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requires match algorithms that can efficiently handleAbstract
complex tests in the presence of large amounts of data.

Match algorithms that are capable of handling large amounts of On the other hand, expert systems have long supported
data, without giving up expressiveness are a key requirement for powerful rules. These systems have traditionally used more
successful integration of relational database systems and powerful powerful match algorithms like Rete and its
rule-based systems. Algorithms that have been used for database

derivatives [4, 11] and Treat [22]. These algorithms,rule systems have usually been unable to support large and
however, have not been designed for matching largecomplex rule sets, while the algorithms that have been used for
amounts of data and do not scale well [24, 34]. This limitsrule-based expert systems do not scale well with increasing
the the amount of data that expert systems can deal withamounts of data. Furthermore, these algorithms do not provide
and forces the expert systems that have been coupled withsupport for collection (or set) oriented production languages.
database systems to either use only simple rules or maintainThis paper proposes a basic shift in the nature of match
a small separate subset of data by periodically issuingalgorithms: from tuple-oriented to collection-oriented. A
queries [24]. Extending the scope of expert systems tocollection-oriented match algorithm matches each condition in a
include data-intensive tasks, without giving upproduction with a collection of tuples and generates
expressiveness, requires powerful match algorithms thatcollection-oriented instantiations, i.e., instantiations that have

collection of tuples corresponding to each condition in the can efficiently match large amounts of data.
production. This approach shows great promise for efficiently

The question then is: can production match algorithmsmatching expressive productions against large amounts of data. In
support a large number of powerful match operations andaddition, it provides direct support for collection-oriented
yet scale well with increasing amounts of data ? In thisproduction languages.  We have found that many existing tuple-
paper, we attempt to answer this question by investigatingoriented match algorithms can be easily transformed to their
an approach that avoids the major limitation on thecollection-oriented analogues.  This paper presents the

transformation of Rete to Collection Rete as an example and scalability of traditional match algorithms.
compares the two based on a set of benchmarks. Results The primary reason why traditional match algorithmspresented in this paper show that, for large amounts of data, a

used in expert systems don’t scale well is that they generaterelatively underoptimized implementation of Collection Rete
a large number of combinations of individualachieves orders of magnitude improvement in time and space over
tuples [14, 24, 32]. These combinations are generatedan optimized version of Rete. The results establish the feasibility
during the match procedure as intermediate results and asof collection-oriented match for integrated database-production
production instantiations. The total number of suchsystems.
combinations can be a high order polynomial function of1. Introduction
the number of tuples [24], which leads to a combinatorialThe integration of relational database systems and
explosion as the number of tuples grows.  For the sake ofproduction systems (forward-chaining rule systems)
efficiency, almost all existing match algorithms that arepromises a number of benefits. Production rules have long
capable of matching powerful rules maintain some of thesebeen known to be a natural mechanism for enforcing
combinations as intermediate match state [6, 15].integrity constraints, performing authorization checks and

maintaining views (derived data) [10]. They have also been Research efforts at developing match algorithms with
used to implement alerters that monitor conditions and better scaling characteristics have focussed either on
triggers that conditionally initiate actions [8, 29]. A maintaining less state [6, 17] or on efficiently maintaining
number of prototype relational database systems ⎯ the state on secondary storage [5, 27, 34]. These
STARBURST [35], POSTGRES [29], ARIEL [17] and algorithms retain the tuple-oriented nature of the traditional
RPL [9] ⎯ use production rules for some or all of these algorithms. That is, they match individual tuples, and
purposes. Commercial relational database systems like generate combinations of individual tuples for intermediate
INGRES [18] and Sybase [30] also support production results and instantiations.
systems. Most of these systems use fairly simple match We take a different approach. We propose a basic shift in
algorithms to determine the set of production instantiations the nature of the match process: from tuple-oriented to
(ARIEL is an exception). This effectively limits the collection-oriented. In collection-oriented match,
complexity of the rules that can be efficiently supported in collections of tuples that match individual conditions are
the presence of large amounts of data [29]. Typical rules the unit of matching, rather than individual tuples. The
supported in these systems have a small number of simple intermediate results and instantiations of collection-
tests. Supporting powerful rules in a database environment



oriented match are combinations of these collections, match algorithms will be required before such large
instead of combinations of individual tuples.  For large working memories can be routinely dealt with.
amounts of data, the number of tuples that match individual The rest of this paper is organized as follows. Section 2
conditions is likely to be large. In such situations, the introduces OPS5 and the terminology that we will use in
number of collections will be much smaller than the the rest of the paper. Section 3 presents collection-oriented
number of tuples. This allows collection-oriented match to match, and describes how it supports collection-oriented
tame the combinatorial explosion, since it generates production languages.  Section 4 describes Rete, and its
combinations of collections instead of combinations of transformation into Collection Rete. Section 5 describes
tuples. Thus, it promises substantial improvements in our benchmarks, experimental methodology, results and
space and time requirements over tuple-oriented match analyses. Section 6 addresses the issue of validity of these
algorithms without giving up expressiveness. results. Section 7 discusses related work and the

