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Abstract 
This paper describes an initial exploration into large 
learning systems, i.e., systems that learn a large number of 
rules. Given the well-known utility problem in learning 
systems, efficiency questions are a major concern. But the 
questions are much broader than just efficiency, e.g., will 
the effectiveness of the learned rules change with scale? 
This investigation uses a single problem-solving and 
learning system, Dispatcher-Soar, to begin to get answers 
to these questions. Dispatcher-Soar has currently learned 
10,112 new productions, on top of an initial system of 
1,819 productions, so its total size is 11,931 productions. 
This represents one of the largest production systems in 
existence, and by far the largest number of rules ever 
learned by an AI system. This paper presents a variety of 
data from our experiments with Dispatcher-Soar and raises 
important questions for large learning systems1 

Introduction 
The machine learning community has a strong view 

that it is infeasible simply to learn new rules, because the 
cost of matching them would soon devour all the gains. 
This is known as the utility problem (Minton, 1988a) - 
the cumulative benefits of a rule should exceed its 
cumulative computational cost. There is data that 
supports this, as well as a special phenomenon of 
expensive chunks (Tambe et al., 1990). Thus, when 
considering systems that are to learn indefinitely, 
efficiency issues are a critical concern. 

But the issues are broader than just efficiency. As we 
grow large systems via learning, what sort of systems will 
emerge? Will they be able to keep learning? What will 
happen to the usefulness of the learned rules, e.g., will 
only a few rules provide all the action? Will there be 
mutual interference? What scales and what doesn’t? It is 
not even clear these are the right questions, because we do 
not know what such systems will be like. 

‘The research was sponsored by the Avionics Laboratory, Wright Research and 
Development Center Aeronautical Systems Division (AFSC), U. S. Air Force, 
Wright-Patterson AFB, OH 45433-6543 under Contract F33615-9&C-1465, ARPA 
Order No. 7597. The first author was sponsored by the National Science 
Foundation under a graduate fellowship award. The views and conclusions 
contained in this document am those of the authors and should not be interpreted as 
representing the official policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency or the U.S. government. 
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This paper reports on an empirical exploration to begin 
to get answers to these questions, both the pressing ones 
of efficiency and the myriad others that should interest us. 
It reports on a single problem-solving and learning 
system, Dispatcher-Soar, performing a sequence of 
randomly generated tasks, all the while continuously 
learning. At the time of this paper, Dispatcher-Soar has 
learned 10,112 new rules (called chunks), on top of an 
initial system of 1,819 rules, so its total size is 11,93 1 
rules. This represents one of the largest rule-based 
systems in existence, and by far the largest number of 
rules ever learned by an AI system.2 

This effort is only an initial probe into the unknown of 
large learning systems. We have no intention of stopping 
at 10,000 chunks. Will matters look the same at 50,000 
chunks? Dispatcher-Soar is only a single system working 
in a single task domain. What is idiosyncratic to this 
system and task domain, and what is more general? 
Indeed, what are the right questions to be asked of these 
systems and task domains to better understand these 
issues? Thus, although we present data from a world 
none of us has yet glimpsed, the paper mostly focuses on 
formulating the right questions. 

ispatcher-Soar 
A brief description of Dispatcher-Soar will suffice. 

The system was not designed with these experiments in 
mind, but to explore how to use databases. Its task is to 
dispatch messages for a large organization, represented in 
a database containing information about the people in the 
organization, their properties, and their ability to 
intercommunicate. Given a specification of the desired 
set of message recipients (e.g., “everyone involved in 
marketing for project 2’7, the system must find a way to 
get the message to the right people. This problem is 
different from a simple network routing problem because 

?-The Rl/XCON system at Digital is the only production system we 
know that exceeds 10,000 rules (Barker & O’Connor, 1989). Most 
production systems still have have only hundreds of productions, though 
there are some with a few thousand. Systems that have substantially 
more rules are specialized to have only constants in their patterns 
(Brainware, 1990), thus avoiding the main source of computational cost, 
matching of pattern variables. 

