
Proc. of the 1992 IEEE
Int. Conf. on Tools with AI
Arlington, VA, Nov. 1992

An Efficient Algorithm for
Production Systems with Linear-Time Match

Milind Tambe, Dirk Kalp
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Combinatorial match in production systems (rule-based
system) is problematical in several areas of production system
application: real-time performance, learning new productions
for performance improvement. modeling human cognition. and
parallelization. The unique-attribute representation in
production systems is a promising approach to eliminate match
combinatorics. Earlier investigations have focused on the ability
of unique-attributes to alleviate the problems caused b~
combinatorial match 1331. This paper reports on an additional
benefit of unique-attributes: a specialized match algorithm
called Uni-Rete. Uni-Rete is a specialization of the widely used
Rete match algorirhm for unique-attributes. The paper presents
performance results for Uni-Rete. which indicate over 10-fold
speedup with respect to Rete. It also discusses the implications
of Uni-Rete for non-unique-attribute systems.’

1. Introduction
Production (rule-based) systems are used extensively in the

field of AI [13,18,25,35]. In production systems, computation
proceeds by repeated execution of recognize-act cycles. In the
recognize phase, productions (condition-action rules) in the
system are matched with a set of data-items, called working
memory. In the act phase, one or more of the matched
productions are fired, possibly changing the working memory,
and causing the system to execute the next recognize-act cycle.

This paper focuses on a key performance bottleneck in
production systems: production match. Production match is
combinatoric (NP-hard), and it has proven to be a problem in
several areas of production-system application. In real-time
production systems, combinatorial match hinders the
achievement of guaranteed response times [13,28]. In systems
that leam new productions, combinatorial match can cause a
slowdown with learning [19,33]. Combinatorial match is also
problematical for modeling human cognition[25] and
parallelization [l. 281.

In [30,33], the unique-attribute representation was
introduced to eliminate combinatorics from production match.
With unique-attributes, match becomes linear in the number of

‘This -ch was sponsored by the Avionics Laboratory, Wright Rcscarch and
Lkvclopmcnt Center Amnautical Systems Division (AFSC), U. S. Air Fom.
Wright-Pattc” AFE3, OH 45433-6543 under Contract F33615-90-C-1465, ARPA
Order No. 7597. The views and conclusions contained in this document PIC thosc of
the authors and should not be intcxpmcd as representing the official policia. either
expressed or implied, of the Defense Advanced Research Projects Agcncy or the
U.S. govermnent

Paul S. Rosenbloom
Information Sciences Institute

University of Southem Califomia
4676 Admiralty Way

Marina del Rey, CA 90292

conditions. The unique-attribute approach appears to be a
promising one to alleviate the problems caused by combinatorial
match without sacrificing production-system functionality. To
date, the unique-attribute representation has been applied
successfully to a variety of tasks, including some complex tasks
with 500 or more productions [16,17,28].

The linear match bound in unique-attributes can provide an
additional benefit: specialized implementation techniques that
yield additional speedups. These techniques include: specialized
match algorithms, specialized uni-processor hardware, and low-
overhead parallelism. This paper investigates the first technique
- it reports on a match algorithm for unique-attributes called
Uni-Rete. Uni-Rete is a specialization of the widely used Rete
match algorithm [7]. In tasks done in Soar [14], Uni-Rete has
shown over 10-fold speedup over Rete.

While the speedups from Uni-Rete are presented within the
context of unique-attribute Soar systems, Uni-Rete has wider
implications. First, Uni-Rete is not limited to Soar; it can be
used in all unique-attribute production systems. Second, Uni-
Rete can be combined with Rete, and this combination can
provide performance improvement in systems that are only
partially based on unique-attributes. Third, Uni-Rete illustrates a
possible method for reducing the memory management
overhead in match algorithms. Finally, the basic premise in
Uni-Rete - exploiting the representation scheme employed by
building a more specialized implementation - may be applied
in other systems to obtain better performance. These issues are
discussed in M e r detail in Section 7.