Collection-oriented match also addresses another implication of the collection-oriented approach for other
problem with tuple-oriented match algorithms. These match algorithms. Finally, Section 8 presents conclusions
algorithms do not provide efficient support for collection- and discusses issues for future work.
oriented production languages. Collection-oriented 2. Background
production languages are arguably more suitable for Various languages have been proposed for integrated
integration with relational databases than tuple-oriented database-production systems. Many researchers have
languages, since the unit of operation in relational focused on using OPS5 or OPS5-style production system
databases is a relation rather than a single tuple. Collection- languages for this integration [6, 9, 13, 17, 28]. This section
oriented languages also make it possible to specify introduces OPS5 terminology using the simple production
aggregate operations like count, sum, statistical operations system in Figure 2-1.
like mean and variance, data-fitting operations etc which

Figure 2-1-a shows the working memory in the system,are important for database-based tasks [9, 13, 35]. While
essentially a relational database. The working memorysuch operations can be expressed in tuple-oriented
contains nine tuples (or working memory elements):languages, they cannot take advantage of optimized
W1,W2...W9. The symbols GOAL and EMPLOYEE areprocedures for these operations. Collection-oriented match
called the classes of the tuples, and correspond to relations.provides direct support for collection-oriented production
The up-arrows (^) in the tuples indicate attribute names,languages. In addition, if needed, it can also be used to
and correspond to the fields in a relation.  These tuples areimplement a tuple-oriented production language such as
to be matched with the production MAKE-TEAM, shownOPS5 [7]. The tuple-oriented semantics of languages
in Figure 2-1-b. The production has three conditions on itswould, however, limit the gains that would be achieved.
condition-side or LHS, and one action on its action-side or

We have found that many of the tuple-oriented match RHS. The symbols in the conditions are either constants,
algorithms can be easily transformed to their collection- e.g., HARDWARE, that test if these constants appear in
oriented analogues. To illustrate this, we describe the specific fields of the tuples, or variables (enclosed in <>)
transformation of Rete to Collection Rete, its collection- that bind to values appearing in identical fields in the
oriented analogue. To investigate the efficiency and tuples. The production MAKE-TEAMS teams up a pair of
scalability of Collection Rete, we used it to implement a employees, who have worked together on a previous
collection-oriented extension of OPS5, called COPL. We project, but have different areas of expertise.  The make
compared the performance of this implementation with that command on the action side actually creates a new tuple of
of an optimized Rete-based OPS5 implementation on a set class TEAM that includes the two members.
of scalable benchmarks. Results show that, on these
benchmarks, a relatively underoptimized implementation of
Collection Rete achieves between one and four orders of
magnitude improvement in time and up to one order of
magnitude improvement in space over an optimized Rete
implementation.

These results clearly illustrate the efficiency and scaling
characteristics of tuple-oriented and collection-oriented
match approaches. However, more importantly, we view
them as establishing the feasibility of collection-oriented
match for matching large amounts of data and, therefore,
for its use in integrated database-production systems.  In
several of the experiments, the Collection Rete

(a)

(b)

-->

W1: (GOAL  ^TYPE CREATE-TEAM)

W2: (EMPLOYEE  ^NAME A  ^PREVIOUS-PROJECT WARP  ^EXPERTISE HARDWARE)
W3: (EMPLOYEE  ^NAME B  ^PREVIOUS-PROJECT WARP  ^EXPERTISE HARDWARE)
W4: (EMPLOYEE  ^NAME C  ^PREVIOUS-PROJECT PSM  ^EXPERTISE HARDWARE)
W5: (EMPLOYEE  ^NAME D  ^PREVIOUS-PROJECT PSM  ^EXPERTISE HARDWARE)

W6: (EMPLOYEE  ^NAME E  ^PREVIOUS-PROJECT WARP  ^EXPERTISE COMPILERS)
W7: (EMPLOYEE  ^NAME F  ^PREVIOUS-PROJECT WARP  ^EXPERTISE COMPILERS)
W8: (EMPLOYEE  ^NAME G  ^PREVIOUS-PROJECT PSM  ^EXPERTISE COMPILERS)
W9: (EMPLOYEE  ^NAME H  ^PREVIOUS-PROJECT PSM  ^EXPERTISE COMPILERS)

(PRODUCTION  MAKE-TEAM
(GOAL  ^NAME CREATE-TEAM)
(EMPLOYEE  ^NAME <N1>  ^PREVIOUS-PROJECT <P>  ^EXPERTISE HARDWARE)
(EMPLOYEE  ^NAME <N2>  ^PREVIOUS-PROJECT <P>  ^EXPERTISE COMPILERS)

(MAKE  TEAM  ^FIRST-MEMBER <N1>  ^SECOND-MEMBER <N2>))

implementation (with its limitations) matched over a
million tuples within a reasonable time period. To the best
of our knowledge, this is approximately two orders of Figure 2-1: A simple production system:magnitude larger than the largest working memory

(a) Working memory, and (b) A production.previously dealt with. Clearly, these results are specific to
our benchmarks and more research on collection-oriented Tuple-oriented match in a production system involves



finding all possible tuple-oriented instantiations of the production with K conditions, the asymptotic savings are
Kproduction given the tuples. A tuple-oriented instantiation O(N ). Actual savings are even greater for algorithms that

is a combination of tuples that provide consistent bindings maintain intermediate products ⎯ since the constant factor
for the variables in the production. In Figure 2-1-a, the is larger for them.
instantiation (W1, W2, W6) provides one such consistent A reduction in the number of combinations, either
binding WARP for the variable <P>. Seven other intermediate products or instantiations, leads to
production instantiations are also generated:  (W1, W3, corresponding speedups in execution time.  For instance,
W6), (W1, W2, W7), (W1, W3, W7), (W1, W4, W8), (W1, Kavoiding the generation of O(N ) instantiations will lead to
W5, W8), (W1, W4, W9), and (W1, W5, W9).  When correspondingly large speedups.  Furthermore, the
instantiations fire, action side is executed in the context of overheads of updating and maintaining combinations as
its variable bindings, updating the working memory of the part of the match state are also reduced dramatically.
system.