From: AAAI-92 Proceedings. Copyright ©1992, AAAI (www.aaai.org). All rights reserved. 



both communication links and desired recipients are 
specified in terms of properties of people - for example, 
a communication link might be specified by “John can 
talk to all the marketing people at headquarters.” Also, 
the data is available only indirectly in a database, which is 
external to Dispatcher-Soar, rather than part of it. 
Whenever Dispatcher-Soar needs some piece of 
information from the database, it must formulate a query 
using the SQL database-query language, send the query 
off to a database system, and interpret the database- 
system’s response. 

Dispatcher-Soar is implemented using Soar, an 
integrated problem-solving and learning system, already 
well-reported in the literature (Laird, Newell, & 
Rosenbloom, 1987; Rosenbloom et al., 1991). Soar is 
based on formulating every task as search in problem 
spaces. Each step in this search - the selection of 
problem spaces, states and operators, plus the immediate 
application of operators to states to generate new states - 
is a decision cycle. The knowledge necessary to execute a 
decision cycle is obtained from Soar’s knowledge base, 
implemented as a production system (a form of rule-based 
system). If this knowledge is insufficient to reach a 
decision, Soar makes use of recursive problem-space 
search in subgoals to obtain more knowledge. Soar learns 
by converting this subgoal-based search into chunks, 
productions that immediately produce comparable results 
under analogous conditions (Laud, Rosenbloom, & 
Newell, 1986). Chunking is a form of explanation-based 
learning (EBL) (DeJong $ Mooney, 1986; Mitchell, 
Keller, & Kedar-Cabelli, 1986; Rosenbloom & Laird, 
1986). 

Dispatcher-Soar is implemented using 20 problem 
spaces. Figure 1 shows these problem spaces as triangles, 
arranged in a tree to reflect the structure of the system: 
one problem space is another’s child if the child space is 
used to solve a subgoal of the parent space. (The boxed 
numbers will be explained later.) The 8 problem spaces 
in the upper part of the figure are involved with the 
dispatching task: three basic methods of performing the 
task, together with a method for selecting between them. 
The 12 lower problem spaces are involved with using the 
external database. 

43-i et 
Dispatcher-Soar begins with 1,819 initial (unlearned) 

productions, and uses a database describing an 
organization of 61 people. The details of this 
organization were created by a random generator, 
weighted to make the organization modestly realistic, e.g., 
people in the same region are more likely to have a 
communication link between them than people in 
different regions. 

We generated 200 different base problems for 
Dispatcher-Soar, using a random problem generator with 
weighted probabilities. (A problem is just an instance of 
the dispatching task, e.g., “Send this message to everyone 
involved in marketing for project 2.“) We then had 

Dispatcher-Soar solve each base problem in turn, learning 
as it went along. Starting from the initial 1,819- 
production system, Dispatcher-Soar required 3,143 
decision cycles to solve the first problem, and built 556 
chunks in the process. Then, starting with the initial 
productions plus the chunks from the first problem, the 
system solved the second problem. It continued in this 
fashion, eventually solving problem 200 using the initial 
productions together with all the chunks it had learned on 
the first 199 problems. 

After solving 200 base problems, the system had 
learned a total of 10,112 chunks (an average of 506 per 
problem space), bringing the total number of productions 
to 11,931. Figure 1, (1) in the box, gives the number of 
these chunks in each problem space and Figure 1 (2) gives 
their distribution over the spaces?Approximately 30% of 
the chunks are search-control rules (the selection space), 
used to choose between the different methods the system 
has available to it. Another 32% of the chunks help 
implement various operators (many spaces). The 
remaining 38% contain memorized database query results 
(the memory and database-query spaces), and are based 
on the memorization technique introduced in 
(Rosenbloom & Aasman, 1990). Whenever Dispatcher- 
Soar has to go out to the database to find some piece of 
information, it memorizes it; if the information is needed 
again, the database will not have to be consulted. These 
chunks transfer to other problems - Dispatcher-Soar 
solved 42 of the 200 base problems without consulting the 
database. However, it did not memorize the entire 
database - it still had to consult it during problem 200. 