This paper is organized as follows: Sections 2 and 3 provide
background information about Rete and the unique-attribute
representation. Since Uni-Rete is a specialization of Rete for
unique-attributes, it is necessary to understand both Rete and
unique-attributes to understand Uni-Rete. Section 4 introduces
Uni-Rete. Section 5 describes a more optimized version of
Uni-Rete. Section 6 presents the results from the Uni-Rete
implementation. Section 7 discusses related work and
implications of Uni-Rete for other system. Finally, Section 8
summarizes the results and describes issues for future work.
2. The Rete Match Algorithm

The Rete match algorithm[7] is based on two main
optimizations: sharing and state-saving. Sharing common parts
of condition elements (also called conditions or CEk) in a single
production or across productions reduces the number of tests
required to do match. State-saving accumulates partially
completed matches from previous recognize-act cycles for use in
future cycles. Thus, if a new working-memory element (wme) is
added in a new cycle, only the new wme is matched, older wmes

0-8186-2905-3/92 $03.00 0 1992 IEEE
36

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 21:02 from IEEE Xplore. Restrictions apply.

from previous cycles are not re-matched.
We will use the simple production system shown in Figure

2-I-a to illustrate Rete’s operation. It shows a production PI,
which is to be matched with the wmes WI,..,W6. Production PI
has three conditions and one action. The symbols in the
conditions are either constants, e.g.. STATE, that test if identical
constants appear in identical positions in the wmes, or variables
(enclosed in 0) that bind to symbols appearing in identical
positions in the wmes. Production match involves finding all
possible instantiations of the production with the wmes. Here an
instantiation refers to a collection of wmes that provide
consistent bindings for the variables in the production. In Figure
2-I-a, wmes W1, W4 and W6 form an instantiation, since they
provide a consistent binding B1 for the variable .

(Roductim P1 Working manory

I (STATE <S> BLOCK a>)
(BLtXK <Bz COLOR MD)
(BLOCK VOLUME 8) cE1
-->

BLOC

(A m O N 1)

W1: (STATE S1 BLOCK 91)

Rete’s operation in matching production P1 with the wmes
WI,..,W6 can be understood using the analogy of water-flow
through pipes. As shown in the upper part of Figure 2-1-b, each
condition of production P1 can be considered as a pipe, ending
in a bucket. The wmes flow through these pipes. Each pipe has
filters associated with it, which correspond to the constant tests
in the condition and allow only particular wmes to pass through.
For example, the filters in the f i t pip (corresponding to the
first condition) check if STATE and BLOCK appear in the f i t
and third fields of a wme respectively. Due to these filters, only
W1. W2, and W3 pass h o u g h the f i s t pipe and appear in the
bucket for the f i s t pipe. Note that since the filter BLOCK for
the second and third pipes tests an identical field of the wmes.
this filter is shared between the two pipes, illustrating the
sharing optimization in Rete in a simple form.

Next, the small boxes with Xs inside them and cB> written
over them check for consistency between wmes. Consider the
box that joins the buckets for the f i s t two conditions. Since
 appears in the fourth field of the first condition and the
second field of the second condition, this box tests the fourth
field of wmes W1, W2 and W3 against the second field of wmes
W4 and W5. Two pairs of wmes - (Wl,W4) and (W2,W5) -
pass this consistency test and are stored in the following bucket.
Now the second small box checks the bindings for of each - .

W2: (STATE S1 BLOCK B2) w1, w2 w4 ws
w3:(STATE bd of the two pairs against W6. The cornbinat& of W1,W4 and

W6 is finally found to be successful and forms the instantiation
of this production.

Note that the buckets in Figure 2-1-b realize state-saving by
storing partial results of the match. If a new wme, say W7, is
added in a new recognize-act cycle, then only W7 will be
matched; Rete will avoid re-matching W1, ..., W6 in this later
cycle. The penalty for state-saving is that if a wme, say W4, is
deleted then it is re-matched following a course identical to its
addition. During this process, W4 and all combinations
containing W4. such as (Wl, W4). are deleted from the buckets.
However, this penalty for deletion is usually quite small
compared to the benefit of state-saving [8,9]. (See also

(w1. W4) (wz ws)

I +I
(w1. w4. wa)

t20.241.)

W 4 (BLOCK B1 COLOR RED)
WS: (BLOCK B2 COLOR RED)

W 6 (BLOCK 91 V O L W 8)

(a)

(b)

(w1. w4. wa)

(4

Figure 2-1: A simple production system and its Rete network.

In an actual Rete implementation, the pipes discussed above
form a dataflow network as shown in Figure 2-1-c. Wmes travel
down from the ROOT node. The filters that test for constants are
called constant test nodes. The buckets that store individual
wmes are called alpha memories. The wmes stored in alpha
memories are called right tokens. Combinations of wmes, e.g.,
(Wl, W4), are called left tokens (just tokens if the context is
clear) and are stored in beta memories. And-nodes perform
consistency-checks, while P-nodes add and delete instantiations.

