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Implementation of Production Systems 
on Message-Passing Computers 

Anurag Acharya, Milind Tambe, and Anoop Gupta 

Abstruct- In the past, researchers working on parallel 
implementations of production systems have focused on shared- 
memory multiprocessors and special-purpose architectures. 
Message-passing computers have not been given as much 
attention. The main reasons for this have been the large message- 
passing latency (as large as a few milliseconds) and high 
message-handling overheads (several hundred microseconds) 
associated with the first generation message-passing computers. 
These overheads were too large for parallel implementations of 
production systems, which require a fine-grain decomposition to 
obtain a significant speedup. Recent advances in interconnection 
network technology and processing element design, however, 
promise to reduce the network latency and message-handling 
overhead by 2-3 orders of magnitude, making these computers 
much more interesting for implementation of production systems. 

In this paper, we examine the suitability of message-passing 
computers for parallel implementations of production systems. 
We present two mappings for production systems on these 
computers, one targeted toward fine-grained message-passing 
machines and the other targeted toward medium-grained 
machines. We also present simulation results for the medium- 
grained mapping and show that it is possible to exploit the 
available parallelism and to obtain reasonable speedups. Finally, 
we perform a detailed analysis of the results and suggest solutions 
for some of the problems. 

Index Terms- Coarse-grain mapping, concurrent distributed 
hash table, fine-grain mapping, medium-grain mapping, message- 
passing computers, OPS5, parallel production systems, Rete net- 
work, simulation results. 

I. INTRODUCTION 
RODUCTION systems (or rule-based systems) occupy P a prominent place in Artificial Intelligence. They have 

been extensively used to develop expert systems spanning 
a wide variety of applications (e.g., Rl/XCON [26], SPAM 
[27], Weaver [21]), as well as to understand and model the 
nature of intelligence (e.g., ACT* [2], Soar [23]). Production 
system programs, however, are highly computation intensive 
and slow. This limits the utility of these systems both in 
research and application environments. Further research and 
development in production systems will require enlarging the 
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production-memory (knowledge bases) in these systems [5], 
[30], which will exacerbate the problem of long execution 
times. 

Sophisticated compilation techniques and parallelization 
have been the two main approaches taken by researchers 
in their efforts to solve the problem. To obtain significant 
speedup by parallelization of production systems, it is 
necessary to exploit parallelism at a very fine granularity. For 
example, the average duration of a task in the implementation 
described in [17] is a few hundred instructions. Since 
the first-generation message-passing computers, such as the 
Cosmic Cube (3.51, had high network latencies (as large as 
several milliseconds) and high message-handling overheads 
(several hundred microseconds), it was not feasible to 
to use them for exploiting such fine-grained parallelism. 
As a consequence, researchers focused on special-purpose 
architectures and shared memory multiprocessors for high- 
performance implementations of production systems [SI, [ 151, 
[17], [28], [31], [33]. Recent developments such as virtual 
cut-through [22] and wormhole routing [34], however, have 
reduced the network latencies for message-passing machines 
by two to three orders of magnitude to a few microseconds. 
Similarly, specially designed processors, such as the Message- 
Driven Processor [lo], are expected to reduce the message- 
handling overhead by two orders of magnitude to several 
microseconds. The emergence of this new generation of 
message-passing computers makes it interesting to consider 
them for implementing production systems. 

An additional motivation for studying message-passing ma- 
chines is their easy scalability to a large number of processors. 
While current production system programs have shown only 
limited benefit from parallelism [ 151, we expect the situation to 
change in the future. For example, production system programs 
are currently being developed for perceptual and sensory 
tasks [24], [30] and for consistency maintenance in databases 
[9]. These systems are expected to show significantly higher 
concurrency due to a higher rate of change to data memory. 
Furthermore, researchers are exploring new production system 
formalisms, some of which admit greater internal concurrency 
[20] and others which allow explicit expression of parallelism 
[18]. The systems under development and the systems that 
will be based on the new formalisms have the potential 
of benefiting significantly from the scalability of message- 
passing machines. In fact, since the early results of this work 
were first reported [l], [16], there have been several other 
investigations focusing on mapping production systems onto 
message-passing machines [29], [37]. 
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Message passing computers can be classified into two broad 
categories: medium-grained and fine-grained [4]. Medium- 
grained machines typically have between a few and several 
hundred powerful processors each with several megabytes of 
main memory. Examples of medium-grained machines are 
Nectar [3] and Intel iPSC/2 [19]. On the other hand, fine- 
grained machines may have tens of thousands of processors, 
each with only a few tens or hundreds of kilobytes of main 
memory. Examples of fine-grained machines are Mosaic [4] 
and J-machine [12]. In this paper, we present two map- 
pings of production systems on message-passing computers, 
one for medium-grained machines and the other for fine- 
grained machines. Both these mappings assume low network 
latency and low message-handling overheads. We also present 
simulation results for the medium-grained mapping showing 
that it can achieve reasonable speedups. The simulator used 
was based on Nectar [3], a crossbar based message-passing 
computer developed at the School of Computer Science, 
Carnegie Mellon University. We were not able to evaluate 
the fine-grain mapping since a corresponding simulator for a 
fine-grain machine was not available to us. 