The preceding arguments establish two factors as3. Collection-Oriented Match influencing the speedup and match state reduction in
Collection-oriented match treats collections of tuples, collection-oriented match: (i) the size of the collections

rather than individual tuples as the primary objects to be that match individual conditions (N in the preceding
matched. A collection-oriented match algorithm matches paragraph), and (ii) the number of conditions in the
each condition in the productions with a collection of tuples productions (K in the preceding paragraph). A third such
and generates collection-oriented instantiations, factor is the amount of fragmentation in the component
instantiations that have collection of tuples corresponding collections. The example in Figure 2-1 shows a simple case
to each condition in the production.  All tuples in the of fragmentation. Suppose all of the EMPLOYEE tuples in
collections are guaranteed to be mutually consistent. The the figure had an identical value for the PREVIOUS-
following example clarifies this point. PROJECT field, say MACH. Then matching the production

Consider the production system shown in Figure 2-1. MAKE-TEAM using collection-oriented match would have
Here, collection-oriented match results in two collection- resulted in a single collection-oriented instantiation ({W1},
oriented instantiations. The first is ({W1}, {W2,W3}, {W2,W3,W4,W5}, {W6,W7,W8,W9}). However, the
{W6,W7}). Here, {W1} matches the first condition, {W2, EMPLOYEE tuples in Figure 2-1-a have two different
W3} matches the second condition and {W6, W7} matches values for the PREVIOUS-PROJECT field. Therefore, two
the third condition. The tuples in these three collections are different collection-oriented instantiations, with smaller
mutually consistent with each other, i.e. they have component collections, are formed. It is as though the
consistent values for the variable <P> ⎯ W1 is consistent collection-oriented instantiation with the larger collections
with W6 and W7, W2 is consistent with W6 and W7, and has fragmented. In general, fragmentation may lead to the
so on.  Similarly, the second collection-oriented formation of many collection-oriented instantiations with
instantiation is ({W1}, {W4,W5}, {W8,W9}). smaller component collections. This increases both space

and time requirements since more match state has to beA comparison of these collection-oriented instantiations
generated and maintained.  However, fragmentation occurswith the tuple-oriented instantiations presented earlier
because of the necessity to maintain consistency betweenillustrates two useful points. First, the two types of
collections. It is thus a feature of the program and not theinstantiations contain identical information about
implementation.consistency of matching tuples. Thus, the tuple-oriented

instantiations can be easily generated from collection- Collection-oriented match does not improve the worst-
oriented instantiations by creating a cross product of its case space and time complexity of production match. It is
component collections. For instance, a cross product of still possible to encode NP-complete problems such as
{W1}, {W2,W3}, {W6,W7}, generates the first four tuple- hamiltonian circuit or subgraph isomorphism within the
oriented instantiations. match of a single production.

3.1. Collection-oriented languagesSecond, the comparison illustrates the source of
As discussed earlier, tuple-oriented instantiations can beexecution space and time efficiency in collection-oriented

easily generated, as needed, from the collection-orientedmatch. As mentioned earlier, the primary cause of high
instantiations. This allows collection-oriented match tospace and time costs in tuple-oriented algorithms is the
function simply as an efficient match implementation forgeneration of a large number of combinations of individual
tuple-oriented production systems such as OPS5.tuples. Collection-oriented match cuts down on the number

of such combinations. For instance, suppose each of the More importantly, collection-oriented match provides
three collections in one of the collection-oriented direct and efficient implementation support for collection-
instantiations above contained N elements ⎯ the oriented production languages [13, 35]. At the core of such
instantiation would consume (N + N + N =) O(N) space. languages is the capability to directly manipulate
On the other hand, tuple-oriented match would create a collections (or sets) as single entities, instead of
cross product of (N × N × N) tuple combinations as its manipulating them on an element by element basis. These3instantiations; and consume O(N ) space.  If these languages directly support collection-oriented operations
instantiations are maintained as part of the match state, as such as counting, mean, variance etc. In collection-oriented
they are in many match algorithms, then the space savings match, a single instantiation packages together collections

3from collection-oriented match will be O(N ). For a



that are consistent with each other. This allows the action on three reasons. First, Rete is the most commonly used
side of a production to be executed in the context of values algorithm in production system implementations.  Second,
from a collection of tuples, rather than values from an Rete is intended for systems with a relatively slow rate of
individual tuple. For instance, in Figure 3-1, <EMP> will change of tuples. Database systems are expected to have a
be bound to the entire collection of EMPLOYEEs with an slow rate of change.  Third, an implementation of the Rete
expertise in COMPILERS. Thus, given the working algorithm was available to us. (As Section 7 shows, other
memory from Figure 2-1-b, <EMP> will be bound to algorithms can be similarly transformed.)  In order to
{W6,W7,W8,W9}. The function CARDINALITY on the understand Collection-Rete, it is first useful to understand
action side then counts these employees, and creates the Rete itself. Section 4.1 describes Rete; subsequently,
tuple (COMPILER-EXPERTS ^COUNT 4). Section 4.2 will describe Collection Rete.