In Rete, combinatorics in production match translates into
combinatorial nwnbers of tokens in beta memories [29]. In the
worst case, there can be O (w) number of tokens generated in
matching a single production, where W is the number of wmes
in the system and C is the number of conditions in a single
production. Since a beta memory can be a host to such a large
number of tokens (which cannot be predicted at compile time),
Rete uses dynamic structures such as linked lists to store the
tokens. More optimized versions of Rete, such as the one used
in this paper, often rely on hash tables [9, IO]. Despite this, it is
estimated that beta memories consume a majority of the time in
match [9].

37

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 21:02 from IEEE Xplore. Restrictions apply.

(STATE S1 B L w K B 1)

(STATE S1 BLoCKB2)
(STATE S1 BLOCK B3)

(4

does tradeoff some expressiveness. In particular, with unique-
attributes, it becomes difficult to encode unstructured sets in
working memory. For instance, in Figure 3-1-a, blocks B1, B2
and B3 are an unstructured set of blocks in state S1. With
unique-attributes, all sets in working memory have to be
structured, e.g., as in Figure 3-1-b, or using some simpler
structure such as a list etc. Since this set structure impacts
problem-solving efficiency, additional encoding effort may be
required.

While unique-attributes are investigated in Soar in detail, they
are also relevant for other systems. The central idea in unique-
attributes is the elimination of cascading ambiguity in the match,
which should be applicable to production systems such as
Prodigy [19], OPS5 [5] and others. In fact, unique-attributes
have already been applied, in a more generalized form, in
production system languages such as K [4] and PAMELA [2].
Unique-attributes also appear relevant to frame-based systems.
For instance, Chalasani and Altmann [6] have pointed out that
the knowledge representation scheme adopted by Theo, an
integrated frame- and rule-based architecture for
problem-solving [23], corresponds to the unique-attribute
representation. Thus, algorithms such as Uni-Rete, developed
for unique-attributes, may be useful in speeding up a variety of
systems. Further details on this and related issues appear in
[28,31,33].
4. Introducing Uni-Rete

Figure 4-1 illustrates the implication of unique-attributes for
Rete. Each beta memory contains only a single token. However,
despite this single token, Rete goes through the process of
creating and storing it as usual, and incurs a large memory
management overhead. Note that the alpha memory for the first
condition also contains only a single wme.

Uni-Rete exploits this bound of a single token per beta
memory by storing tokens implicitly and reducing the token
memory management overhead. In particular, only a small part
of a token is stored in a given beta memory, the rest being
implicit from the preceding beta memories. Thus, instead of
storing tokens as shown in Figure 4-1, they can be stored as
shown in Figure 4-2. Consider the beta memory containing the
token (Wl, W4) in Figure 4-1. In the corresponding beta
memory in Figure 4-2, only W4 is stored. Since the preceding
alpha memory contains only a single wme (Wl), the token (Wl,
W4) is implicit from the two memories. Similarly, instead of
storing the entire token (Wl, W4, W6) as in Figure 4-1, only
W6 is stored in Figure 4-2, the remaining portion of that token
being implicit from the preceding memories. Thus, tokens can
be stored implicitly, by storing only a single wme. The space
for this single wme can be allocated in advance, thus avoiding
the memory management overhead of Rete. This single location
per wme actually stores a pointer to a wme and will be referred
to as a wme-pointer location. In Figure 4-2, the locations storing
wmes W1, W4, W6 and W8 are such wme-pointer locations.

Note that this implicit storage cannot be used if the beta
memories contain multiple tokens, as this will create ambiguity
about which wmes are actually supposed to form a token. Thus,
the technique of implicit storage cannot be used in an
unrestricted system.

Figure 4-3 describes the Uni-Rete algorithm using the two
working-memory operations: add and delete. We will explain
the steps in the algorithm using the example in Figure 4-2.
Suppose the wmes W6 and W8 are not yet present in Figure 4-2.
Now suppose wme W6 is added. In step 1 of the addition

(STATE S1 BLOCKB1)
@LOCK B1 LEFT B2)
(BLOCK B1 RIGHT B3)

(b)

38

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 21:02 from IEEE Xplore. Restrictions apply.

L,.... i

Figure 4-1: Rete with Unique-attributes.

