1433 283 5.07 33,475 23.36 42,383
level2 1423 941 1.51 32,251 22.66 41,159
DC
level 3 988 151 6.55 20,059 20.30 31,205
level 2 956 490 1.95 19,418 20.31 30,564
MOFF
level 3 991 209 4,74 22,203 22.40 23,637
level 2 973 700 1.39 21,294 21.88 22,728

Note. Represents the optimized, ParaOPS5-based, uniprocessor version.
“ These datasets are larger than those shown in Tables V, VI, and VIL

time per task is then shown in the next column. Finally, we
further characterize the LCC phase with the total number
of productions fired (Prods. fired), rate of firing (Effective
prods./second ), and RHS actions performed (RHS actions).

The execution times in Table VIII provide the basis for
computing all of the speed-ups. For a given airport dataset,
there is a small difference in the total execution time between
the two levels of decomposition. These differences arise due
to the differences in the initial set of productions fired for
generating the fasks for the two levels.

6.2. Speed-Ups Due to Task-Level Parallelism in LCC

The results of applying task-level parallelism to LCC are
shown in Fig. 6. The speed-up curves show near linear speed-
ups for both levels of decomposition. The speed-ups within
a level are almost the same among the three airport datasets.
The maximum speed-up achieved using 14 processors is
11.90-fold in Level 3 and is 12.58-fold in Level 2.

Across the two levels, we see that the curves are consistently
better in Level 2, although by only a small factor (less than
10%). While the difference is small, Level 3, with its higher
granularity, was expected to have the edge in speed-up, since
its task management overheads would be lower. However,
the task management overheads in both levels are very low:
less than 0.25 s, or less than 0.1% of the processing time for
all the tasks. Moreover, the coefficient of variance for tasks
at both levels was seen to be the same in Section 4.3.

Further investigation of the individual processing times
of the tasks in the queue showed that there are a few tasks
in each level that have execution times that are an order of
magnitude larger than the average task in that level. Some
of these tasks occur at the end of the task queue and create
a tail-end effect in which processor utilization is low at the
end of the phase. The relative disparity of these large tasks
is greater within Level 3 and thus accounts for the slightly
better speed-ups in Level 2.
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One way to both negate this disparity and reduce the tail-
end effect would be to use a separate task queue for the larger
tasks and process them at the beginning of the phase. This
would result in better processor utilization and thus better
speed-up curves in both levels. SPAM can provide the nec-
essary information to identify the sizes of the tasks. This and
other related issues of scheduling tasks are subjects for future
work.

6.3. Speed-Ups Due to Match Parallelism in LCC

Figure 7 shows the results for applying match parallelism
to each of the tasks in a parallel decomposition for Level 2.
Match parallelism is obtained by dedicating processes to
perform the match within the OPS5 recoghize-act cycle.
Since the baseline version of the system has only a task pro-
cess and no dedicated match processes, it is represented in
the graph at position 0 on the horizontal axis. From the
graph, we see that applying match parallelism to the LCC
phase yields very different speed-up results from those
achieved using task-level parallelism. As stated in Section
3.1, the theoretical maximum speed-up that can be obtained
is limited according to the percentage of total execution time
spent in match, which is less than 50% in LCC.

The dotted lines on the graph show the theoretical speed-
up limits. For Level 2, these limits are 1.99, 1.36, and 1.55
for SF, DC, and MOFF, respectively. We were able to obtain
respective speed-ups of 1.71, 1.29, and 1.43 which represent
86, 95, and 92% of the corresponding asymptotic limits. In
all three cases, the speed-ups peaked using six or less match
processes. The results for Level 3 are similar (see [11]).

6.4. Multiplicative Speed-Ups in LCC

To validate the multiplicative effect of the two independent
axes of parallelism [26], the system was run using task-level
and match parallelism in consort. While the scope of the
experiments was limited by the small number of processors,
the speed-ups obtained in these combined runs were consis-
tent with the speed-ups predicted by the multiplication of
speed-ups from the two separate sources. Table 1X shows
the results of some of these combined runs on SF for Level
2. The top row of the table varies the number of dedicated
match processes from O to 4. The left column of the table
varies the number of task processes from 1 to 7. The first
row of numbers in the table gives the speed-ups from match
parallelism in isolation. The first column of numbers in the
table gives the speed-ups from task-level parallelism in iso-
lation.