4.1. Rete
Rete employs two main optimizations:  (i) it maintains

match state from previous computations and (ii) it shares
common parts of conditions in a single production or across
productions to reduce match effort.  We will use the simple

(PRODUCTION  COUNT-COMPILER-EXPERTS

(GOAL  ^TYPE COUNT-COMPILER-EXPERTS)
 (EMPLOYEE  ^NAME <X>  ^EXPERTISE COMPILERS) <EMP>

-->
(MAKE COMPILER-EXPERTS  ^COUNT (CARDINALITY <EMP>) ))

{ }

production system shown in Figure 2-1 to explain Rete. In
Figure 2-1, tuples W1,W2...W9 are to be matched with the
production MAKE-TEAM.  Rete’s operation in matchingFigure 3-1: A simple example of a collection-oriented acti
this production can be understood using the analogy of

Another language-related issue is the role of negated water-flow through pipes. As shown in the upper part of
conditions in production systems. Negated conditions are Figure 4-1-a, each condition of the production can be
commonly used to restrict the match and sequence the considered as a pipe, ending in a bucket. The tuples flow
firing of instantiations. In many cases, the collection- through these pipes.  Each pipe has filters associated with
oriented approach obviates such usage. A example is it, which correspond to the constant tests in the condition,
iterating over a collection of tuples. Figure 3-2 shows how and allow only particular tuples to pass through. For
the counting operation performed by the collection-oriented example, the filters in the first pipe (corresponding to the
production in Figure 3-1 would be done in a tuple-oriented first condition) check if the tuple is of class GOAL, and has
language. the value CREATE-TEAM for its TYPE field. Therefore,

only W1 passes through the first pipe and appears in the
bucket for the first pipe. Note that since the filter
EMPLOYEE for the second and third pipes tests an
identical field of the tuples, this filter is shared between the
two pipes, illustrating the sharing optimization.

Next, the small boxes with Xs inside them check for
consistency between tuples. Since there is no variable test

(PRODUCTION  COUNT-COMPILER-EXPERTS

(GOAL  ^TYPE COUNT-COMPILER-EXPERTS)

-->

{ (EMPLOYEE  ^NAME <X>  ^EXPERTISE COMPILERS)  <EMP> }

{ (COMPILER-EXPERTS  ^COUNT <VAL>)  <C> }

(MODIFY <C>  ^COUNT (COMPUTE <VAL> + 1))

- (EMPLOYEE  ^NAME <X>  ^EXPERTISE COMPILERS  ^COUNTED YES)

(MODIFY <EMP>  ^COUNTED YES))

between the first two conditions, the box that joins the first
two conditions does not perform any consistency checks.
The tuple W1 is therefore found consistent with each of theFigure 3-2: Counting in a tuple-oriented production syste
tuples W2,W3,W4, and W5. This leads to the creation of

We have developed a language called COPL (Collection- the four tuple combinations: (W1,W2), (W1,W3),
Oriented Production Language) with collection-oriented (W1,W4) and (W1,W5), which are stored in the following
semantics. COPL extends OPS5 in three ways. First, the bucket. Now the second small box checks the consistency
instantiations of COPL productions are collection-oriented, of each of these four combinations against the tuples
i.e., the variables are bound to collections of values instead matching the third condition: W6, W7, W8 and W9. This
of individual values.  Second, COPL actions are collection- involves testing the consistency of bindings for variable
oriented. For instance, the make action creates a collection <P>. Eight different combinations of tuples
of tuples instead of a single tuple, the remove action (W1,W2,W6),...(W1,W5,W9) succeed and form
removes a collection of tuples, and so on.  Third, as part of instantiations of this production. These instantiations are
its actions, COPL supports calls to functions that operate stored in an instantiation set.
on collections of values. These functions perform

The buckets and the instantiation set in Figure 4-1-bcollection-oriented operations (such as count, sum, etc.) or
contain the match state of Rete.  If a new tuple, say W10, iselement-wise operations, and return collections of values.
added to the system, then only W10 will be matched; ReteWork on COPL is currently in preliminary stages, and
will avoid re-matching W1,W2...,W9. The penalty formany issues need to be resolved.  Nonetheless, we have
maintaining this state is that if a tuple is deleted, it has to beused this version of COPL for our experiments.
deleted from all the combinations that contain it.4. Transforming a Match Algorithm

In a Rete implementation, the productions are compiledTo obtain a concrete basis for investigating collection-
to a dataflow network as shown in Figure 4-1-b. Tuplesoriented match, we elected to transform the Rete match
travel down from the ROOT node. The filters that test foralgorithm [11] to its collection-oriented analogue:
constants are called constant test nodes. The buckets thatCollection Rete.  The decision to transform Rete was based



4.2. Collection Rete
We will use the example in Figure 2-1 to describe

Collection Rete. Figure 4-2-a shows the transformation of
the Rete from Figure 4-1 into Collection Rete. (For the sake
of brevity of this paper, presentation of the detailed
algorithm, including description of how the algorithm deals
with negated conditions, has been deferred to [3].)