WME-"
LOCATION FOR
(El

LOCATION FOR I

W M E - P O m
LOCATIONFOR 7
(E3

-"-ER
LOCATION FOR
(E4

Figure 4-2: Uni-Rete.

algorithm, W6 passes the constant tests and is stored in the alpha
memory for the third condition (CE3) as shown in Figure 4-2.
In step 2, we check the wme-pointer location for the previous
condition (CE2). This location is non-null (it contains W4) and
hence we proceed to step 3. For step 3, suppose some variable
<Y> appears in CE2 and CE3. Then we check the consistency of
the bindings for <Y> between W4 and W6. With a successful
consistency test, we proceed to step 4. In step 4, we store a
pointer to W6 in the wme-pointer location for CE3, i.e., CE3 is
now successfully matched. In step 5 , the alpha memory for CE4
is tested for a wme that is consistent with wmes in the precedllig
wme-pointer locations. If this test succeeds, we assign a wme-

pointer to the wme-pointer location for CE4. We continue to
apply step 5 until either the consistency tests for some following
CE fail or the consistency tests for the last CE succeed. In the
latter case, the production is instantiated in step 6.

Now, suppose wme W6 is deleted. In step 1 of the deletion
algorithm, it passes the constant tests and is removed from the
alpha memory of CE3. In step 2, we check if the wme-pointer
location of CE3 points to W6 and find that it does. This implies
that, earlier, W6 had successfully matched CE3. In step 3, we
nullify the wme-pointer location of CE3, thus removing the
match to W6. The match for all the conditions following CE3
depend on the match for CE3, i.e., if CE3 no longer matches a
wme, then the conditions (CE4, ..., CEN) also cannot match.
Therefore, in step 4. we enter null into the wme-pointer
locations of CE4 through CEN. Finally, in step 5, if the
production was earlier instantiated, then its instantiation is
deleted.

* Comments: Let W , be the new wme. Let the production system
* contain a single production P with conditions Cl,C2,..C,..,Cw
* such that Wkpasses the constant tests of C,. For a condition
* C~ alpha-memory(Ck) indicates its alpha memory.
* wme-pointer(Ck) indicates its wmt-pointer location, tests(Tk)
* indicate its consistency tests. Instantiation(P) refers to the
* instantiation of P .

Uni-Rete: Procedure for addition of a wme

1. Perform constant tests and store W, in alpha-memory(Ck);
2. If (wme-pointer(Ck-l) = NULL) then retum;
3. If testsv,) do not succeed using W, then retum;
4. wme-pointer(Ck) :=pointer to Wk;
5 . While ((tests(Tk+l) succeed for some wme W. from

alpha-memory(Ck+l)) and (1; < N))
wme-pointer(Ck+l) := pointer to Wj;
k := k+l;

6. if (k = N) then instantiate production P;
Uni-Rete: Procedure for deletion of a wme

1. Perform constant tests and delete Wk from

2. If (wme-pointer(Ck) <> pointer to Wk) then retum;
3. wme-pointer(Ck) :=NULL;
4. for (i = k+l to N) wme-pointer(Cj) := NULL;
5. if P is instantiated, remove instantiation(P);

alpha-memory(Ck);

Figure 4-3: Uni-Rete: procedures for addmgldeleting a wme.

The extension of Uni-Rete to handle negated conditions is
straightforward: If a wme matching a negated condition is
added to the system, then it follows the normal procedure for
adding wmes, except that steps 5 and 6 are replaced by steps 4
and 5 for deleting wmes - since a successfully matched
negated condition does not allow the following conditions to
match. If a wme matching a negated condition is deleted, then it
follows the normal procedure for deleting wmes except that
steps 4 and 5 are replaced by steps 5 and 6 for adding wmes -
since a non-matching negated condition allows the following
conditions to match. The Uni-Rete algorithm is described in
further detail in [34].

As noted earlier, the absence of left tokens is the major

39

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 21:02 from IEEE Xplore. Restrictions apply.

optimization in Uni-Rete that allows it to outperform Rete.
There are three savings due to this optimization during tlie
addition of a wme. First, since the space for the wme-pointer
location is allocated in advance, Rete's memory allocation/dc-
allocation costs are avoided. Second, since only a single wme-
pointer is stored in a wme-pointer location, Uni-Rete avoids the
cost of copying pointers to all the previous wmes into tlie
c m n t token. For instance, in Figure 4-1, Rete copies pointers
to W1 and W4 from the previous token when it is about to create
a token containing (Wl,W4,W6). In contrast, as shown in Figure
4-2, Uni-Rete does not require such copying. Third, Uni-Rete
avoids the cost of hashing left tokens.