The table entry at (Task,, Match,) represents the baseline
version of the system. Each of the other table entries shows
the achieved multiplicative speed-up from the combined
sources with the predicted speed-up in parentheses directly
below. For example, the entry (Task,, Match,) represents
the use of 4 task processes with each having 2 dedicated
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FIG. 6. Speed-ups varying the number of task-level processes.

match processes. The achieved speed-up for this configura-
tion is 5.82-fold and the predicted speed-up is 5.96
(3.98%1.50). Table entries marked with an asterisk could
not be measured due to a lack of processors on the machine
(see Section 5.2). For example, ( Task,, Match; ) requires 17
processors: 1 control process, 4 task-level processes, and 12
(=4%3) dedicated match processes. The table shows the
achieved speed-ups to be very close to the predicted speed-
ups. Similar results were obtained for DC and MOFF.

6.5. Results from the RTF Phase

From a static analysis of the productions, the RTF phase
was expected to be match intensive and hence provide speed-
ups from match parallelism in step with the results of tra-
ditional OPS5-based systems. Recall that the RTF phase of
SPAM is a traditional heuristic classification task, mapping
regions in an image to interpretations called fragments.
However, measurements revealed that production system
match constituted 60% of the execution time. This is closer
to more traditional OPSS5 systems; although traditional OPS5
systems spend an even higher percentage of their time in
match. Our results showed that, as expected, the speed-ups
from match parallelism are limited to a factor of 2.5 as shown
in Fig. 8. However, task-level parallelism still provides good
speed-ups.

Although task-level parallelism provides good speed-ups
in the RTF phase, these speed-ups appear to be a little lower
than the speed-ups provided in the LCC phase. This occurs
partly because RTF tasks are fewer and finer-grained than
the LCC tasks. Part of the reason is also that these results

come from a more optimized version of SPAM/PSM. This
phenomenon of measuring speed-ups on somewhat different
versions of the two phases is actually a part of a more general
phenomenon—we have been working with the SPAM/PSM
system for almost 3 years now. When working with a large
system like SPAM/PSM over an extended period of time,
speed-ups available in the system vary. Such variations have
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FIG. 7. Speed-ups varying the number of match processes.
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TABLE IX
Multiplicative Speed-Ups in SPAM/PSM for SF Level 2

Matchy Match, Match, Match; Match,
Task, 1 1.21 1.50 1.60 1.68
Task, 2.01 242 2.97 3.16 330
(2.43) (3.01) (3.22) (3.37)
Task; 2.98 3.57 4.42 473 *
(3.60) (4.46) (4.78) (5.01)
Task, 3.98 4.73 5.82 * *
(4.81) (5.96) (6.37) (6.69)
Tasks 493 5.82 * * *
(5.95) (7.39) (7.89) (8.28)
Taskg 5.89 6.98 * * *
(7.12) (8.83) (9.42) (9.90)
Task, 6.70 8.04 * * *
(8.09) (10.05) (10.72) (11.26)

Note. Parenthesized numbers are the predicted speed-ups.

occurred due to optimizations and changes in the underlying
SPAM system, the SPAM/ PSM environment, as well as
changes in the operating system. These changes typically re-
duce the granularity of the computation, reducing the speed-
up by a small amount. Therefore, we expect that if the speed-
ups in RTF had been computed with the earlier version of
SPAM /PSM, they would have been somewhat higher.

6.6. Performance Summary and Predictions

The speed-up curves for task-level and match parallelism
graphically indicate that the benefits from task-level parai-
lelism are much more significant than from match parallel-
ism. We believe that the potential for additional speed-ups
in SPAM from task-level parallelism is quite high; an ex-
pectation of 50- to 100-fold does not seem unreasonable,
since:

1. The tasks in all decompositions are independent of one
another.

2. Several hundred tasks are available in all decomposi-
tions.

3. The task queue management overheads measured are
very low, especially with respect to the task granularity, and
thus are not a factor. A centralized task queue may potentially
become a bottleneck for an increasing number of processes;
currently, this is not the case.

Despite this optimism, one can see that the speed-up curves
in Fig. 6 do depart somewhat from the ideal. We were in-
terested in understanding just what factors in our system or
in the operating system might be responsible for the perfor-
mance difference. We identified several issues (some touched
upon earlier) for investigation:
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« Tail-end effect (see Section 6.2)

» Task queue contention

« Memory management overheads

« System call overheads

+ Measurement error

Page faulting in the virtual memory system

« Context switching and processor scheduling

Qur explorations with an instrumented version of our sys-
tem along with a synthetic workload indicate that none of
these issues pose a significant impact for the SPAM system.
One can speculate that the performance difference is just a
feature of reaching the performance limits of the machine
when approaching the maximum number of processors. This
is still a subject under investigation.