Working  memory

GOAL

W1

EMPLOYEE

HARDWARE

CONDITION−1 CONDITION−2

CONDITION−3

W4,W5
W6,W7
W8,W9

W2,W3

(W1,W2)
(W1,W3)
(W1,W4)
(W1,W5)

(W1, W2, W6)
(W1, W3, W6)

(W1, W2, W7)
(W1, W3, W7)

(W1, W4, W8)
(W1, W5, W8)

(W1, W4, W9)
(W1, W5, W9)

ROOT

Alpha
memories

And−node
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memory

And−node

Constant
test 
nodes

P−node

GOAL
EMPLOYEE

HARDWARE

W1 W2,W3
W4,W5

W6,W7
W8,W9

(W1,W2)
(W1,W3)

(W1,W4)
(W1,W5)

(W1, W2, W6)
(W1, W3, W6)

(W1, W2, W7)
(W1, W3, W7)

(W1, W4, W8)
(W1, W5, W8)

(W1, W4, W9)
(W1, W5, W9)

(a)

(b)

<P>

COMPILERS

COMPILERS

CREATE
TEAM

CREATE−TEAM

Figure 4-1: Rete algorithm: (a) Analogy of water-flow
through pipes, and (b) Dataflow network.

GOAL
EMPLOYEE

HARDWARE

{W2,W3,W4,W5} {W6,W7,W8,W9}

({W1}, {W2,W3,W4,W5})

{W1}

({W1}, {W2,W3}, {W6,W7})

({W1}, {W4,W5}, {W8,W9})

({W1}, {W4,W5}, {W8,W9})

GOAL
EMPLOYEE

HARDWARE

{W6,W7,W8,W9}{W1} {W2,W3,W4,W5,W10}

({W1}, {W2,W3,W4,W5,W10})

({W1}, {W2,W3,W10}, {W6,W7})

(a)

(b)

COMPILERS

COMPILERS

CREATE−TEAM

CREATE−TEAM

store individual tuples are called alpha memories. The
tuples stored in alpha memories are called right tokens.

Figure 4-2: Collection Rete: (a) Transformation ofCombinations of tuples, e.g., (W1, W4), are called left
Figure 4-1, and (b) Adding a tuple W10.tokens and are stored in beta memories. And-nodes perform

consistency-checks, while P-nodes add (and delete) In Collection Rete, each condition matches a collectioninstantiations to the instantiation set.  The tuple of tuples.  Therefore, alpha memories in Collection Retecombinations mentioned as the cause of the poor scalability store collections of tuples that match particular conditions.of tuple-oriented algorithms are the left tokens and the The first alpha memory stores {W1}. Since there is noinstantiations.



consistency test between the first two conditions, {W1} is that differs in only one slot, giving rise to the instantiation
found consistent with the collection {W2,W3,W4,W5} ({W1}, {W2,W3,W10}, {W6,W7}) as shown.
from the second alpha memory, forming a single left If a tuple is deleted, then it follows a course symmetrical
collection-token ({W1}, {W2,W3,W4,W5}). In forming to its addition. Suppose W10 is deleted from the Collection
such a token, two constraints are observed. First, all the Rete in Figure 4-2-b.  W10 is first deleted from the
tuples in the component collections of the token are collection in the second alpha memory. A new left
guaranteed to be mutually consistent.  Second, to obtain collection-token ({W1}, {W10}) is formed, with a delete
maximum benefit from collection-oriented match, largest flag. This token is then propagated to the following
possible left collection-tokens are formed. For instance, memory nodes. This token causes breaching of the tokens
two separate left collection-tokens ({W1}, {W2,W3}) and in the succeeding beta memories and in the instantiation
({W1}, {W4,W5}) could potentially be formed instead of set. Breaching undoes the effect of merging. The final
the single ({W1}, {W2,W3,W4,W5}), but this result of this processing is that the Collection Rete in
fragmentation has been avoided. Figure 4-2-b is reverts to its state in Figure 4-2-a.

At this point, the left collection-token ({W1}, This is the basic form of Collection Rete. A battery of
{W2,W3,W4,W5}) formed is stored in the beta memory as optimizations can be applied to this basic structure. Some
shown. It is then checked for consistency with of these optimizations are simply transplanted from Rete.
{W6,W7,W8,W9} in the third alpha memory to form new An example of this is the delete optimization introduced by
tokens. Given the consistency test for variable <P> at this Scales [26]. When a tuple such as W10 is deleted from an
point, forming left collection-tokens becomes more alpha memory, new left collection-tokens are not formed;
complex. A simple method for forming such tokens is as instead, the successor beta memories (and the instantiation
follows. The left collection-token is first sequentially set) are scanned, and any copy of the tuple in any token and
compared with each element of the collection in the third instantiation is eliminated. This automatically achieves
alpha memory ⎯ W6,W7,W8, and W9.  During this breaching.
process, a subpart ({W1}, {W2,W3}) of the left collection-

