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Abstract 

Combinatorial match in production systems (rule-based 
system) is problematical in several areas of production system 
application: real-time performance, learning new productions 
for performance improvement. modeling human cognition. and 
parallelization. The unique-attribute representation in 
production systems is a promising approach to eliminate match 
combinatorics. Earlier investigations have focused on the ability 
of unique-attributes to alleviate the problems caused b~ 
combinatorial match 1331. This paper reports on an additional 
benefit of unique-attributes: a specialized match algorithm 
called Uni-Rete. Uni-Rete is a specialization of the widely used 
Rete match algorirhm for unique-attributes. The paper presents 
performance results for Uni-Rete. which indicate over 10-fold 
speedup with respect to Rete. It also discusses the implications 
of Uni-Rete for non-unique-attribute systems.’ 

1. Introduction 
Production (rule-based) systems are used extensively in the 

field of AI [13,18,25,35]. In production systems, computation 
proceeds by repeated execution of recognize-act cycles. In the 
recognize phase, productions (condition-action rules) in the 
system are matched with a set of data-items, called working 
memory. In the act phase, one or more of the matched 
productions are fired, possibly changing the working memory, 
and causing the system to execute the next recognize-act cycle. 

This paper focuses on a key performance bottleneck in 
production systems: production match. Production match is 
combinatoric (NP-hard), and it has proven to be a problem in 
several areas of production-system application. In real-time 
production systems, combinatorial match hinders the 
achievement of guaranteed response times [13,28]. In systems 
that leam new productions, combinatorial match can cause a 
slowdown with learning [19,33]. Combinatorial match is also 
problematical for modeling human cognition[25] and 
parallelization [l. 281. 

In [30,33], the unique-attribute representation was 
introduced to eliminate combinatorics from production match. 
With unique-attributes, match becomes linear in the number of 
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conditions. The unique-attribute approach appears to be a 
promising one to alleviate the problems caused by combinatorial 
match without sacrificing production-system functionality. To 
date, the unique-attribute representation has been applied 
successfully to a variety of tasks, including some complex tasks 
with 500 or more productions [16,17,28]. 

The linear match bound in unique-attributes can provide an 
additional benefit: specialized implementation techniques that 
yield additional speedups. These techniques include: specialized 
match algorithms, specialized uni-processor hardware, and low- 
overhead parallelism. This paper investigates the first technique 
- it reports on a match algorithm for unique-attributes called 
Uni-Rete. Uni-Rete is a specialization of the widely used Rete 
match algorithm [7]. In tasks done in Soar [14], Uni-Rete has 
shown over 10-fold speedup over Rete. 

While the speedups from Uni-Rete are presented within the 
context of unique-attribute Soar systems, Uni-Rete has wider 
implications. First, Uni-Rete is not limited to Soar; it can be 
used in all unique-attribute production systems. Second, Uni- 
Rete can be combined with Rete, and this combination can 
provide performance improvement in systems that are only 
partially based on unique-attributes. Third, Uni-Rete illustrates a 
possible method for reducing the memory management 
overhead in match algorithms. Finally, the basic premise in 
Uni-Rete - exploiting the representation scheme employed by 
building a more specialized implementation - may be applied 
in other systems to obtain better performance. These issues are 
discussed in M e r  detail in Section 7. 

This paper is organized as follows: Sections 2 and 3 provide 
background information about Rete and the unique-attribute 
representation. Since Uni-Rete is a specialization of Rete for 
unique-attributes, it is necessary to understand both Rete and 
unique-attributes to understand Uni-Rete. Section 4 introduces 
Uni-Rete. Section 5 describes a more optimized version of 
Uni-Rete. Section 6 presents the results from the Uni-Rete 
implementation. Section 7 discusses related work and 
implications of Uni-Rete for other system. Finally, Section 8 
summarizes the results and describes issues for future work. 
2. The Rete Match Algorithm 

The Rete match algorithm[7] is based on two main 
optimizations: sharing and state-saving. Sharing common parts 
of condition elements (also called conditions or CEk) in a single 
production or across productions reduces the number of tests 
required to do match. State-saving accumulates partially 
completed matches from previous recognize-act cycles for use in 
future cycles. Thus, if a new working-memory element (wme) is 
added in a new cycle, only the new wme is matched, older wmes 
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from previous cycles are not re-matched. 
We will use the simple production system shown in Figure 