The absence of left tokens allows Uni-Rete to perform more
efficiently during the deletion of a wme as well. Specifically, in
Rete, deletion of a wme implies following a course symmetrical
to its addition, and removing tokens containing the deleted m e .
(While wme deletion in Rete can be optimized by maintaining
some extra pointers, for a hashed version of Rete, tliis
optimization would either provide small speedups (-10%) or
cause a slowdown [2].) In Uni-Rete, this cost is avoided - the
system simply zeros out all the successor locations. There are
other minor optimizations in Uni-Rete as well, e.g., the
instantiation processing is simplified since there is only a single
instantiation, the implementation of negated conditions is also
simplified, etc.

Overall, while the processing of left tokens is heavily
optimized in Uni-Rete, the processing of right tokens is not
optimized. Therefore, the speedup of Uni-Rete over Rete
depends on the proportion of right tokens in the input. Note tli&
Uni-Rete is a specialization of Rete, and it has identical state-
saving and sharing. Thus, there are no losses or gains in Uiii-
Rete with respect to those optimizations.
5. Bilinear Organization of the Uni-Rete Network

This paper has, so far, focused on a linear version of Uni-
Rete. That is, each condition joins the network at the end of a
sequence of all the previous conditions in a production.
Altematively, it is possible to organize the network in a bilinear
fashion, where a new condition may join the network at the end
of some particular sequence of previous conditions, not
necessarily all of them. Figure 5-1 contrasts a linear version of
Uni-Rete with a bilinear version. In the bilinear network,
conditions CE1-CE4 are organized as in a linear network. But
conditions CE5 and CE6 join the network at the end of condition
CE2. Thus, there are two independent chains of conditions in
the bilinear network. (CE1, CE2, CE3, CE4) and (CE1, CE2,
CE5, CE6). These two chains are joined together using a
super-p-node. The super-p-node performs any consistency tests
that were missed due to the bilinearization. For instance, in
Figure 5-1, CE4 and CE6 appear in different branches of the
bilinear network. Therefore, a super-p-node is required to
perform any consistency checks between CE4 and CE6.
Additionally, the super-pnode also performs the function of the
p-node in Rete. Except for the super-pnode, bilinear Uni-Rete
is identical to linear Uni-Rete.

Figure 5-2 shows the principle advantage of bilinear
networks: an increase in the amount of sharing. Increased
sharing implies fewer wme-pointer locations; which implies
faster execution time. The figure shows two productions. P1
and F'2. All of the conditions in P1 appear in P2, but not in h e
same sequence. In linear Uni-Rete, sharing is entirely dependent
on a common initial subsequence of conditions. The
subsequence (CE1, CE2) in P1 also appears in P2 -hence the

P P-NODE

Figure 5-1: Bilinear Uni-Rete.

CE6 CES ; c;\, i : CEA c:#

L.

i CE4 i cE5 cE61
h-. ...A -.,

i CE6
..I

P1

p1 P2 P2

LINEAR SHARING BJIJNEAR SHARING

Figure 5-2: (b) Increased sharing with bilinearization.

linear Uni-Rete shares the two conditions across P1 and P2.
However, the subsequence of CE5 and CE6 in P1 cannot be
shared with CE3 and CE4 in P2. In bilinear Uni-Rete, sharing is
not entirely dependent on a common sequence of conditions. In
particular, production P2 can be organized as a bilinear network,
with two chains of conditions: (CE1, CE2, CE3, CE4) and
(CE1, CE2, CE5, CE6). This bilinear network shares one of its
branches (CE1, CE2, CE5, CE6) with P1. With this sharing,
there are fewer wme-pointer locations in the bilinear Uni-Rete
network than in the linear network.

Thus, bilinear networks can lead to improved sharing.
Unfortunately, while increased bilinearization leads to increased
sharing, it also leads to increased consistency checks in the

40

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 21:02 from IEEE Xplore. Restrictions apply.

super-pnodes, thus increasing their overhead. This is
particularly problematical since our current super-p-node
implementation is suboptimal - it does not save partial
consistencycheck results for use in future cycles. Thus, a
program for bilinearization needs to balance the conflicting
requirements of increasing sharing and reducing super-pnode
overheads. We have written a simple heuristic program called
bilin that attempts to achieve this balance [34]. The output of
bilin is used for the experiments in this paper.

Note that, in our experiments, the bilinear optimization was
not applied to Rete, since a fair comparison requires that an
optimization be applied to Rete only if it improves Rete’s
performance in the general case (improving Rete’s performance
for unique-attributes leads us to Uni-Rete). However, in the
general case, bilinearization can actually degrade Rete’s
performance, since (i) it actually increases Rete’s match
activity [9], (ii) its implementation is quite complex, and could
introduce a much larger overhead [15], and (iii) the benefits of
sharing in an unrestricted system may not be as much as in a
unique-attribute system [34].