In the presence of large amounts of data, individualtoken is found consistent with the tuple W6, forming a new
collections (in alpha memories) can grow quite large.left collection-token ({W1}, {W2,W3}, {W6}). The
Searching such collections for matching tuples would besubpart is also found consistent with the tuple W7, forming
expensive. This problem can be alleviated by building({W1}, {W2,W3}, {W7}).  Two other new left collection
indices for the alpha memories. Since these alpha memoriestokens are also formed: ({W1}, {W4,W5}, {W8}) and
will be searched for tuples that contain specific values of({W1}, {W4,W5}, {W9}).
particular fields (that are tested at the successor beta node),

While these four newly formed left collection-tokens are the alpha memories should be indexed on these fields.
consistent, they do not contain the largest collections There are two major indexing schemes that can be used.
possible. For this, a merging step is required. This step The first scheme is based on partitioning the alpha
maintains the consistency of component collections.  For memories into equivalence classes of tuples. It divides the
two tokens to be merged, they must differ in exactly one collection in each alpha memory into a set of equivalence
component. For instance, ({W1}, {W2,W3}, {W6}) and classes. The tuples within a single equivalence class have
({W1}, {W2,W3}, {W7}) can be merged together to form identical values for the fields that are tested for consistency
({W1}, {W2,W3}, {W6,W7}).  Similarly, the remaining at the successor beta node. In Figure 4-2,
two tokens may be merged to form:  ({W1}, {W4,W5}, {W6,W7,W8,W9} can be divided into two equivalence
{W8,W9}). After this, no further merging can take place. classes: {W6,W7} and {W8,W9}. Tuples in these two
Since this is the final condition of the production, the two classes have identical values for the field PREVIOUS-
tokens ({W1}, {W2,W3}, {W6,W7}) and ({W1}, PROJECT. Thus, if the first tuple in a class passes the test
{W4,W5}, {W8,W9}) are sent to the P-node as collection- at the successor beta node, then the entire class are
oriented instantiations. guaranteed to do so. This allows us to quickly locate all of

Figure 4-2-b shows the operation of Collection Rete the matching tuples by examining only the first tuple of
when a new tuple W10 of the form (EMPLOYEE ^NAME each equivalence class, rather examining each of the
I ^PREVIOUS-PROJECT WARP ^EXPERTISE individual tuples. Furthermore, since an equivalence class
HARDWARE) is added to the working memory.  W10 automatically provides all of the consistent tuples, the
becomes a member of the collection matching the second computational effort required for the merging process ⎯
alpha memory. As in Rete, W10 is then checked for potentially a very expensive step in Collection Rete ⎯ is
consistency with the contents of the previous alpha also greatly reduced.
memory. Since there is no consistency test, a left The second major indexing scheme is based on hashing
collection-token ({W1}, {W10}) is formed. This token is the tuples in the alpha memories, as in [16]. In the presence
then merged with the token in the following beta memory of large amounts of data, however, hashing can require
to form ({W1}, {W2,W3,W4,W5,W10}). While ({W1}, sequential search of long lists in individual hash buckets.
{W10}) is merged, it is also compared with the collection This can be potentially alleviated by using dynamically
in the third alpha memory. The token ({W1}, {W10}, resized hash tables but the tradeoffs are as yet unknown.
{W6,W7}) results from this comparison. This token is

The beta memories in Collection Rete contain a smallmerged with an existing collection-oriented instantiation



number of left collection-tokens rather than a large number knowledge-based image understanding
of individual tokens as in Rete. Therefore, building indices systems (like SPAM [21]). Data for this
on the beta memories, by hashing [16] or otherwise, is not benchmark was generated by taking the
expected to be as beneficial. number of objects as an argument and placing

them randomly in a 100x100 grid.5. Experiments
5.1. Benchmarks • airline-route: This program operates on a

We benchmarked implementations of Collection Rete database of airline routes which contains
and an optimized version of Rete. The Collection Rete information about source, destination and cost
implementation was done as a part of a COPL of each flight.  The task is to find a minimum
implementation. For a Rete implementation, we used cost route for a particular traveler given the
CParaOPS5 [1, 19], the public-domain C-based OPS5 desired number of stages. If no route with the
implementation available from Carnegie Mellon. It is one desired number of flights can be found, it finds
of the fastest implementations of Rete and is faster than the the best alternate route. Data for this
previous version whose performance was shown to be benchmark was generated by assuming ten
comparable to that of ops5c developed at University of airlines and twenty airports. Each airline was
Texas, Austin [23]. randomly assigned a hub, and all flights were

routed for that airline as outbound-inboundFor the implementation of COPL, we modified a
pairs to random destinations. The cost for eachderivative of CParaOPS5 to use the Collection Rete
flight is randomly assigned and is the same inalgorithm. The COPL implementation uses basic
both directions.Collection Rete augmented by the delete and equivalence-

class optimizations described in the previous section. We For each benchmark, we ran a sequence of experiments
have devised several other optimizations, but have deferred with progressively larger amounts of data.  Each sequence
their incorporation till we can evaluate their relative of experiments was continued till the CParaOPS5 version
efficacy. Following the argument from the previous ran up against time and/or space limits. In each case, we
section, we have not incorporated memory hashing into our extended the series of experiments for the COPL version
implementation. The current implementation of COPL does till it too ran up against similar limits.  We gathered
not support negated conditions; work on implementing numbers on the space and the time requirements and the
them is currently in progress.  However, as discussed in size of working memory for each experiment. For time
Section 3.1, COPL obviates the need for many negated measurements, we performed each experiment three times
conditions. For some of the productions in the benchmarks and used the average time.  All experiments were
below, CParaOPS5 required negated conditions but COPL performed on a pair of Decstation 5000/200 machines,
did not. running Mach 2.5, with 96M memory. All the C code was

compiled by the MIPS cc compiler with the -O option. TheThe benchmark suite consists of three programs that are
CParaOPS5 compiler had all the optimization switchesable to process varying amounts of data. This allows us to
turned on. To determine the total execution time, we usedinvestigate efficiency and scalability of the two algorithms.
the /bin/time facility available in Unix.The programs are:
5.2. Results• make-teams: This program operates on a