e 
Figure 2 plots the rate at which chunks are built. The 

horizontal axis in the figure gives both cumulative 
decision cycles and cumulative production firings. (We 
will show later that these two numbers are proportional.) 
The vertical axis gives the number of chunks built. The 
figure shows that the rate of chunking remains remarkably 
constant over time - on average, one chunk is built every 
6.3 decision cycles. The rate of chunking was indeed 
expected to stay roughly the same throughout the run 
(Newell, 1990). However, the constant rate is intriguing 
because it holds up over a long period of time, despite the 
different problem spaces employed and the variety of 
chunks learned (see Figure 1). Even more intriguing, the 

3The results reported here are for Dispatcher-Soar RW, and Soar 
version 5.2.2 using all-goals chunking. Times are user cpu time on a 
DECstation 5000, excluding Lisp garbage collection time. In addition to 
the chunks reported here, Soar also builds internal chunks, which have 
only constants (no variables) in their conditions and are excised 
following the completion of each problem. Internal chunks appear to 
affect our results only slightly and are ignored here. Two problem 
spaces build no chunks. The top space cannot build chunks because it 
has no parent. The send-query-and-get-response (SQAGR) space builds 
only internal chunks. An additional problem space is used to wait for 
results to be returned from the external database. It does no problem 
solving and is omitted here. 
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Figure 1: Dispatcher-Soar problem spaces and associated chunks. 

same rate of approximately 1 chunk per 6 decision cycles 
was observed on a smaller scale (-100 chunks) in a 
completely different set of tasks (Tambe et al., 1990, 
Tambe, 199 1). 

A second interesting phenomenon is that in some of the 
problem spaces, the rate of chunking is highly non- 
uniform. Figure 1 (3) shows the percent of chunks that 
were built during the first half of the run, i.e., the first 
50% of the total decision cycles required to solve the 200 
problems. For example, the figure indicates that 87% of 
the chunks from the pathfinder space were built during 
the first half of the run. So the rate at which pathjkder 
chunks are built drops significantly over the course of the 
run. For the find-all-matches space, on the other hand, 
only 34% of the chunks were built during the first half of 
the run, so the chunking rate for this space is increasing 
over the course of the run. 

00-v I 4 
0 10000 30000 50000 70000 

D = cumulative decision cycles 
I I 
0 200 400 600 800 1000 1200 1400 

Cumulative production firings (thousands) 

Figure 2: Chunks built on 200 base problems: C=D/6.3. 

As more and more chunks are built in a problem space, 
the space may become inactive: the space is never used 
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again, because in every situation where it would 
previously have been used, some chunk fires to handle the 
situation instead. In Dispatcher-Soar, some spaces 
become inactive very quickly: the table-list-text space 
was used during the first problem, built one chunk, and 
was never needed again - from then on, that single 
chunk transferred to all the situations where it was 
needed. Other spaces take longer to become inactive: the 
where-conditions-list-text space became inactive during 
problem 19, and the pat?finder space became inactive 
during problem 164. Many spaces show no sign of 
becoming inactive, even after 200 problems. 

As mentioned above, Figure 2 has horizontal scales for 
both cumulative decision cycles and cumulative 
production firings. In this paper we work primarily in 
terms of decision cycles, the natural unit of cognitive 
action in Soar. However, production firings are another 
familiar base unit. While the number of production 
firings that make up a decision cycle varies from one 
decision cycle to the next, Figure 3 shows that the number 
of cumulative production firings is proportional to the 
number of cumulative decision cycles, with a conversion 
factor of approximately 20.5 production firings per 
decision cycle. Figures 2 and 3 together show that chunks 
built, cumulative decision cycles, and cumulative 
production firings are all proportional to one another: 6.3 
decision cycles per chunk and 20.5 production firings per 
decision cycle (hence, 130 production firings per chunk). 
Our graphs will have extra scales, based on these 
conversion factors. 

9 zz- 
E Jo I 1 t 
II 0 10000 30000 50000 70000 

a D = cumulative decision cycles 

Figure 3: Production firings vs. decision cycles: P=20.5 xD. 