6. Experimental Results
This section compares the performance of Rete and Uni-Rete

using the Soar system. Soar is an integrated problem-solving and
learning system that uses a production system for its knowledge
base [14]. Soar is used for our comparison, as it is the only
system in which unique-amibutes have been investigated in any
detail. Since integrating our C-based Rete and Uni-Rete
implementations in the LISP-based Soar system is quite
difficult [32], we obtained detailed traces of Soar’s wme
changes and used them as input for Uni-Rete and Rete. Given
this input, the match activity in the C-based Rete and Uni-Rete
matchers is identical to Soar’s LISP-based matcher.

Figure 6-1 presents the benchmarks used. The first column
provides the names of the benchmarks and the number of
productions in each benchmark. The second column shows the
ratio of right (alpha memory) tokens to left (beta memory)
tokens. As discussed at the end of Section 4, this ratio is
important in determining speedups. The third, fourth and fifth
columns indicate the number of wme-pointer locations without
sharing, with sharing in linear Uni-Rete. and with sharing in
bilinear Uni-Rete. The numbers in parentheses are the sharing
factors, i.e., ratios of unshared wme-pointer locations to shared
wme-pointer locations. In the linear case, the average sharing
factor is 1.6, close to the average sharing factor observed in
other Rete systems [9]. In the bilinear case, the average sharing
factor is 3.8, i.e., a 2.3-fold increase in sharing over the linear
case.

Note that all the benchmarks are encoded in the unique-
attribute representation. Thus, in our comparison, both Uni-Rete
and Rete are nm with identical unique-attribute-based
benchmarks. Among the benchmarks, MAX is an artificial set
of productions used to illustrate Uni-Rete’s ability to achieve a
large speedup over Rete. In particular, MAX has a very large
number of left tokens compared to right tokens. The speedup in
MAX is 1.55 fold (with linear Uni-Rete). The other benchmarks
are described in [28].

Figure 6-2 shows the speedups from linear and bilinear Uni-
Rete. The x-axis indicates the different benchmarks. The y-axis
shows the total match time in seconds. The match times for three
systems are shown: Rete, linear Uni-Rete and bilinear Uni-Rete.
The numbers in parentheses are the speedups. In the linear case,
the speedups are seen to be determined by righaeft token ratio.

MFS [59]

I I I

0.46 I 358 I 255 (1.40) I 174 (2.05) I
ORID 1219 SW (2.05) 297 (3.11)

I BLOCKS [181] I 0.14 I 2 2 4 I 1356 (1.68) I 391 (5.84) I

41

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 21:02 from IEEE Xplore. Restrictions apply.

(11.2)

18-11

= Rete 8. Summary and Future Work
Combinatorial match in production systems is problematical

in several application areas. The unique-attribute representation
is a promising approach to eliminate match combinatorics

1 1 S&p(li=d without sacrificing functionality [28,31,33]. The linear match
bound in unique-attributes can be exploited by building

0 speedup(bih) specialized implementations that yield additional speedups.
This paper focused on one such specialized implementation: it
reported on a match algorithm for unique-attributes called
Uni-Rete. Uni-Rete is a specialization of the widely used Rete
match algorithm [7]. In tasks done in Soar, Uni-Rete has shown
over IO-fold speedup over Rete. The paper also discussed the
implications of Uni-Rete for non-unique-attribute systems.
Was the comparison presented in this paper a fair one? Both

Linear Uni-Rete

Bilin Uni-Rete

= Rete-Time/LineadJni-Rete-Time

= Retc-Tie/BihUni-Rete-Tie

(13.8)
(3.5)

(6.7) 16.21

Eight-1 Eight-2 Grid Blocks MFS*

Figure 6-2: Linearbilinear Uni-Rete speedups over Rete.

generated in matching a condition cannot be predicted in
advance. As a r e d s these algorithms generate tokens
dynamically and incur a large memory management overhead.
However, in many situations, the size of the token memory can
be predicted in advance. The Uni-Rete experience illustrates that
such situations can be exploited by static data-structure
allocations.

More fundamentally, Uni-Rete raises the issue of exploiting
the representation scheme employed by building specialized
match algorithms. This phenomenon of exploiting a simpler
representation for a faster implementation has been observed
elsewhere in computer science - particularly in the domain of
RISC machines, where a simpler instruction set is observed to
provide a much faster implementation [111.