For each benchmark, we plotted both time and spacedatabase of employees which contains
requirements against the input data size. Note that some ofinformation about their present department,
execution-time graphs, the line for COPL programs isprevious project and an evaluation of how
slightly above the x-axis, and due to the scaling, appears togood they are. The task is to build teams of
lie on it. Graphs for execution time and space show resultsemployees given constraints that each member
only for the experiments for which both CParaOPS5 andmust be from a different department and some
COPL programs could be run.of the members must have worked together

Figures 5-1, 5-2 and 5-3 contain the graphs plotting thepreviously. The programs builds and counts
total time and speedups against the input data size forteams that are "good", goodness being defined
make-teams, clusters and airline-route respectively. Thein terms of the individual evaluations. Data for
speedup graphs are plotted on a log scale to accommodatethis benchmark was generated by taking the
the large range. The inflections in the speedup curves arenumber of employees as an argument and
data dependent and not an artifact of the match algorithm.randomly assigning employees to departments
They are caused by the order in which the random data isand projects.
generated. The maximum speedups were 13482 for

• clusters: This program operates on a make-teams, 1429 for clusters and 57 for airline-route.
collection of image objects that are

Figures 5-4 and 5-5 contain corresponding graphscharacterized by their position and type (e.g.
plotting the maximum size of the match state (includingroad, hangar, tarmac etc.).  It computes the
alpha-memory, beta-memory and the instantiation-set)distance between the objects, builds clusters
against the input data size. The highest ratios in the size ofand computes their average size. This task is
match state were 13.6 for make-teams, 3.4 for clusters andsimilar to the those performed by some
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Figure 5-2: Execution time for clusters
Figure 5-1: Execution time for make-teams

becomes available, COPL is able to make better use of it
1.6 for airline-route. than CParaOPS5.  These graphs show results for all COPL

runs not just those for which the corresponding CParaOPS5In all the three cases, for small amounts of data, the
runs could be completed.  The largest working memoryexecution time and the size of match state for both
processed by COPL programs contained about 1.4 millionCParaOPS5 and COPL are comparable. As the size of input
tuples for make-teams, a little over 2.5 million tuples fordata increases, COPL soon dominates CParaOPS5.
clusters and a little over 200,000 tuples for airline-route.

It is important to note here that while the number of Corresponding numbers for CParaOPS5 are 3015, 31813
input tuples may not be large, the maximum size of the and 36455. While these numbers do seem small compared
working memory matched is much larger. This maximum to the corresponding COPL numbers, it is important to
size is different from the size of the input tuples, in that it remember that production system programs have usually
includes all intermediate data generated during the dealt with no more than a few thousand tuples.
computation. Figures 5-6 and 5-7 show graphs plotting the 5.3. Analysis
maximum size of working memory against the execution As mentioned in Section 3, three factors govern the
time. These graphs have been plotted on a log-log scale to speedup and the match state reduction achieved by
accommodate the large range on both axes.  They allow us Collection Rete:  (i) the size of the collections that match
to compare the maximum size of working memory that individual conditions, (ii) the fragmentation caused by the
each pair of programs can process in a given amount of constraints between the conditions, (iii) the number of
time. These graphs show that in the same amount of time, conditions in the productions.  Programs that have large
COPL is able to process up to two orders of magnitude productions with large collections matching each condition
more tuples than CParaOPS5. Furthermore, as more time and little fragmentation will achieve large time and space
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Figure 5-3: Execution time for airline-route Figure 5-4: Size of the total match state for make-teams an

improvements. Programs that don’t have some or all of
these characteristics will achieve lower or no
improvements. The three benchmarks provide an
illustration. All three of them have large collections
matching individual conditions, and hence show some
performance improvement. All three have some
fragmentation, but airline-route has a significantly higher
amount of fragmentation, and shows correspondingly
smaller speedups. Of the other two, make-teams has more
fragmentation than clusters, but it also has more conditions
(three-to-four) per production than clusters (two
conditions). This more than offsets the effect of
fragmentation in make-teams, and leads to large speedups
and match state reduction.

While all three programs achieve match state reduction,
this reduction is not as high as the speedups achieved.
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Partly, this is because alpha memories, which typically
Figure 5-5: Size of the total match state for airline-routeconsume very little match time, consume a relatively large

proportion of match-state. Thus, for beta memories alone,
COPL. First, the COPL implementation imposes additionalthe reduction in match state is much higher. However, there
organization in form of equivalence classes in alphaare also some small match-state overheads associated with



tokens are represented by an array of pointers to collections
of tuples, each collection being implemented as a cons-list.
The extra space consumed by these overheads depends on
the amount of fragmentation in the system. For instance, if
there is high fragmentation, as in airline-route, then the
cons-list becomes a factor in the space consumed.