2-I-a to illustrate Rete’s operation. It shows a production PI, 
which is to be matched with the wmes WI,..,W6. Production PI 
has three conditions and one action. The symbols in the 
conditions are either constants, e.g.. STATE, that test if identical 
constants appear in identical positions in the wmes, or variables 
(enclosed in 0) that bind to symbols appearing in identical 
positions in the wmes. Production match involves finding all 
possible instantiations of the production with the wmes. Here an 
instantiation refers to a collection of wmes that provide 
consistent bindings for the variables in the production. In Figure 
2-I-a, wmes W1, W4 and W6 form an instantiation, since they 
provide a consistent binding B1 for the variable <B>. 

(Roductim P1 Working manory 

I (STATE <S> BLOCK a>) 
(BLtXK <Bz COLOR MD) 
(BLOCK <B> VOLUME 8) cE1 
--> 

BLOC 

( A m O N  1) 

W1: (STATE S1 BLOCK 91) 

Rete’s operation in matching production P1 with the wmes 
WI,..,W6 can be understood using the analogy of water-flow 
through pipes. As shown in the upper part of Figure 2-1-b, each 
condition of production P1 can be considered as a pipe, ending 
in a bucket. The wmes flow through these pipes. Each pipe has 
filters associated with it, which correspond to the constant tests 
in the condition and allow only particular wmes to pass through. 
For example, the filters in the f i t  pip (corresponding to the 
first condition) check if STATE and BLOCK appear in the f i t  
and third fields of a wme respectively. Due to these filters, only 
W1. W2, and W3 pass h o u g h  the f i s t  pipe and appear in the 
bucket for the f i s t  pipe. Note that since the filter BLOCK for 
the second and third pipes tests an identical field of the wmes. 
this filter is shared between the two pipes, illustrating the 
sharing optimization in Rete in a simple form. 

Next, the small boxes with Xs inside them and cB> written 
over them check for consistency between wmes. Consider the 
box that joins the buckets for the f i s t  two conditions. Since 
<B> appears in the fourth field of the first condition and the 
second field of the second condition, this box tests the fourth 
field of wmes W1, W2 and W3 against the second field of wmes 
W4 and W5. Two pairs of wmes - (Wl,W4) and (W2,W5) - 
pass this consistency test and are stored in the following bucket. 
Now the second small box checks the bindings for <B> of each - .  

W2: (STATE S1 BLOCK B2) w1,  w2 w4 ws 
w3:(STATE bd of the two pairs against W6. The cornbinat& of W1,W4 and 

W6 is finally found to be successful and forms the instantiation 
of this production. 

Note that the buckets in Figure 2-1-b realize state-saving by 
storing partial results of the match. If a new wme, say W7, is 
added in a new recognize-act cycle, then only W7 will be 
matched; Rete will avoid re-matching W1, ..., W6 in this later 
cycle. The penalty for state-saving is that if a wme, say W4, is 
deleted then it is re-matched following a course identical to its 
addition. During this process, W4 and all combinations 
containing W4. such as (Wl, W4). are deleted from the buckets. 
However, this penalty for deletion is usually quite small 
compared to the benefit of state-saving [8,9]. (See also 

(w1. W4) (wz ws) 
<B> 

I +I 
(w1.  w4. wa) 

t20.241.) 

W 4  (BLOCK B1 COLOR RED) 
WS: (BLOCK B2 COLOR RED) 

W 6  (BLOCK 91  V O L W  8) 

(a) 

(b) 

(w1. w4. wa) 

(4 

Figure 2-1: A simple production system and its Rete network. 

In an actual Rete implementation, the pipes discussed above 
form a dataflow network as shown in Figure 2-1-c. Wmes travel 
down from the ROOT node. The filters that test for constants are 
called constant test nodes. The buckets that store individual 
wmes are called alpha memories. The wmes stored in alpha 
memories are called right tokens. Combinations of wmes, e.g., 
(Wl, W4), are called left tokens (just tokens if the context is 
clear) and are stored in beta memories. And-nodes perform 
consistency-checks, while P-nodes add and delete instantiations. 