The paper is organized as follows. Section I1 provides 
background information on production systems and the Rete 
algorithm used to implement them. Section 111 discusses the 
issues that arise in mapping Rete onto message-passing com- 
puters and present mappings for both medium-grained and 
fine-grained machines. Section IV describes the simulation 
methodology, the execution traces used to drive the simulation, 
and the architectural parameters used. Section V presents sim- 
ulation results and demonstrates the impact of communication 
overhead on speedup. In Section VI, we identify factors that 
limit parallelism and suggest solutions for some of them. 
Finally, we conclude the paper with a summary of the results. 

11. BACKGROUND 

In this paper, we concentrate on the parallelism available 
in OPS5 [7] and OPS5-like languages. These languages are 
widely used for academic as well as industrial applications. 
Section 11-A describes the basics of OPS5. Section 11-B de- 
scribes the Rete algorithm. Rete is the standard algorithm used 
for both uniprocessor and multiprocessor implementations of 
OPS5. The mappings proposed in this paper are also based 
on Rete. 

A. OPS5 
An OPS5 production system is composed of a set of 

if-then rules, or productions, that constitute the production 
memory (PM) and a set of data-items, called the working 
memory (WM). The data-items in WM, called working memory 
elements (wmes), are structures with a fixed set of named 
access functions, called attributes, much like Pascal records. 
Each production is composed of a set of patterns or condition 
elements, corresponding to the if part of the rule (the left-hand 
side or LHS), and a set of actions corresponding to the then part 
of the rule (the right-hand side or RHS). Fig. 1 shows an OPS5 
production and its instantiation (defined later). The production 
has three condition elements and one action element. (In the 

AN ops5 PRODUCTION 
(production-name clear-the-blue-block 

(block "name <blockl> *color blue) 
(block "name <block2> "on <blockl>) 
(hand state free 

LHS [ 
I' 
ATTR.TEST 
U 

CE 
--> 

(remove 2) ) 

INSTANTIATION F OR THE OPS5 P RODUCTION 

(block *name bl ^color blue) 
(block ̂ name b2 ^on bl) 
(hand "state free "name robot-1-hand) 

( 

) 

Fig. 1. An OPS5 production and its instantiation. 

figure, only the text in lower case is part of the OPSS syntax; 
the rest are our comments to help the reader understand OPS5 
syntax.) 

A condition element is composed of a set of tests for a 
wme's attribute-value pairs. These tests are of two types: 
constant tests and equality tests. A constant test checks whether 
a particular attribute of the wme has a given constant value 
which is either a symbol or a number. For instance, the 
test-color blue in the production in Fig. 1 is a constant test. 
An equality test binds a variable (syntactically, any symbol 
enclosed in angled brackets is a variable: e.g., (var)) to 
the value of a particular attribute and checks whether the 
bound value is consistent with all other values bound to the 
same variable within the production. A condition element may 
optionally be negated, i.e., preceded with a minus sign (-). 
A nonnegated condition element is matched by a wme that 
satisfies all its tests. A negated condition element is matched 
if there is no wme that satisfies all its tests. If all the condition 
elements of a production are matched, then the production is 
said to be matched. The set of wmes that conjunctively match a 
production is referred to as an instantiation of the production. 
Fig. 1 shows an instantiation. The set of all instantiations, 
active at any given time, is called the conflict set. 

The execution of an OPS5 program consists of a sequence of 
computational cycles each of which has three phases-match, 
resolve, and act. The match phase updates the conflict set 
with all the new instantiations. The resolve phase uses a 
selection procedure called conflict resolution to choose a single 
instantiation from the conflict set, which is then fired. When 
the instantiation of a production is fired, the right-hand side 
actions associated with the production are executed and the 
instantiation is removed from the conflict set. The right-hand 
side actions may add wmes to working memory, delete wmes 
from working memory, perform input/output, call a user- 
defined function or terminate the program. If any changes have 
been made to the working memory during the act phase, a new 
cycle is begun; else the program terminates. 

B. Rete 

The Rete matching algorithm [13] is a highly efficient 
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(production-name c l ear - the -b lue -b lock  
(b lock  ^name <b lock l>  *color b l u e )  
(b lock  *name <blockS> ^on < b l o c k l > )  
(hand ^ s t a t e  free) 

(remove 2 ) )  
-> 

Eq (CE1. 

Two input  
nodes 

0 Memory nodes \LP 

Fig. 2. An example production and its network 

algorithm for the match phase that has been shown to be 
suitable for parallel implementation [15], [17]. The algorithm 
gains its efficiency from two sources. First, it stores the partial 
results of match from previous cycles for use in subsequent 
cycles, exploiting the fact that only a small fraction of working 
memory changes on each cycle. Second, it attempts to perform 
tests that are common to condition elements of multiple 
productions only once, by sharing them in a directed acyclic 
network structure, called the Rete network. 