7. EXPERIMENTS WITH THE VIRTUAL
SHARED-MEMORY SYSTEM

In Section 6.2, the speed-up curves clearly indicate more
parallelism to exploit if only a sufficiently large multipro-
cessor were available. The limitations on the number of pro-
cessors on the Encore Multimax led us into investigating the
virtual shared-memory system. A virtual shared-memory
system can provide a virtual address space among all pro-
cessors in a loosely coupled multiprocessor [7, 16]. Our local
computing environment has two separate Encore Multimax
machines, each with 16 processors. Recently, the shared-
memory server became available on these machines [7],
providing a 32-processor (16 from each Encore) virtual
shared-memory machine. However, the MACH kernel and
the virtual shared-memory system tend to occupy 2 proces-
sors on each of the Encores; thus, in reality this is a 28-
processor virtual shared-memory machine. The latency
across the two Encores with the virtual shared-memory is
reported to be 50 ms [7 }, much lower than the granularity
of the SPAM/PSM tasks. Furthermore, the SPAM/PSM
tasks are independent, with the processes requiring minimal
communication through the task queue. Therefore, the
SPAM /PSM system appeared to be an ideal candidate for
experimenting with the virtual shared-memory system.

Virtual shared-memory systems have only recently started
receiving attention in the literature [7, 16]. In particular,
there appear to be no reports in the literature on experiences
with such a system for large-scale applications like SPAM.
Therefore, we think our experiences with virtual shared
memory will be of interest.

Introducing the virtual shared memory in the SPAM /PSM
system turned out to be more complex than our initial ex-
pectation. In the virtual shared-memory system, the pro-
grammer has to be sensitive to the allocation of data-struc-
tures to pages to avoid contention. This contention problem
was made acute due to false contention, i.e., two or more
processes across the Encores contending for objects Jocated
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FIG. 8. Speed-ups varying the number of task-level and match processes for the RTF phase.

on the same page though not shared between them. At first,
no attention was paid to this problem—however, the over-
head incurred from constantly page faulting across the net-
work due to false contention brought our system to a halt
just during the initialization. Two separate approaches were
employed to solve this problem. We organized our data-
structures in the address space in order to eliminate the con-
tention across Encores. The designers of the virtual shared-
memory system proceeded to provide some optimizations
and heuristics in the shared-memory server to minimize the
amount of data sent over the network to service a page fault.
For example, instead of shipping a full 8K page, the server
ships only small, 64-byte segments of the page that has been
modified.

After the elimination of the false contention problem, and
the introduction of other optimizations, real speed-ups were
possible. The speed-up results are shown in Fig. 9. The fol-
lowing observations can be made about these results:

1. Two separate speed-up curves are shown in Fig. 9. The
first one was obtained from the virtual shared-memory sys-
tem. The second was obtained from the pure task-level par-
allelism system, i.e., the system without the virtual shared
memory (the speed-up curve from this system is indicated
in Fig. 9 as Pure TLP). The comparison of these two curves
shows that real speed-ups are indeed possible with the virtual
shared-memory system—underscoring the usefulness of the
virtual shared-memory system for large applications. How-
ever, these speed-ups came only after many rounds of op-
timizations in our system and in the virtual shared-memory
server. A point here is that the speed-up for the pure task-

level parallelism system is seen to be lower than the speed-
ups shown in Fig. 6. This change in speed-up occurred be-
cause these experiments were performed with a more recent
(and optimized) version of SPAM /PSM. The speed-ups for
the virtual shared-memory system are also from this recent
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FIG. 9. Speed-ups varying the number of processes using the virtual
shared-memory Server.
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optimized version (see Section 6.5 for a discussion of this
effect).

2. As we can see from Fig. 9, the speed-ups for the virtual
shared-memory system are close to the pure task-level par-
allelism system, as long as all the processes are running on
a single Encore. As soon as we add a process on the remote
Encore, we see an abrupt change in the curve—which pro-
duces a translational effect on the curve. This translational
effect is equivalent to the loss of about 1.5 processors. This
performance hit comes from the overheads of communi-
cation across the network.

3. We were able to provide results for only 22 processors—
13 on the first Encore and 9 on the second. Our application
placed severe demands on the MACH kernel, preventing us
from using all the processors. These robustness issues are
being addressed by the designers of the virtual shared-mem-
ory system.

4. In our final optimized system, only a single task queue
is present. The contention for this task queue is minimal.
Separate experiments were performed on these task queues,
which indicated that introducing separate task queues (one
for each Encore) would not change the results.

5. Resolving the performance issues raised in Section 6.6
could mean additional improvement for the virtual shared-
memory system as well.