How does Uni-Rete compare in performance with other
match algorithms? In other words, could other match algorithms
have been employed instead of Uni-Rete to obtain equivalent or
better speedups? The Treat match algorithm [21] is the other
match algorithm, besides Rete, that is popular in the production
systems area. However, Treat’s performance is equivalent to
Rete rather than to Uni-Rete. In particular, a comparison
between Rete and Treat yields a performance difference of less
than a factor of two; and that difference is also debatable (e.g..
see[24,20]). Recently, LEAPS [22] has emerged as a
promising new algorithm, providing substantial performance
improvements. However, LEAPS is dependent upon LEX or
related conflict-resolution strategies in OPS5, and thus cannot be
used in production systems such as Soar [141 and others [2. 191
that do not depend on such conflict resolution strategies.
Finally, algorithms such as Matchbox [27] and Oflazer’s
algorithm [26] are focused on parallel implementations, and are
not as efficient for uni-processor implementations.

Rete and Uni-Rete systems were developed from the same
starting point - CParaOPS5, a highly optimized C-based OPS5
system [lo]. Furthermore, as we optimized Uni-Rete, any
applicable optimizations were applied to Rete. Thus, the Rete
system used for comparison with Uni-Rete is well-optimized: in
fact, it is a factor of 2.5 or so faster than the optimized
CParaOPS5.

Among the issues for future work, one key issue is continued
optimization of Uni-Rete. Some important optimizations are
currently missing, e.g., the super-p-nodes are sub-optimaly
implemented, the garbage collection and constant-test routines
are comparatively inefficient etc. Another interesting issue is
experimenting with Uni-Rete for OPS5 systems. As discussed in
Section 3. some OPS5 systems - either entire systems or
portions of such systems - already adhere to the unique-
attribute constraint. Uni-Rete can be applied to such systems to
obtain performance improvements. A third issue is extending
Uni-Rete to support all of Soar’s functionality. This includes
supporting Soar’s ability to create subgoals. With subgoaling,
Uni-Rete’s assumption of a single token per beta memory is still
valid, but on a per subgoal basis. Subgoaling in Soar can be
supported by replacing each wme-pointer location in Uni-Rete
by an array. For any single subgoal, Uni-Rete will execute
exactly as described in Section 4, except that the wme-pointer
locations will be indexed by the subgoal. Altematively, Soar’s
functionality could be slightly reshicted by allowing only the
latest subgoal to match at a time, thus enabling Uni-Rete to
support subgoaling without any modifications. Finally, after
optimizing match, we will need to optimize other components in
the production systems.
References
1. Acharya, A. and Tambe, M. Production systems on message
passing computers: Simulation results and analysis. Proceedings
of the Intemational Conference on Parallel Processing, 1989, pp.
246-254.

2. Barachini, F. “The evolution of PAh4ELA‘. Expert Systems
8 , 2 (1991), 87-98.

3. Bayazitoglu, A., Johnson, T. R., and Smith, J. W. A unique-
attribute representation of annotated models that facilitates
learning. Tech. Rept. OSU-LKBMS-92-100, Ohio state
university division of medical informatics, 1992.

4. Bouaud, J., and Zweigenbaum, P. A reconstruction of
conceptual graphs on top of a production system. Proceedings
of the 7th Annual workshop on conceptual graphs, 1992.

42

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 21:02 from IEEE Xplore. Restrictions apply.

5. Brownston, L.. Farrell. R., Kanc E. and Martin, N.
Programming expert systems in OPSS: An introduction to rule-
bared programming. Addison-Wesley, Reading, Massachusetts,
1985.

6. Chalasani, P. and Altmann, E. Comparing the
representations in Soar and Theo. . School of Computer
Science, Camegie Mellon University, Unpublished.

7. Forgy, C. L. "Rete: A fast algorithm for the many
pattedmany object pattern match problem". Artificial
Intelligence 19, 1 (1982). 17-37.

8. Forgy, C. and Gupta, A. Preliminary architecture of the
CMU production system machine. Hawaii International
Conference on Systems Sciences, January, 1986. pp. 194-200.

9. Gupta, A. Parallelism inproduction systems. Ph.D. Th.,
Computer Science Department, Camegie Mellon University,
1986. Also a book, Morgan Kaufmann, (1987)..

10. Gupta, A., Tambe, M., Kalp, D., Forgy, C. L., and Newell,
A. "Parallel implementation of OPS5 on the Encore
Multiprocessor: Results and analysis". International Journal of
Parallel Programming 17.2 (1988).

11. Hennessy, J. RISC Architecture: A Perspective on the Past
and Future. In Sietz, C. L.. Ed., Advances in VLSI, MIT press,
1990.