The Cost of 10, 
Data from existing EBL systems (Etzioni, 1990; 

Minton, 1988a; Cohen, 1990), including some small Soar 
systems (Tambe et al., 1990), predicts that a large number 
of chunks will extract a heavy match cost. This increase 
in match cost due to the accumulation of a large number 
of chunks is referred to as the average growth effect 
(AGE).4 The prediction of a high AGE in Dispatcher-Soar 

4While (Tambe et al., 1990) reported on the AGE phenomenon, their 
main focus was on enpensive chunks, i.e., individual chunks that 
consume a large amount of match effort. Our focus is on the impact of 
large numbers of individually inexpensive chunks. 

is bolstered by static measurements of the Rete algorithm 
(Forgy, 1982) employed in Soar for production match: 
with the addition of 10,000 chunks, the Rete network size 
(interpreted code size) increases eight-fold. 

The mystery that emerges from Dispatcher-Soar is the 
absence of any average growth effect! Figure 4 illustrates 
this. It plots the number of cumulative decision cycles 
over the 200 base problems on the horizontal axis, and the 
number of token changes per decision cycle on the 
vertical axis. A token is a partial instantiation of a 
production, indicating what conditions have matched with 
what variable bindings. The number of tokens generated 
by the matcher during a decision cycle is a commonly 
used implementation-independent measure of the amount 
of match effort in that decision cycle (Gupta, 1986; 
Minton, 1988b; Nayak, Gupta, & Rosenbloom, 1988; 
Tambe et al., 1990). In Figure 4, each point indicates the 
number of token changes per decision cycle during a lo- 
decision cycle interval. The figure shows that over the 
course of about 65,000 decision cycles and the addition of 
10,112 chunks, there is no increase in token changes per 
decision cycle. In fact, a least-squares fit indicates a 
slightly decreasing trend. 

Q, Number of chunks built 
z 
$8 

0 2000 4000 6000 8000 10000 

s8 - : . 

dv 
e 0 10000 30000 50000 70000 

Cumulative decision cycles 
r 8 

0 200 400 600 800 1000 1200 1400 
Cumulative production firings (thousands) 

Figure 4: Token changes per decision cycle. 

A variety of hypotheses have so far failed to explain 
this lack of average growth effect. One hypothesis was 
that the chunks were simply sharing existing parts of the 
Rete network, thus not adding to the match activity 
(Tambe et al., 1990). But this is not the case, as the 
network size turns out to grow in rough proportion to the 
number of productions in the system. Another hypothesis 
was that a finer-grained analysis at a level below the 
decision cycles would reveal the missing average growth 
effect. Figure 5 presents such a finer-grained analysis: it 
plots the number of token changes per change to working 
memory during the 200 base problems5 But it shows no 
AGE either. Yet another hypothesis was that the chunks 
do not incur match cost, because they don’t match 

‘As noted earlier, each decision cycle involves about 20 production 
firings. Each of these involves executing right-hand-side action to add 
or delete working-memory elements. 
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variables or because they never match. But the chunks 
test many variables in their conditions, not just constants. 
And they often match, as the next section indicates. 

Number of chunks built 
0 2000 4000 6000 8000 10000 

s . I 

--- I- I -I 
0 10000 30000 50000 70000 

Cumulative decision cycles 
I I 

0 200 400 600 800 1000 1200 1400 
Cumulative production firings (thousands) 

Figure 5: Token changes per action. 

Interestingly, the absence of AGE is consonant with the 
expectations of a different section of the AI community. 
One of the key experimental results in the area ofparallel 
production system is that the match activity in a 
production system does not increase with the number of 
productions (Gupta, 1986; Miranker, 1987; Oflazer, 
1987). However, this experimental result is based on 
non-learning OPS5 production systems (Brownston et al., 
1985) with substantially smaller numbers of productions 
than Dispatcher-Soar (-100 to -1000 productions). The 
relation between the results in this paper and those in 
(Gupta, 1986; Miranker, 1987; Qflazer, 1987) remains 
unclear. 