8. SUMMARY AND CONCLUSIONS

Most investigations of speeding up production systems
via parallelism have been focused on match parallelism.
While these have provided good speed-ups, the total speed-
up available from this source is limited and is insufficient to
alleviate the problems of inefficiency in large-scale produc-
tion systems. In fact, in SPAM, speed-up from match par-
allelism is limited to about a factor of 2. In this paper we
have focused on task-level parallelism. The speed-ups ob-
tained from task-level parallelism will multiply with those
obtained from match parallelism. We characterized task-level
parallelism in production systems along three dimensions
and, from that, selected an explicit, data-driven, asynchro-
nous approach for exploiting it. The system we presented,
SPAM /PSM, is a real, computationally demanding, high-
level vision system that relies on knowledge-based reasoning.
With the SPAM/PSM system, we showed that an explicit
approach to task-level parallelism can yield significant
speed-ups.

We presented a methodology for obtaining a parallel task
decomposition in SPAM/PSM. We parallelized two of
SPAM’s phases and obtained near linear speed-ups with a
maximum of over 12-fold using 14 processors. Further, with
the use of the virtual shared-memory system, even higher
speed-up was obtained. The results obtained indicate that
speed-ups on the order of 50- to 100-fold from task level
parallelism might be realized on a machine with a compar-
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ably large number of processors. Note that in parallelizing
both these phases, it was possible to exploit the framework
of a control process queueing tasks for several task processes
as shown in Fig. 5. However, other phases may require a
different framework, e.g., one that exploits pipelining tasks
from one task process to another. We believe that the success
achieved with the SPAM /PSM system gives hope to design-
ers of other rule-based systems to realize systems with much
lower execution times by applying task-level parallelism. Also
the potential for very large speed-ups indicated here should
serve as encouragement to the designers of large-scale mul-
tiprocessor systems.

A relevant consideration is the difficulty in specifying an
explicit decomposition in our methodology for task-level
parallelism. Our experience has been that this decomposition
is fairly straightforward and can be arrived at relatively
quickly. We demonstrated the applicability of this explicit
decomposition in two diverse phases of SPAM. One of these
phases performs a traditional Al classification task (RTF),
while the second performs a constraint-satisfaction task
(LCC). The RTF phase fits more closely into the framework
of a traditional OPSS5 system. In both these phases, the ex-
plicit decomposition is made based on the data upon which
the system must operate—giving rise to levels of decompo-
sition. We saw that the choice of the correct level at which
to exploit parallelism is based upon a number of factors;
among these are the task granularity, task management and
communication overheads, the variance in task processing
times, and the ratio of total tasks to processors. Recently,
we have finished the decomposition of the third phase of
SPAM, functional area. FA performs an evaluation/grouping
task, and again fits more closely into the framework of a
traditional OPS5 system. We are currently investigating the
speed-ups available in FA.

There is a tradeoff involved in explicit parallelism. It avoids
possible run-time overheads or synchronization issues.
SPAM /PSM allows asynchronous production firings, escap-
ing the synchronization requirement of the OPS5 recognize—
act cycle. However, there is a cost associated with it in the
form of additional analysis required of the system designer
to generate a decomposition.

On the whole, the framework for exploiting task-level par-
allelism presented in this paper seems most suitable for par-
allelizing knowledge-intensive systems that exhibit weak in-
teraction between the individual subtasks of the task. This
framework is especially useful for systems with a large com-
putational demand separate from the demand imposed by
match.

9. FUTURE WORK

Although all of SPAM is currently implemented in
ParaOPS35, the benefits from task-level parallelism are not
fully available to the SPAM researchers. Providing ParaOPS5
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with task-level parallelism as a useful tool requires moving
beyond the current experimental setup for task-level paral-
lelism. For instance, currently the initialization subphase
within the local-consistency phase consumes a large amount
of processing time, and needs to be optimized and/or par-
allelized.

Results from Section 6 show that large amounts of par-
allelism can be exploited in SPAM, and thus significantly
larger numbers of processors could be employed in exploiting
the parallelism. Shared-bus multiprocessors like the Encore
Multimax cannot support such a large number of processors.
Investigations of virtual shared-memory systems were mo-
tivated due to this concern and they have provided promising
results. However, we need to obtain speed-ups with even
larger numbers of processors. We also need to analyze the
current speed-ups from the virtual shared-memory system
in detail, accounting for the various overheads.

Our long term plan is the investigation of task-level par-
allelism in systems besides SPAM. We hope such investi-
gations will help us define a general methodology for ex-
ploiting task-level parallelism in production systems.
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