12. Ishida, T. Optimizing rules in production system programs.
Proceedings of the Seventh National Conference on Artifical
Intelligence, 1988, pp. 699-704.

13. Laffey, T.J., Cox, P. A., Schmidt, J. L., Kao, S . M., and
Read, J. Y. "Real-time Knowledge-Based Systems". AI
magazine 9, 1 (1988). 27-45.

14. Laird, J. E., Newell, A. and Rosenbloom, P. S . "Soar: An
architecture for general intelligence". Artificial Intelligence 33,
1 (1987). 1-64.

15. Lee, H.S., and Schor, M. Match algorithms of generalized
Rete networks, Tech. Rept. RC 14709 (#65946), IBM TJ
Watson research center, 1989.

16. Lehman, J. Fain, Lewis, R.L. and Newell, A. Natural
Language Comprehension in Soar: Spring 1991. Tech. Rept.
CMU-CS-91-117. School of Computer Science, Camegie
Mellon University, March, 1991.

17. Li, X., Krishnan, R., and Steier, D. MFS: A study of model
formulation within Soar. Tech. Rept. Working paper 91-18,
School of Urban and Public affairs, Camegie Mellon University,
1991.

18. McDermott, J. "Rl: A rule-based configurer of computer
systems". Artificial Intelligence 19. 2 (1982). 39-88.

19. Minton, S . Quantitative results concerning the utility of
explanation-based learning. Proceedings of the National
Conference on Artificial Intelligence, August, 1988, pp.
564-569.

20. Miranker, D. P. Treat: A better match algorithm for AI
production systems. Proceedings of the Sixth National
Conference on Artificial Intelligence, 1987, pp. 42-47.

21. Miranker. D., and Lofaso, B, "The organization and
performance of a Treat-based production system compiler".
IEEE transuctions on lolowledge and data engineering 3, 1
(1991). 3-11.

22. Miranker, D. P., Brant, D. A., Lofaso, B., Gadbois, D., On
the performance of lazy matching in production systems.
Proceedings of the eigth national conference on artificial
intelligence, 1990, pp. 685-692.

23. Mitchell, T. M. Becoming Increasingly Reactive.
Proceedings of the eighth national conference on artificial
intelligence, 1990, pp. 1051-1058.

24. Nayak, P., Gupta, A. and Rosenbloom, P. Comparison of
the Rete and Treat production matchers for Soar (A summary).
Proceedings of the Seventh National Conference on Artificial
Intelligence, 1988, pp. 693-698.

25. Newell, A. Unified Theories of Cognition. Harvard
University Press, Cambridge, Massachusetts, 1990.

26. Oflazer, K. Partitioning in Parallel Processing of
Production Systems. Ph.D. Th., Computer Science Department,
Camegie Mellon University, 1987.

27. Perlin, M. The Match Box Algorithm for Parallel
Production System Match. Tech. Rept. CMU-CS-89-163,
Computer Science Department, Carnegie Mellon University,
1989.

28. Tambe, M. Eliminding combinatorics ffom production
match. Ph.D. Th., School of Computer Science, Carnegie
Mellon University, May 1991.

29. Tambe, M. and Newell, A. Some chunks are expensive.
Proceedings of the Fifth Intemational Conference on Machine
Learning, June, 1988, pp. 451-458.

30. Tambe, M. and Rosenbloom, P. Eliminating expensive
chunks by restricting expressiveness. Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, 1989, pp. 731-737.

31. Tambe, M. and Rosenbloom, P. A framework for
investigating production system formulations with polynomially
bounded match. Proceedings of the Eighth National Conference
on Artificial Intelligence, 1990, pp. 693-400.

32. Tambe, M., Kalp, D., Gupta, A., Forgy, C.L., Milnes, B.G.,
and Newell, A. Soar/PSM-E: Investigating match parallelism in
a learning production system. Proceedings of the
ACM/SIGPLAN Symposium on Parallel Programming:
Experience with applications, languages, and systems, 1988, pp.
146-160.

33. Tambe, M., Newell, A., and Rosenbloom, P. S. 'The
problem of expensive chunks and its solution by restricting
expressiveness". Machine Learning 5 , 3 (1990). 299-348.

34. Tambe, M., Kalp, D., and Rosenbloom, P. Uni-Rete:
Specializing the Rete match algorithm for the unique-attribute
representation. Tech. Rept. CMU-CS-91-180, School of
Computer Science, Camegie Mellon University, 1991.

35. Waterman, D. A., Hayes-Roth, F. Pattern-directed
inference systems. Academic press, 1978.

43

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 21:02 from IEEE Xplore. Restrictions apply.