A second unexpected phenomenon in Dispatcher-Soar 
is that, in spite of the lack of increase in token changes, 
the total execution time per decision cycle shows a 
gradual increase as chunks are added to the system. 
Figure 6 plots this time per decision cycle over the course 
of the 200 base problems. Again, each point indicates the 
time per decision cycle during a lo-decision cycle 
interval. A linear fit indicates that the time per decision 
cycle is initially 1.28 seconds, and increases by 0.47 
seconds per 10,000 chunks. This is certainly a growth 
effect, but its source is unclear. The total execution time 
includes the time spent in matching, chunk building, 
tracing and other activities of the Soar system. A new, 
highly instrumented version of Soar is currently under 
development (Milnes et al., 1992), which should allow us 
to understand this phenomenon. 

The Effectiveness of Learning 
To explore the effectiveness of Dispatcher-Soar’s 

learning, Figure 7 plots the number of decision cycles for 
each of the 200 base problems in sequence. The 
horizontal axis plots the problem number and the vertical 
axis plots the problem duration in decision cycles. The 
figure shows more long problems at the beginning than at 
the end and that almost all the later problems are short. 
As Dispatcher-Soar continuously accumulates chunks, it 
is able to solve problems faster, i.e., in fewer decision 
cycles, which is direct evidence for effective learning. 

3 
Number of chunks built 
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0 200 400 600 800 1000 1200 1400 

Cumulative production firings (thousands) 

Figure 6: Time per decision cycle. 

0 50 100 150 200 
Base problem number 

Figure 7: Durations of the base problems. 

For a continuously learning system, we can ask 
whether all the useful learning occurs early on, or whether 
later learning is still effective. Are the rules learned 
during the second 10 problems as effective as those 
learned during the first 10 problems? Unfortunately, a 
fine-grained analysis of Figure 7 is useless because of the 
variance in the problem durations. (This has two causes: 
varying difficulty of the base problems and varying 
amounts of chunk transfer.) We could smooth out the 
variance by taking an average every 50 problems -if the 
average problem-solving time of the last 50 problems 
were less than that of the previous 50, we could conclude 
that the learning in later problems is useful. But 
averaging prevents getting fine-grained information on 
the effectiveness of learning. Averaging 50 problems, we 
will not get information about the effectiveness of the 
learning from the first 10 problems as compared to the 
second 10 problems. 

Instead of averaging, we used a set of probe problems. 
We selected 10 probe problems, generated by the same 
random generator as the base problems, but disjoint from 
the base problems. 6 To ensure that this small set 

6All the problems must be different. If Soar were presented with the 
same problem twice, the second attempt would take just 4 decision 
cycles by firing a top-level chunk. 
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adequately covered the space of problems, we selected 
problems of varying difficulty: 3 easy, 3 medium, and 4 
hard. The difficulty of a problem was judged by giving it 
to the initial Dispatcher-Soar system (no chunks) and 
seeing how many decision cycles the system needed to 
solve it. 

The system’s performance was then tested on each 
probe problem, starting with the initial productions plus 
the chunks from a varying number of base problems. In 
trial 1, we ran each probe problem starting with just the 
initial 1,819-production system.7 In trial 2, we ran each 
probe problem starting with the initial productions plus 
the chunks from base problem 1. And so on, at selected 
intervals, up to the last trial, in which we ran each probe 
problem starting with the initial productions plus all the 
chunks from the 200 base problems. 

Figure 8 shows how long the system took to solve the 
probe problems, plotted against the trial number. The 
three lines (top to bottom) represent the average number 
of decision cycles needed for the hard, medium, and easy 
probe problems. The number of decision cycles goes 
down sharply at first. Hence, the chunks learned in the 
early base problems are very useful. The decision cycles 
keep decreasing, but less sharply, throughout the trials. 
Hence, chunks learned in the later base problems are still 
useful, but not as useful as the ones from earlier base 
problems. 

2 0 50 100 150 200 
Q: Trial number 

Figure 8: Probe-problem durations, grouped by difficulty. 