In Rete, combinatorics in production match translates into 
combinatorial nwnbers of tokens in beta memories [29]. In the 
worst case, there can be O ( w )  number of tokens generated in 
matching a single production, where W is the number of wmes 
in the system and C is the number of conditions in a single 
production. Since a beta memory can be a host to such a large 
number of tokens (which cannot be predicted at compile time), 
Rete uses dynamic structures such as linked lists to store the 
tokens. More optimized versions of Rete, such as the one used 
in this paper, often rely on hash tables [9, IO]. Despite this, it is 
estimated that beta memories consume a majority of the time in 
match [9]. 
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(STATE S1 B L w K B 1 )  

(STATE S1 BLoCKB2) 
(STATE S1 BLOCK B3) 

(4 

does tradeoff some expressiveness. In particular, with unique- 
attributes, it becomes difficult to encode unstructured sets in 
working memory. For instance, in Figure 3-1-a, blocks B1, B2 
and B3 are an unstructured set of blocks in state S1. With 
unique-attributes, all sets in working memory have to be 
structured, e.g., as in Figure 3-1-b, or using some simpler 
structure such as a list etc. Since this set structure impacts 
problem-solving efficiency, additional encoding effort may be 
required. 

While unique-attributes are investigated in Soar in detail, they 
are also relevant for other systems. The central idea in unique- 
attributes is the elimination of cascading ambiguity in the match, 
which should be applicable to production systems such as 
Prodigy [19], OPS5 [ 5 ]  and others. In fact, unique-attributes 
have already been applied, in a more generalized form, in 
production system languages such as K [4] and PAMELA [2]. 
Unique-attributes also appear relevant to frame-based systems. 
For instance, Chalasani and Altmann [6] have pointed out that 
the knowledge representation scheme adopted by Theo, an 
integrated frame- and rule-based architecture for 
problem-solving [23], corresponds to the unique-attribute 
representation. Thus, algorithms such as Uni-Rete, developed 
for unique-attributes, may be useful in speeding up a variety of 
systems. Further details on this and related issues appear in 
[28,31,33]. 
4. Introducing Uni-Rete 

Figure 4-1 illustrates the implication of unique-attributes for 
Rete. Each beta memory contains only a single token. However, 
despite this single token, Rete goes through the process of 
creating and storing it as usual, and incurs a large memory 
management overhead. Note that the alpha memory for the first 
condition also contains only a single wme. 

Uni-Rete exploits this bound of a single token per beta 
memory by storing tokens implicitly and reducing the token 
memory management overhead. In particular, only a small part 
of a token is stored in a given beta memory, the rest being 
implicit from the preceding beta memories. Thus, instead of 
storing tokens as  shown in Figure 4-1, they can be stored as 
shown in Figure 4-2. Consider the beta memory containing the 
token (Wl, W4) in Figure 4-1. In the corresponding beta 
memory in Figure 4-2, only W4 is stored. Since the preceding 
alpha memory contains only a single wme (Wl), the token (Wl, 
W4) is implicit from the two memories. Similarly, instead of 
storing the entire token (Wl, W4, W6) as in Figure 4-1, only 
W6 is stored in Figure 4-2, the remaining portion of that token 
being implicit from the preceding memories. Thus, tokens can 
be stored implicitly, by storing only a single wme. The space 
for this single wme can be allocated in advance, thus avoiding 
the memory management overhead of Rete. This single location 
per wme actually stores a pointer to a wme and will be referred 
to as a wme-pointer location. In Figure 4-2, the locations storing 
wmes W1, W4, W6 and W8 are such wme-pointer locations. 

Note that this implicit storage cannot be used if the beta 
memories contain multiple tokens, as this will create ambiguity 
about which wmes are actually supposed to form a token. Thus, 
the technique of implicit storage cannot be used in an 
unrestricted system. 