The Rete network is a special kind of dataflow graph that is 
compiled from the left-hand sides of productions, before the 
production system is actually executed. A sample production 
and the network for this production are shown in Fig. 2. The 
algorithm performs match by creating and passing tokens along 
the arcs of this network. Tokens are partial instantiations of 
productions. They consist of a tag, a list of wme IDS (each wme 
has a unique ID assigned to it), and a list of variable bindings. 
The tag is either a + (plus) or a - (minus) indicating the 
addition or deletion of the token. The list of wme IDS identifies 
the wmes matching a subsequence of the condition elements 
of the production. The list of variable bindings associated with 
a token corresponds to the bindings for the variables in those 
condition elements that have already been matched. 

There are primarily three types of nodes in the Rete network. 
Constant-test nodes: These are used to perform the 
constant tests of the condition elements and always 
appear in the top part of the network. 
Memory nodes: These store the results of the match 
phase from previous cycles as state. This state consists 
of a list of the tokens that match a part of the LHS of 
the associated production. This way only changes made 
to the working memory by the most recent production 
firing have to be processed every cycle. As shown in Fig. 
2, memory nodes appear on both sides of a two-input 
node. 
Two-input nodes: These test for joint satisfaction of 
condition elements in the LHS of a production. Both 
inputs of a two-input node come from memory nodes. 
When a token arrives from the left memory, i.e., on the 
left input of a two-input node, it is compared to each 
token stored in the right memory (and vice versa when 

Constant - t e s t  
nodes 

a token arrives from the right memory). New tokens are 
created for those token pairs that have consistent variable 
bindings. The new tokens flow down the links from this 
node to its successors. 

At the beginning of a match phase, the changes to working 
memory are introduced as tokens activating the root node (see 
Fig. 2). They flow through the constant-test nodes, generating 
tokens that get stored in memory nodes. These tokens then flow 
into the two-input nodes. The combined activity of storing 
a token in a memory node and performing the tests at the 
following two-input node, potentially generating successor 
tokens, is referred to as a two-input node activation. A n  
activation can be either left or right depending on the memory 
in which the token is stored. 

111. MAPPING PRODUCTION SYSTEMS 
ON MESSAGE-PASSING MACHINES 

This section presents two mappings for production sys- 
tems on message-passing machines. Section 111-A presents the 
mapping for fine-grained machines (e.g., the J-machine [ 121) 
and Section 111-B presents the mapping for medium-grained 
machines (e.g., Nectar [3]). 

A. Mapping for Fine-Grained Machines 

One possible, perhaps intuitive, scheme for implementing 
production systems on message-passing computers arises from 
viewing the Rete match algorithm in an object-oriented man- 
ner where the nodes of the Rete network are objects and tokens 
are messages. This scheme maps a single object (node) of the 
Rete network onto a single processor. Unfortunately, there are 
two problems with this scheme: 

Often the processing of a change to working memory 
generates multiple activations of the same node of 
the Rete network. Since each node has been assigned 
to a single processor, this causes the processing of 
these activations to be serialized. As a consequence, 
the processor handling these activations can become a 
bottleneck. 
The mapping requires one processor per node of the 
Rete net. The processor utilization of such a scheme is 
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expected to be very low. This can be rectified, to some 
extent, by allocating multiple nodes per processor but 
this would lead to further serialization since this would 
cause all activations of all nodes assigned to a processor 
to be processed in sequence. 

While the second problem can potentially be solved by 
sophisticated node distribution heuristics, there is no such 
solution for the first problem, which is expected to be quite 
serious in practice. To overcome the limitations of above 
mapping, we propose an alternative mapping based on a 
concurrent distributed hash table [ 111. This hash table is used 
to store the tokens that would otherwise have been stored in 
the left and right memory nodes of the Rete network. The hash 
function that is applied to the tokens uses the variable bindings 
tested for equality at the destination two-input node, and the 
unique node-identifier corresponding to the destination two- 
input node as parameters. This scheme has two advantages. 
First, it allows the quick detection of the tokens that are likely 
to succeed the tests at the destination two-input node. Hashing 
the contents of the associated memory nodes, instead of 
storing them in linear lists, reduces the number of comparisons 
performed during individual node-activations [ 151. Since most 
of the time in the match phase is spent processing two- 
input node activations, this improves the performance of Rete. 
Second, since the values of the variables being tested are used 
as parameters, even tokens that flow into the same two-input 
node but have different values for the tested variables get 
hashed to different buckets. Since tokens going to different 
buckets can be processed in parallel, this directly addresses the 
first problem that was cited for the object-oriented approach. 
Similarly, the use of the node-id as a parameter results in the 
distribution of tokens destined for different two-input nodes 
to different hash buckets allowing them to be processed in 
parallel. The concurrent distributed hash table thus enables 
the exploitation of fine-grain concurrency. 

The concurrency can be further enhanced by partitioning 
the hash table into two-a left hash table which contains the 
left tokens and a right hash table that contains the right tokens. 
This allows a left and a right token that are hashed to the same 
hash bucket to be processed concurrently. 