Figure 9 shows the average number of decision cycles 
the system needed to solve a probe problem (of any 
difficulty) plotted against the trial number on a log-log 
scale. The points fall roughly in a straight line: 
Dispatcher-Soar’s learning follows a power law. This 
power Eaw of practice shows up throughout human skill 
acquisition, and has been previously observed in Soar 
(Newell, 1990). That the probe-problem durations follow 
such a simple rule is remarkable in itself, and strengthens 

‘The system w as allowed to learn as it solved a probe problem. 
However, it was started fresh for each of the 10 probes - none of the 
other probes’ chunks were used. The durations given here exclude a 
handful of decision cycles spent waiting for the database to respond to 
queries. 

our conviction that the use of probe problems is a crucial 
technique for the analysis of continuously learning 
systems. 

I I 8  

5 10 50 
N = trial number 

100 

Figure 9: Probe-problem durations, log-log: T=1683~?@.~~~. 

Taking the ratio of the probe-problem durations in the 
last and first trials, we see that the overall speedup of the 
probe problems due to the learning on the 200 base 
problems was a factor of 7. This gives us an analogue to 
the one-shot learning analysis done in many studies of 
learning systems (including Soar) (Minton, 1988a; 
Rosenbloom etal., 1985), in which the performance of a 
system is compared before and after learning; i.e., a set of 
problems is run before any learning takes place; then 
learning occurs; then the problems are rerun after 
learning is finished. 

Overall, 10.3% of the chunks built during the base 
problems ever transferred to later base problems. This 
number seems low at first, but upon further examination it 
is quite reasonable. First, chunks built in later problems 
have little opportunity to transfer, since few other 
problems were run while those chunks were in the system. 
In fact, the chunks built during problem 200 never get a 
chance to transfer. Such chunks are hardly useless - 
with more base problems, the fraction of chunks from the 
first 200 problems that transfer would increase. Second, 
some chunks in child spaces never get a chance to 
transfer, because in all the situations where they would, 
some chunk in a parent space transfers first and cuts off 
the subgoaling before the child space arises. The 
rrep-for-ent space is a good example. It built 55 chunks, 
but none of them ever transferred - for each one, a 
corresponding chunk from the build-relational-rep space 
always transferred instead. 

The effectiveness of learning also varies between 
problem spaces. Figure 1 (4) shows, for each problem 
space, what percent of the chunks built from that space in 
one base problem transferred to some later base problem. 
For those chunks that did transfer, Figure 1 (5) indicates 
the average number of transfers per chunk. There is wide 
variance in the effectiveness of learning by problem space 
- the percent of chunks that transfer varies all the way 
from 0% to 100%. Learning was most effective in those 
spaces where a small number of total chunks were built, 
but those chunks transferred often. 
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Questions 
This investigation is an initial exploration into very 

large learning systems - systems that acquire a very 
large number of rules with diverse functionality. The 
single system used so far, Dispatcher-Soar, has learned 
over 10,000 rules at the time of this paper. We expect to 
grow Dispatcher-Soar much further and to grow 
additional systems. As phenomena and data accumulate, 
we expect to answer some significant questions about 
such systems - about what it is like out there. 
Discovering the right questions is a major part of the 
enterprise. The general ones posed in the introduction 
certainly remain relevant. But the results presented here 
already permit us to formulate some sharper ones. 
1. Why is there no average growth effect? Will that 

remain true further out? Can we have learning 
systems with 100,000 rules? Does this apply to EBL 
systems in general? 

2. Why does the learning rate stay constant? Is this an 
architectural constant, independent of task and 
application system? Will different systems have 
different (but constant) rates? What is the 
relationship between the constant total rate and the 
strongly varying rates by problem space? 

3. Does the power law of practice hold further out? 
Does it apply for different tasks and systems? What 
is behind it? 

4. What is the nature of the rules contributing to early 
learning (which is very effective) and of those 
contributing to late learning (which is less effective)? 

5. What characterizes spaces that become inactive? 
How do they affect the mix of rules that are being 
learned? Can they become active again? 

6. What about the structure of Dispatcher-Soar (and 
other systems and tasks) determines its long-term 
growth and learning properties? 
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