Figure 4-3 describes the Uni-Rete algorithm using the two 
working-memory operations: add and delete. We will explain 
the steps in the algorithm using the example in Figure 4-2. 
Suppose the wmes W6 and W8 are not yet present in Figure 4-2. 
Now suppose wme W6 is added. In step 1 of the addition 

(STATE S1 BLOCKB1) 
@LOCK B1 LEFT B2) 
(BLOCK B1 RIGHT B3) 

(b) 
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Figure 4-1: Rete with Unique-attributes. 
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Figure 4-2: Uni-Rete. 

algorithm, W6 passes the constant tests and is stored in the alpha 
memory for the third condition (CE3) as shown in Figure 4-2. 
In step 2, we check the wme-pointer location for the previous 
condition (CE2). This location is non-null (it contains W4) and 
hence we proceed to step 3. For step 3, suppose some variable 
<Y> appears in CE2 and CE3. Then we check the consistency of 
the bindings for <Y> between W4 and W6. With a successful 
consistency test, we proceed to step 4. In step 4, we store a 
pointer to W6 in the wme-pointer location for CE3, i.e., CE3 is 
now successfully matched. In step 5 ,  the alpha memory for CE4 
is tested for a wme that is consistent with wmes in the precedllig 
wme-pointer locations. If this test succeeds, we assign a wme- 

pointer to the wme-pointer location for CE4. We continue to 
apply step 5 until either the consistency tests for some following 
CE fail or the consistency tests for the last CE succeed. In the 
latter case, the production is instantiated in step 6. 

Now, suppose wme W6 is deleted. In step 1 of the deletion 
algorithm, it passes the constant tests and is removed from the 
alpha memory of CE3. In step 2, we check if the wme-pointer 
location of CE3 points to W6 and find that it does. This implies 
that, earlier, W6 had successfully matched CE3. In step 3, we 
nullify the wme-pointer location of CE3, thus removing the 
match to W6. The match for all the conditions following CE3 
depend on the match for CE3, i.e., if CE3 no longer matches a 
wme, then the conditions (CE4, ..., CEN) also cannot match. 
Therefore, in step 4. we enter null into the wme-pointer 
locations of CE4 through CEN. Finally, in step 5, if the 
production was earlier instantiated, then its instantiation is 
deleted. 

* Comments: Let W ,  be the new wme. Let the production system 
* contain a single production P with conditions Cl,C2,..C,..,Cw 
* such that Wkpasses the constant tests of C,. For a condition 
* C~ alpha-memory(Ck) indicates its alpha memory. 
* wme-pointer(Ck) indicates its wmt-pointer location, tests(Tk) 
* indicate its consistency tests. Instantiation(P) refers to the 
* instantiation of P .  

Uni-Rete: Procedure for addition of a wme 

1. Perform constant tests and store W, in alpha-memory(Ck); 
2. If (wme-pointer(Ck-l) = NULL) then retum; 
3. If testsv,) do not succeed using W, then retum; 
4. wme-pointer(Ck) :=pointer to Wk; 
5 .  While ((tests(Tk+l) succeed for some wme W. from 

alpha-memory(Ck+l)) and (1; < N)) 
wme-pointer(Ck+l) := pointer to Wj; 
k := k+l;  

6. if (k = N) then instantiate production P; 
Uni-Rete: Procedure for deletion of a wme 

1. Perform constant tests and delete Wk from 

2. If (wme-pointer(Ck) <> pointer to Wk) then retum; 
3. wme-pointer(Ck) :=NULL; 
4. for (i = k+l to N) wme-pointer(Cj) := NULL; 
5. if P is instantiated, remove instantiation(P); 

alpha-memory(Ck); 

Figure 4-3: Uni-Rete: procedures for addmgldeleting a wme. 

The extension of Uni-Rete to handle negated conditions is 
straightforward: If a wme matching a negated condition is 
added to the system, then it follows the normal procedure for 
adding wmes, except that steps 5 and 6 are replaced by steps 4 
and 5 for deleting wmes - since a successfully matched 
negated condition does not allow the following conditions to 
match. If a wme matching a negated condition is deleted, then it 
follows the normal procedure for deleting wmes except that 
steps 4 and 5 are replaced by steps 5 and 6 for adding wmes - 
since a non-matching negated condition allows the following 
conditions to match. The Uni-Rete algorithm is described in 
further detail in [34]. 