At an abstract level, the computation in the two-input 
nodes of the Rete network can now be described in terms 
of operations on the two global hash tables. An activation is 
processed by: 

Hashing the token and storing it in the indicated bucket 
(a left token in a left bucket and a right token in a right 
bucket). 
Scanning the corresponding bucket (bucket with the same 
index) in the opposite hash table for matching tokens. 
If any such tokens are found, the successor tokens are 
generated and routed to the appropriate pair of hash 
buckets. 

From the above, it can be seen that the left bucket and the 
right bucket of the same index are required together to process 
an activation. The match phase of the Rete algorithm is thus 
reduced to token passing between hash bucket pairs. 

We now describe how this hash table based version of the 

Constant test 
processors 

Conflict set 
processors 

Match processors 

I n s t a n t i a t i o n s  Right tokens 

I n s t a n t i a t i o n  to f i r e  

Control procosaor 

Fig. 3. A high-level view of the fine-grained mapping. 

Rete algorithm can be mapped onto a fine-grained message- 
passing machine. A high-level picture of the mapping is 
presented in Fig. 3. As shown in the figure, the available pro- 
cessors are partitioned into a control processor, a small set of 
constant-test processors, a small set of conflict-set processors, 
and a large number of match processors. The constant-test 
processors perform the constant tests specified by the Rete 
net. The constant nodes of the Rete net are partitioned and 
assigned to the constant-test processors. The match processors 
perform the work of two-input nodes in the Rete network. The 
conflict-set processors collect the instantiations generated and 
select the instantiation to be fired. The control processor is 
responsible for evaluating the right-hand side actions. 

The match processors use the hash table described pre- 
viously to perform the function of Rete’s two-input nodes. 
These processors are paired up to form a pool of processor 
pairs. The range of hash indexes is partitioned among the 
pairs in this pool, i.e., the left and right hash buckets for 
the same hash index are assigned to the same processor pair. 
One of the processors in a processor pair is designated as the 
left processor and the other as the right processor. The left 
processor stores, in its main memory, the left hash buckets for 
the indexes assigned to the pair. Similarly, the right processor 
stores the right hash buckets for the indexes assigned to the 
processor pair. Tokens can be sent out from either processor 
in the pair, but tokens destined for the pair are always sent to 
the left processor only. This restriction is necessary to avoid 
the generation of duplicate tokens [15]. 

A processor pair together performs the activity of a single 
node activation. Consider the case when a token corresponding 
to the left-activation of a two-input node arrives at a processor- 
pair. The left processor immediately transmits the token to 
the right processor. The left processor then copies the token 
into a data-structure and adds it to the appropriate hash 
bucket. Meanwhile, the right processor compares the token 
with contents of the appropriate right bucket to generate tokens 
required for successor node activations. The right processor 
then calculates the hash indexes for the newly created tokens, 
and sends each token to the processor pair that owns the 
buckets to which it hashed. The activities performed by 
the individual processors of the processor pair are called 
micro-tasks, and all the micro-tasks that end up on different 
processors are performed in parallel. 
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Tokens in memory 
nodes stored in 
concurrent 
hash-tables 

P1 

dest nodeid 
unchanged 
(partitioning) 

Left Hash Buckets 

A processor-pair (shown above) performs the activity of a w--- I I I I  8 
I I I I  

m - U a - 0  

single node-activation. While the token is being stored in 
hash-table by one processor, it is concurrently compared to 

tokens in opposite memory by the second processor. 

Fig. 4. A detailed view of the fine-grained mapping. 

Before the instantiation to be fired can be selected, the sys- 
tem must ensure that the match phase is completed. Detecting 
termination in a distributed system is a complex problem in 
itself [25]. For the purposes of this mapping, we chose an 
acknowledgment-based scheme. When a token is processed 
by a processor-pair, the processor that stores it keeps a count 
of the number of successors generated. If no successors are 
generated for a token, the processor sends an acknowledgment 
(ack) message back to the processor that generated the token. 
When a processor receives an ack message corresponding to 
a successor of a particular token, it decrements the counter 
corresponding to that token. When the counter corresponding 
to a token reaches zero, the processor sends an ack message 
to the processor that generated the token. Thus, after last 
activation in a match cycle is processed, a single stream of 
ack messages flows back to the control processor. The control 
processor then informs the conflict set processors about the 
termination of the match phase. 

The most efficient known implementation scheme for the 
Rete algorithm compiles the Rete network to procedures that 
directly implement the tests specified by the network. This 
scheme achieves its speed at the cost of larger executable 
images. Since in our hash-table based implementation, a token 
destined for some node can hash into an arbitrary bucket, 
each processor must contain the entire executable image. 
Unfortunately, this can be a potential problem for fine-grained 
machines, where the memory per processor is small. To handle 
this problem, we propose two solution strategies that can be 
used to reduce the memory requirements: 

Partition the nodes of Rete such that any given processor 
can get tokens from only one partition. This way we en- 
sure that a processor need only store code corresponding 

to the nodes in its partition. This partitioning is easily 
achieved if the hash function preserves some bits from 
the node-id (see Fig. 4). To avoid contention, however, 
nodes belonging to a single production should be put into 
different partitions. 
A major cause of the large memory requirement is the 
inlined code that is used to implement the tests performed 
at each two-input node. Space can be saved by making a 
space-speed tradeoff and replacing the inlined code with 
a small number of function calls. 

B. Mapping for Medium-Grained machines 

The mapping presented in the previous subsection is suitable 
for machines with a large number of processors and small 
amounts of memory per processor. To respond to the smaller 
number of processors and larger amounts of memory per 
processor in medium-grained machines, the mapping presented 
in the previous subsection has to be modified. 

1) Match-processors: In mapping for the fine-grained ma- 
chines, a processor-pair is used to process a single node- 
activation. Since the number of processors in medium- 
grained machines is much smaller and processor uti- 
lization is important, we assign both the left and right 
buckets to a single processor instead. This modification 
is facilitated by the larger memory that is associated 
with each processor. 

2 )  Conflict-setprocessors: During most of the match phase, 
the control processor is free. Therefore, it is feasible for 
it to take over the task performed by the conflict set 
processors in the mapping for the tine-grained machines. 

3)  Constant-test processors: On medium-grained machines, 
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there is little point in dedicating several processors to 
constant test evaluation which takes only a small part 
of the overall time. Therefore, we let all the match 
processors perform the constant tests. This modification 
is also facilitated by the larger memory associated with 
each processor. 

A high-level view of this mapping is presented in Fig. 5. The 
figure shows a control processor, responsible for performing 
conflict-resolution on the instantiations, performing the right- 
hand side actions and other functions of the OPS5 interpreter. 
The match processors implement the distributed hash table 
described previously. 

The match procedure proceeds as follows: 
1) At the beginning of match phase, the control processor 

broadcasts the working memory changes generated in 
the previous cycle to all match processors. 

2) All the match processors perform the constant tests. 
The tokens generated from the constant tests result in 
several two-input node-activations, most of which are 
right-activations (see Fig. 2). These tokens are then 
hashed. If the required hash bucket is not resident in the 
processor's main memory, then no further processing is 
done on that token. (Recall that the range of hash indexes 
is partitioned and assigned to the match processors.) 
Otherwise, the processor moves on to step 3. 

3) For each node activation involving a bucket in the match 
processor's memory, the token is added to (or deleted 
from) the bucket. The token is then matched with tokens 
in the corresponding hash bucket in the opposite hash 
table. If new tokens are generated, they are hashed and 
sent to the processor that owns the corresponding bucket. 

4) Tokens received by a processor are evaluated exactly as 
in step 3. 

5 )  All production instantiations are sent back to the control 
processor. The control processor determines when the 
match phase has terminated and proceeds on to the 
resolve phase. 

In step 2, work is duplicated across the match proces- 
sors-all the processors evaluate all constant tests. Since the 
constant tests take a small amount of time, this duplication 
of effort is not a significant problem. Further reduction in 
proportion of time spent in constant tests is also possible [15]. 
For example, implementing constant tests using hashing can 
speed them up by a factor of 5. 

IV. SIMULATIONS 

Ideally, we would have liked to evaluate both our mappings. 
However, we did not have access to a simulator for a fine- 
grained machine and were able to evaluate only the medium- 
grained mapping. 

The machine model that we assumed for our simulation 
had the following characteristics: 

The machine has between two and twenty-five processors. 
The time required to send a message is independent of 

The interconnection network has enough bandwidth for 
the source and the destination of the message. 

Control Processor 

rTm working conflict 

Instantiations working memory 
changes 

Interconnection Network 

I 
WM changes and Left tokens and 

left tokens Instantiations I t  
I 1 , 
A 

constant tests 

EH ......_._._....._.___ 

A 
constant tests 

1 1 I 

Match processor 1 Match processor N 

Fig. 5. Mapping for medium-grained machines. 

The goal of the simulations was to study the performance 
of the mapping and to investigate the impact of variation in 
message passing overheads on the speedups. Hence, the sim- 
ulations were parameterized by the number of processors and 
the time required to communicate a message from one proces- 
sor to another. Since match phase is computationally dominant, 
we decided to restrict the simulations to just this phase. 

The simulator used was based on the simulator for Nectar 
[6] developed by the Nectar group at Carnegie Mellon. Nectar 
uses a hierarchical crossbar interconnection scheme. It has low 
network latencies, low message passing overheads, and high 
bandwidth. Our simulations are relatively independent of the 
details of the design of Nectar. In fact, the only Nectar-related 
assumptions we make are that the time required to send a 
message is independent of the location of the source and the 
destination and that the interconnection network has adequate 
bandwidth for the message traffic. 

To perform the simulations, we needed estimates for the cost 
of individual operations required to process node activations. 
These estimates were developed using profile information 
from our implementation of OPS5 on the Encore Multimax 
[17]. The estimates for the NS32032 processors used in the 
Multimax were then scaled for the Sparc processors used in 
Nectar.' The cost of processing the constant test nodes was 
obtained using estimates from [15] (assuming that the constant 
test nodes are implemented using hashing). The simulator uses 
the estimates from Table 1. 