As noted earlier, the absence of left tokens is the major 
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optimization in Uni-Rete that allows it to outperform Rete. 
There are three savings due to this optimization during tlie 
addition of a wme. First, since the space for the wme-pointer 
location is allocated in advance, Rete's memory allocation/dc- 
allocation costs are avoided. Second, since only a single wme- 
pointer is stored in a wme-pointer location, Uni-Rete avoids the 
cost of copying pointers to all the previous wmes into tlie 
c m n t  token. For instance, in Figure 4-1, Rete copies pointers 
to W1 and W4 from the previous token when it is about to create 
a token containing (Wl,W4,W6). In contrast, as shown in Figure 
4-2, Uni-Rete does not require such copying. Third, Uni-Rete 
avoids the cost of hashing left tokens. 

The absence of left tokens allows Uni-Rete to perform more 
efficiently during the deletion of a wme as well. Specifically, in 
Rete, deletion of a wme implies following a course symmetrical 
to its addition, and removing tokens containing the deleted m e .  
(While wme deletion in Rete can be optimized by maintaining 
some extra pointers, for a hashed version of Rete, tliis 
optimization would either provide small speedups (-10%) or 
cause a slowdown [2].) In Uni-Rete, this cost is avoided - the 
system simply zeros out all the successor locations. There are 
other minor optimizations in Uni-Rete as well, e.g., the 
instantiation processing is simplified since there is only a single 
instantiation, the implementation of negated conditions is also 
simplified, etc. 

Overall, while the processing of left tokens is heavily 
optimized in Uni-Rete, the processing of right tokens is not 
optimized. Therefore, the speedup of Uni-Rete over Rete 
depends on the proportion of right tokens in the input. Note tli& 
Uni-Rete is a specialization of Rete, and it has identical state- 
saving and sharing. Thus, there are no losses or gains in Uiii- 
Rete with respect to those optimizations. 
5. Bilinear Organization of the Uni-Rete Network 

This paper has, so far, focused on a linear version of Uni- 
Rete. That is, each condition joins the network at the end of a 
sequence of all the previous conditions in a production. 
Altematively, it is possible to organize the network in a bilinear 
fashion, where a new condition may join the network at the end 
of some particular sequence of previous conditions, not 
necessarily all of them. Figure 5-1 contrasts a linear version of 
Uni-Rete with a bilinear version. In the bilinear network, 
conditions CE1-CE4 are organized as in a linear network. But 
conditions CE5 and CE6 join the network at the end of condition 
CE2. Thus, there are two independent chains of conditions in 
the bilinear network. (CE1, CE2, CE3, CE4) and (CE1, CE2, 
CE5, CE6). These two chains are joined together using a 
super-p-node. The super-p-node performs any consistency tests 
that were missed due to the bilinearization. For instance, in 
Figure 5-1, CE4 and CE6 appear in different branches of the 
bilinear network. Therefore, a super-p-node is required to 
perform any consistency checks between CE4 and CE6. 
Additionally, the super-pnode also performs the function of the 
p-node in Rete. Except for the super-pnode, bilinear Uni-Rete 
is identical to linear Uni-Rete. 

Figure 5-2 shows the principle advantage of bilinear 
networks: an increase in the amount of sharing. Increased 
sharing implies fewer wme-pointer locations; which implies 
faster execution time. The figure shows two productions. P1 
and F'2. All of the conditions in P1 appear in P2, but not in h e  
same sequence. In linear Uni-Rete, sharing is entirely dependent 
on a common initial subsequence of conditions. The 
subsequence (CE1, CE2) in P1 also appears in P2 -hence the 

P P-NODE 

Figure 5-1: Bilinear Uni-Rete. 

CE6 CES ; c;\, i : CEA c:# 

L. 

i CE4 i cE5 cE61 
h-. ...A -., 

i CE6 
..I 

P1 

p1 P2 P2 

LINEAR SHARING BJIJNEAR SHARING 

Figure 5-2: (b) Increased sharing with bilinearization. 

linear Uni-Rete shares the two conditions across P1 and P2. 
However, the subsequence of CE5 and CE6 in P1 cannot be 
shared with CE3 and CE4 in P2. In bilinear Uni-Rete, sharing is 
not entirely dependent on a common sequence of conditions. In 
particular, production P2 can be organized as a bilinear network, 
with two chains of conditions: (CE1, CE2, CE3, CE4) and 
(CE1, CE2, CE5, CE6). This bilinear network shares one of its 
branches (CE1, CE2, CE5, CE6) with P1. With this sharing, 
there are fewer wme-pointer locations in the bilinear Uni-Rete 
network than in the linear network. 