Since we parameterize the simulations by the communica- 
tion overhead, the absolute values of these estimates are not 
critically important; rather, it is the ratio of the time spent in 
communication and the time spent in computation that governs 

'The S u a m  used in Nectar are the MB86910 from Fuiitsu runnine at 12.5 - 
the message traffic. MHz and'rated at 7.5 MIPS [32]. 

P 
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TABLE I 
COST ESTIMATES USED FOR THE SIMULATIONS 

Operation Cost 
Estimate 

~~~ 

Perform constant tests 30 l i s  

Add or delete one left token 32 p s  

Add or delete one right token 16 ps 
Match token and generate successor 16 / i s  
(per successor) 

TABLE I1 
COMMUNICATION OVERHEADS USED FOR THE SIMULATIONS 

Runs Communication 
Overhead 

Run 1 0 P S  

Run 2 8 P S  

Run 3 16 p s  

Run 4 32 ps 

the actual speedups. We divided the time spent in communica- 
tion into two parts-the interconnection network latency and 
the software overhead. The interconnection network latency 
was set at 0.5 p s  (this value was provided by the Nectar group) 
except for the base case for which the interconnection latency 
was set to zero. The time spent in software overhead was 
varied and the values used are listed in Table 11. 

The simulator for Nectar is extremely detailed and slow. 
As a result, it was not possible for us to simulate whole 
production system programs. For example, simulation of five 
match-resolve-act cycles took between two and six hours 
of cpu-time. Since full program runs consist of between 350 
and 650 such cycles, we resorted to simulation of only the 
characteristic segments of the benchmark programs. Based on 
previous research [ 171, we consider match-resolve-act cycles 
that fall in one of three prominent categories. The first category 
consists of cycles that have a large number of tokens generated 
in them. These cycles provide significant concurrency and we 
refer to them as large cycles. The second category consists 
of cycles that have a small number of tokens (100 or less) 
processed in them. These cycles are referred to as small 
cycles. The third category consists of cycles that exhibit cross- 
product(s). A cross-product is generated when a token arriving 
at a two-input node finds a large number of matching tokens in 
the opposite memory, thus generating a large number of suc- 
cessor tokens. Overall, rather than presenting speedups for any 
specific production system, we present speedups for the above 
categories of match-resolve-act cycles. Based on the mix 
of such cycles in a specific production system, a qualitative 
estimate of the speedup for that program can be obtained. 

We used a trace-driven approach for the simulation. For the 
purposes of this study, three traces were chosen. The traces 
are from the production system programs referred to in [17]. 
The traces we used are: 

1) Large cycles (Rubik): This segment was taken from 
the execution trace of Rubik, a program to solve the 
Rubik's cube. The segment represents four consecutive 
large cycles. 

Small cycles (Weaver): This segment was taken from 
the execution trace of Weaver, a program to perform 
VLSI routing. The segment represents four consecutive 
small cycles. 
Cross-product (Tourney): This segment was taken from 
the execution trace of Tourney, a program that does 
scheduling for a tournament. One cycle with a large 
cross-product was chosen from this program. This par- 
ticular cycle has a large number of tokens that hash to 
the same bucket and the uneven distribution of tokens 
is a major problem for parallelization [17]. Four small 
cycles that surround the cross-product cycle were also 
included in the segment. 
the rest of this paper, we refer to these segments by _ _  

the name of the programs from which they were taken-this 
should not be construed to mean that the numbers presented 
are for the entire programs. 

The input to the simulator consisted of a detailed trace 
of the activity of the hash table used for the Rete network, 
corresponding to actual production system runs. These traces 
were obtained from our implementation on the Multimax. 
Fig. 6 shows a small fragment of one of the traces used. 
Given this input, the simulator builds a big hash table like 
data-structure. The buckets of this table are distributed across 
the processors in a round-robin manner. The algorithm for 
medium-grained machines is then simulated on this data 
structure. 

Our simulations have two limitations. First, the traces driv- 
ing the simulator were obtained from a single processor run. 
On a parallel machine, however, tokens could be generated 
in different order and this could lead to a skew in the 
simulation. However, we expect the distortion to be small 
since in previous experiments, on shared memory machines 
[17], we have observed that a change in the order of token 
generation does not cause a large variation in the speedup. 
Second, we do not simulate termination detection. We assume 
that termination detection is instantaneous. Given the small 
number of processors considered in the simulations, we believe 
that the distortion due to this is also small. 

V. RESULTS 
Fig. 7 shows the speedups obtained for the three systems 

with zero communication overhead. This graph shows the best 
possible speedup, given the proposed mapping. As expected, 
Rubik has the largest overall speedup. The results from runs 
simulating a single match processor with zero communication 
overhead are used as the base case for calculating all the 
speedups presented in this paper. 

Fig. 8 shows the impact of increasing the communication 
overhead in the three trace segments taken from Rubik, 
Tourney, and Weaver. The (0 p s )  graphs are the ones shown in 
Fig. 7. The impact of the communication overhead is compara- 
tively low in Rubik (loss of 30% in speedup), somewhat higher 
in Tourney (loss of about 45% in speedup), and even higher 
in Weaver (loss of about 50% in speedup). This difference 
can be explained by Table 111, which shows the right and left 