Thus, bilinear networks can lead to improved sharing. 
Unfortunately, while increased bilinearization leads to increased 
sharing, it also leads to increased consistency checks in the 
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super-pnodes, thus increasing their overhead. This is 
particularly problematical since our current super-p-node 
implementation is suboptimal - it does not save partial 
consistencycheck results for use in future cycles. Thus, a 
program for bilinearization needs to balance the conflicting 
requirements of increasing sharing and reducing super-pnode 
overheads. We have written a simple heuristic program called 
bilin that attempts to achieve this balance [34]. The output of 
bilin is used for the experiments in this paper. 

Note that, in our experiments, the bilinear optimization was 
not applied to Rete, since a fair comparison requires that an 
optimization be applied to Rete only if it improves Rete’s 
performance in the general case (improving Rete’s performance 
for unique-attributes leads us to Uni-Rete). However, in the 
general case, bilinearization can actually degrade Rete’s 
performance, since (i) it actually increases Rete’s match 
activity [9], (ii) its implementation is quite complex, and could 
introduce a much larger overhead [15], and (iii) the benefits of 
sharing in an unrestricted system may not be as much as in a 
unique-attribute system [34]. 

6. Experimental Results 
This section compares the performance of Rete and Uni-Rete 

using the Soar system. Soar is an integrated problem-solving and 
learning system that uses a production system for its knowledge 
base [14]. Soar is used for our comparison, as it is the only 
system in which unique-amibutes have been investigated in any 
detail. Since integrating our C-based Rete and Uni-Rete 
implementations in the LISP-based Soar system is quite 
difficult [32], we obtained detailed traces of Soar’s wme 
changes and used them as input for Uni-Rete and Rete. Given 
this input, the match activity in the C-based Rete and Uni-Rete 
matchers is identical to Soar’s LISP-based matcher. 

Figure 6-1 presents the benchmarks used. The first column 
provides the names of the benchmarks and the number of 
productions in each benchmark. The second column shows the 
ratio of right (alpha memory) tokens to left (beta memory) 
tokens. As discussed at the end of Section 4, this ratio is 
important in determining speedups. The third, fourth and fifth 
columns indicate the number of wme-pointer locations without 
sharing, with sharing in linear Uni-Rete. and with sharing in 
bilinear Uni-Rete. The numbers in parentheses are the sharing 
factors, i.e., ratios of unshared wme-pointer locations to shared 
wme-pointer locations. In the linear case, the average sharing 
factor is 1.6, close to the average sharing factor observed in 
other Rete systems [9]. In the bilinear case, the average sharing 
factor is 3.8, i.e., a 2.3-fold increase in sharing over the linear 
case. 

Note that all the benchmarks are encoded in the unique- 
attribute representation. Thus, in our comparison, both Uni-Rete 
and Rete are nm with identical unique-attribute-based 
benchmarks. Among the benchmarks, MAX is an artificial set 
of productions used to illustrate Uni-Rete’s ability to achieve a 
large speedup over Rete. In particular, MAX has a very large 
number of left tokens compared to right tokens. The speedup in 
MAX is 1.55 fold (with linear Uni-Rete). The other benchmarks 
are described in [28]. 

Figure 6-2 shows the speedups from linear and bilinear Uni- 
Rete. The x-axis indicates the different benchmarks. The y-axis 
shows the total match time in seconds. The match times for three 
systems are shown: Rete, linear Uni-Rete and bilinear Uni-Rete. 
The numbers in parentheses are the speedups. In the linear case, 
the speedups are seen to be determined by righaeft token ratio. 