activations for each trace. Recall that only the left activations 
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Hash bucket  = 27 

i n p u t  token: node id  = 27,  node type  = AND, d i r e c t i o n  = add, l e f t  

output  token: node id  = 121, hash bucket  = 77 

node id  = 121, hash bucket  = 143 

Hash bucket  = 1 0  

input  token: node id  = 15, node type  = AND, d i r e c t i o n  = d e l e t e ,  r i g h t  

output  token:  -- 

Hash bucket  = 25 

i n p u t  token:  node id  = 150, node t y p e  = NOT, d i r e c t i o n  = add, r i g h t  

output  token: node id  = 75,  hash bucket  = 77 

Fig. 6 .  Trace input to the simulator. 
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Fig. 7. Speedups with zero communication overhead. 

need to be communicated to other processors. Since Rubik has 
a smaller percentage of left activations (of all activations), it 
is not affected as much as Tourney and Weaver which have 
much larger percentages of their activations as left activations. 

VI. ANALYSIS 

Fig. 8 shows that up to 8-12 fold speedups are available in 
the three characteristic segments. In this section, we identify 
some of the factors that limit speedups and present some 
suggestions for improving the speedups. 
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A.  Slow Generation of Tokens 

If there is a single activation that generates a large number 
of successor tokens at the beginning of a match phase, the 
processor that handles that activation becomes a bottleneck. 
This problem manifested itself in the simulation of the Weaver 
trace which was chosen to study the phenomenon of small 
cycles. While such dependencies between tokens can occur in 
any cycle, they become critical in small cycles since there are 
few other tokens available to keep the processors busy. In one 
of the cycles from the Weaver trace, majority of the activations 
(120 out of about 150) are generated by only three left- 
activations. It is possible to avoid this problem by transforming 
the Rete network node that generates the successors. The 
transformation splits the bottleneck node so that the generation 
of the successors can proceed in parallel. This can be achieved 
by one or more of the following methods. 
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Fig. 8. Speedups with varying overheads: Rubik (top), Tourney (middle), 
Weaver (bottom). 

1) Unsharing the Rete network nodes where a large number 
of successor tokens are generated. For instance, in 
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01 

Fig. 9. Unsharing nodes of the Rete network. 

TABLE Ill 
TOKENS IN THE SECTIONS OF THE THREE PROGRAMS 

Left Right Total 
activations activations Activations Program 

Rubik 2388 (28%) 6114 (72%) 8502 
Tourney 10667 (99%) 83 (1%) 10750 

Weaver 338 (81%) 78 (19%) 416 

Fig. 9, the two outputs 01 and 0 2  share the two- 
input node formed by joining conditions I1 and 12. 
If we unshare in the manner shown, the outputs for 
01 and 0 2  are generated independently, thus removing 
the bottleneck of generating a large number of tokens 
from one site. Some work is duplicated, but given the 
limited number of tokens generated in a small cycle, this 
duplication should not be a problem. 

2) Replicating the Rete network nodes where a large number 
of successor tokens are generated. This is similar, in 
effect, to unsharing mentioned above. There are several 
ways of replicating nodes, the most effective of which 
is copy-and-constraint [36]. Using information about the 
set of values that a variable being tested at a two-input 
node can take, this method replicates the two-input node. 
Each of the replicas of the node handles tests for a 
subset of set of values the variable might take. Each 
of the replicas thus generates a subset of the activations 
generated by the original node. 

Fig. 10 shows the impact of using the first scheme on 
speedup achieved for Weaver. As can be seen, there is a 
substantial improvement. 

B. Uneven Distribution of Tokens 

Fig. 10 shows that the slopes of the speedup curves decrease 
as the number of processors is increased. This indicates that the 
average idle time for a processor increases with the number 
of processors. This, in turn, suggests an uneven distribution 
of tokens to the processors. Fig. 11 shows the distribution 
of left tokens in two cycles for Rubik. The z-axis marks 
the processor number and the 9-axis marks the number of 
activations evaluated by a processor in a cycle (for instance, 
processor 1 evaluated approximately 20 activations in both 
cycles). 

In addition to the uneven distribution across the processors 
in both the cycles, we see a peculiar behavior viz. the proces- 
sors busy in one cycle are seen to be idle in the next cycle 
and vice versa. The graphs for Tourney are quite similar. The 
distribution in Weaver is less uneven. 
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Fig. 10. Speedups with the unsharing. 

Procassor ID 

Fig. 11 .  

The uneven distribution of tokens to processors occurs in 

Distribution of tokens in two independent cycles for Rubik. 

two different ways: 
1) Poor distribution of active buckets to processors: Anal- 

ysis of the hash bucket traces fed into the simulator 
showed that in any given cycle, only a small number of 
buckets are active, i.e., have any modifications made to 
them, and there is little correlation between the active 
buckets from one cycle to another. The static round- 
robin bucket assignment algorithm that we use fails 
to achieve a balanced distribution of active buckets to 
the available match processors. Typically, this problem 
occurs for buckets belonging to the left hash table and 
is manifested in traces from both Tourney and Rubik. 

2)  Poor distribution of tokens to buckets: The same anal- 
ysis also showed that, in some cases, even though the 
distribution of active buckets was balanced, a processor 
turned out to be a bottleneck because a large number of 
tokens happened to hash to a single bucket belonging to 
it. This phenomenon had two causes: 