MFS [59] 

I I I 

0.46 I 358 I 255 (1.40) I 174 (2.05) I 
ORID 1219 SW (2.05) 297 (3.11) 

I BLOCKS [181] I 0.14 I 2 2 4  I 1356 (1.68) I 391 (5.84) I 
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(11.2) 

18-11 

= Rete 8. Summary and Future Work 
Combinatorial match in production systems is problematical 

in several application areas. The unique-attribute representation 
is a promising approach to eliminate match combinatorics 

1 1  S&p(li=d without sacrificing functionality [28,31,33]. The linear match 
bound in unique-attributes can be exploited by building 

0 speedup(bih) specialized implementations that yield additional speedups. 
This paper focused on one such specialized implementation: it 
reported on a match algorithm for unique-attributes called 
Uni-Rete. Uni-Rete is a specialization of the widely used Rete 
match algorithm [7]. In tasks done in Soar, Uni-Rete has shown 
over IO-fold speedup over Rete. The paper also discussed the 
implications of Uni-Rete for non-unique-attribute systems. 
Was the comparison presented in this paper a fair one? Both 

Linear Uni-Rete 

Bilin Uni-Rete 

= Rete-Time/LineadJni-Rete-Time 

= Retc-Tie/BihUni-Rete-Tie 

(13.8) 
(3.5) 

(6.7) 16.21 

Eight-1 Eight-2 Grid Blocks MFS* 

Figure 6-2: Linearbilinear Uni-Rete speedups over Rete. 

generated in matching a condition cannot be predicted in 
advance. As a r e d s  these algorithms generate tokens 
dynamically and incur a large memory management overhead. 
However, in many situations, the size of the token memory can 
be predicted in advance. The Uni-Rete experience illustrates that 
such situations can be exploited by static data-structure 
allocations. 

More fundamentally, Uni-Rete raises the issue of exploiting 
the representation scheme employed by building specialized 
match algorithms. This phenomenon of exploiting a simpler 
representation for a faster implementation has been observed 
elsewhere in computer science - particularly in the domain of 
RISC machines, where a simpler instruction set is observed to 
provide a much faster implementation [ 111. 

How does Uni-Rete compare in performance with other 
match algorithms? In other words, could other match algorithms 
have been employed instead of Uni-Rete to obtain equivalent or 
better speedups? The Treat match algorithm [21] is the other 
match algorithm, besides Rete, that is popular in the production 
systems area. However, Treat’s performance is equivalent to 
Rete rather than to Uni-Rete. In particular, a comparison 
between Rete and Treat yields a performance difference of less 
than a factor of two; and that difference is also debatable (e.g.. 
see[24,20]). Recently, LEAPS [22] has emerged as a 
promising new algorithm, providing substantial performance 
improvements. However, LEAPS is dependent upon LEX or 
related conflict-resolution strategies in OPS5, and thus cannot be 
used in production systems such as Soar [ 141 and others [2. 191 
that do not depend on such conflict resolution strategies. 
Finally, algorithms such as Matchbox [27] and Oflazer’s 
algorithm [26] are focused on parallel implementations, and are 
not as efficient for uni-processor implementations. 

Rete and Uni-Rete systems were developed from the same 
starting point - CParaOPS5, a highly optimized C-based OPS5 
system [lo]. Furthermore, as we optimized Uni-Rete, any 
applicable optimizations were applied to Rete. Thus, the Rete 
system used for comparison with Uni-Rete is well-optimized: in 
fact, it is a factor of 2.5 or so faster than the optimized 
CParaOPS5. 

Among the issues for future work, one key issue is continued 
optimization of Uni-Rete. Some important optimizations are 
currently missing, e.g., the super-p-nodes are sub-optimaly 
implemented, the garbage collection and constant-test routines 
are comparatively inefficient etc. Another interesting issue is 
experimenting with Uni-Rete for OPS5 systems. As discussed in 
Section 3. some OPS5 systems - either entire systems or 
portions of such systems - already adhere to the unique- 
attribute constraint. Uni-Rete can be applied to such systems to 
obtain performance improvements. A third issue is extending 
Uni-Rete to support all of Soar’s functionality. This includes 
supporting Soar’s ability to create subgoals. With subgoaling, 
Uni-Rete’s assumption of a single token per beta memory is still 
valid, but on a per subgoal basis. Subgoaling in Soar can be 
supported by replacing each wme-pointer location in Uni-Rete 
by an array. For any single subgoal, Uni-Rete will execute 
exactly as described in Section 4, except that the wme-pointer 
locations will be indexed by the subgoal. Altematively, Soar’s 
functionality could be slightly reshicted by allowing only the 
latest subgoal to match at a time, thus enabling Uni-Rete to 
support subgoaling without any modifications. Finally, after 
optimizing match, we will need to optimize other components in 
the production systems. 
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