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Cross-Product: If there is no variable tested at 
a two-input node, then a token flowing into a 
two-input node will match all the tokens in the op- 
posite memory, thus generating a large number of 
successor tokens. All of these tokens are destined 
for the same two-input node. If this destination 
node does not test a variable, or if the value 
of the variable being tested at this node is the 
same for all the successor tokens, the hashing 
scheme cannot discriminate between them and all 
the tokens hash to the same bucket. This happens 
in the trace segment taken from the Tourney. 
Multiple-modify Eflect: There are three different 
ways of causing a change in OPS5 working mem- 
ory: add, delete, and modify. Rete implements a 
modify action as a sequence of delete and add 
actions. Due to the state-saving nature of Rete, 
once a wme is deleted, all the tokens containing 
the wme have to be deleted too. Since modify 
actions usually change only a small part of a 
wme, the modified wme usually satisfies most of 
the tests satisfied by the original wme. So, when 
the subsequent add action is executed, most of 
the tokens generated hash identically to those that 
were deleted. 

The poor active-bucket distribution suggests a redistribution 
of the hash table buckets so that the active buckets are 
distributed evenly among processors. For the simulations, we 
had originally used a round-robin strategy to distribute the 
hash buckets to the available processors. The distribution in 
Fig. 11 indicates the failure of this strategy to distribute active 
buckets evenly among processors. A random distribution of 
the buckets to the processors was tried as an alternative, but 
failed to provide a noticeable improvement. 

To address the question, “how much improvement could 
be achieved with a significantly better distribution?,” we 
decided to use an ofl-line algorithm for distributing buckets to 
processors to determine better distributions. Since determining 
the optimal distribution of the buckets to processors can be 
reduced to the multiprocessor scheduling problem [14], an NP- 
complete problem, we chose a greedy algorithm. The algorithm 
orders the buckets in the decreasing order of activity (activity 
is defined as the number of tokens processed) in the cycle. 
It then proceeds down this list assigning each bucket to the 
processor with the least activity. We used this algorithm to 
obtain a series of bucket distributions, one per cycle, for every 
trace. These distributions have a very low variance and hence 
should be close to the optimal distribution. 

These sets of distributions improved the speedups by a 
factor of about 1.4. While the speedup is significant, we expect 
this will be difficult to achieve in practice. Run-time load- 
balancing could possibly be employed but the dynamic cost of 
migrating the buckets and the associated data will most prob- 
ably outweigh any improvements. In addition, the irregularity 
of the workload does not allow an on-line computation of a 
good distribution for the next cycle. Thus, i t  appears that we 
cannot take advantage of the existing dynamic load-balancing 
schemes. 
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Fig. 12. Speedups with the copy and constraint. 

The problem of poor distribution of tokens to buckets can be 
solved by the copy and constraint mechanism. This is a source- 
level transformation which splits the productions which suffer 
from the cross-product effect into multiple copies, each match- 
ing only a part of the data the original production matched. 
This allows additional discrimination to be introduced in the 
hash function. Fig. 12 shows the speedups achieved with this 
mechanism. 

Another cause for sublinear speedups in the systems, besides 
the uneven task distribution, is the existence of precedence 
constraints among the tokens. These constraints are imposed 
by the structure of the Rete network. Though, some of these 
constraints can be eliminated by methods described in [15], 
[17] such as bilinear networks, not all can be done away with 
since they are inherent in the Rete algorithm. 

VII. CONCLUSIONS 

In this paper we have addressed the issue of efficiently 
implementing production systems on the new generation 
of message-passing computers which have vastly improved 
message-passing and message-handling latencies. We showed 
that the conceptually intuitive mapping where each node 
in the Rete network is mapped to a single processor has 
drawbacks and that more sophisticated mappings are needed. 
We presented one such mapping based on the notion of a 
concurrent distributed hash table. This mapping was further 
refined for both fine-grained and medium-grained machines 
and simulation results were presented for the medium-grained 
version. The simulations showed that, for a small number 
of processors, the message-passing machines can provide 
speedups comparable to those obtained on shared memory 
implementations [ 171. 

It is interesting to reflect on some of the tradeoffs involved 
in the message-passing and the shared-memory mappings for 
production systems. The shared-memory mapping maintains 
task-queues for the node activations and hash tables for the 
tokens in shared memory. These centralized data-structures 
can be potential bottlenecks and their absence is the principal 
advantage of the message-passing mapping. On the other 
hand, the message-passing mapping suffers from poor static 
partitioning of the hash table which results in performance 
loss due to improper load-balancing. The problem does not 
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arise in the shared-memory mapping where a processor may 
pick up a task corresponding to any hash bucket. However, 
uneven distribution of tokens to buckets is a problem for both 
the message-passing and the shared-memory mappings, i.e., 
if multiple tokens are hashed to the same bucket, they are 
executed sequentially. 
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