These results clearly illustrate the efficiency and scaling
characteristics of tuple-oriented and collection-oriented
match approaches. However, more importantly, we view
them as establishing the feasibility of collection-oriented
match for matching large amounts of data. For the clusters
benchmarks, our Collection Rete implementation (with its
limitations) is able to match over 2.5 million tuples in about
100 seconds.  To the best of our knowledge, this is
approximately two orders of magnitude larger than the
largest working memory previously dealt with. Obviously,
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these results are specific to our benchmarks and more(a) make-teams
research will be required before such large working
memories can be routinely dealt with.

6. Discussion
Results of the magnitude described in this paper

inevitably raise questions about the fairness of the
comparison and the validity of these results for real-world
applications. By building a highly optimized system and
comparing it with a suboptimal system using benchmarks
that contain large and unrealistically complex productions,
results can be made to look good.  However, in our
comparison, the exact opposite is true.  The target of our
comparison, CParaOPS5, is actually a highly optimized
system, as testified by the following:  (i) CParaOPS5 is
based on a well-known compilation technique [12] and
includes a variety of optimizations (e.g. hashing of
memories, caching of global values, aggressive inlining);32
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(ii) An earlier, slower version of CParaOPS5 was found to(b) clusters
be only a factor of 1.5 to 2 slower than the optimized ops5c

Figure 5-6: Maximum size of working memory for make-t system distributed by the University of Texas, Austin [23];
(iii) For small working memory sizes, CParaOPS5’s
performance is comparable to that of COPL, indicating that
COPL does not have some low level implementation
advantage; (iv) CParaOPS5 has provided efficient support
for the SPAM knowledge-based image recognition
system [21], which regularly takes fifty thousand to a
million production firings to run. Compared to
CParaOPS5, the COPL system is in a relatively
underoptimized state.  This is our first implementation of
COPL, with no time spent on tuning its performance.
Additionally, our benchmark set contains simple
productions of three-to-four conditions, with the clusters
benchmark containing only two conditions per productions.
(A larger number of conditions will give COPL much
higher speedups.)

Furthermore, traditionally, performance improvements in10
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the production systems world have been confined to single
digits [23, 25, 33]. The speedups here go much beyondFigure 5-7: Maximum size of working memory for airline
these single digits.  It is against this background that we

memories. Second, it introduces additional organization on find the results presented in this paper promising.
the left collection-tokens and the collection-oriented However, our benchmarks not completely bias-free.
instantiations. In particular, while tuple-oriented tokens Given that we targeted production systems that will operate
consist of an array of pointers to tuples, collection-oriented with large amounts of data, the benchmarks are dominated



by matching of large collections. Will real integrated Treat.
database-production systems show improvements similar to Miranker et al.’s LEAPS [24] is another tuple-oriented
these benchmarks? If these real systems match large match algorithm that reduces the amount of state saved.
collections, then they will obtain similar speedups. The size LEAPS has shown large performance improvements over
of collections depends on the selectivity of the tests and the Treat in both execution time and space. LEAPS is a
number of tuples tested. (Selectivity is defined as the demand-driven match algorithm that produces
percentage of tests, constant or variable, that fail.)  Large instantiations based on the demand. For instance, in OPS5,
collections can occur if the selectivity is low, or if the it computes only a single dominant instantiation (instead of
number of tuples tested is high or both. The expensive all instantiations) as per the demand of OPS5’s syntactic
learned rules in the Soar production system [20] provide selection (conflict-resolution) strategy. However, the
one example of low selectivity.  These learned rules so implications of LEAPS for langages that do not depend on
expensive to match that they cause Soar to slowdown with such syntactic conflict-resolution strategies ⎯ such as
learning rather than speeding up [31]. Image recognition Soar [20], PPL [2] and others [4]⎯ are unclear. LEAPS
systems like SPAM, and other database systems provide also does not directly support collection-oriented
examples of systems where the number of tuples tested are languages. LEAPS can be transformed to match the
high. We expect that as the amount of data processed by dominant collection instead of the dominant tuple from
production systems grows, the size of collections will each alpha memory. Collection LEAPS would generate
grow. Even for systems with high selectivity, large enough collection-oriented instantiations, which would allow it to
amounts of data will lead to large collections. support collection-oriented languages without giving up the

One important point here is that collection-oriented advantages of LEAPS.
match supports a collection-oriented programming model. Another area of related work has been that of collection-
Production match operations, which were previously oriented (or set-oriented) production languages. Several
considered extremely expensive, are no longer so. This such languages have been proposed [9, 13, 35]. Collection-
will allow a change in the programming style and is likely oriented match can provide an efficient implementation
to expand the scope of applications to tasks which have substrate for these languages.  Gordin and Pasik [13]
hitherto been considered intractable. suggest a modification to Rete to support collection-

7. Related Work oriented languages. The resulting algorithm merges the
In this section, we discuss the implications of collection- tuple-oriented instantiations generated by Rete to generate

oriented match for match algorithms other than Rete.  We collection-oriented instantiations. It does not take
have found it relatively easy to transform tuple-oriented advantage of the structure of collections to tame the
algorithms to their collection-oriented analogues.  We also combinatorial explosion,
discuss other work related to matching large amounts of Collection-oriented match was motivated by our
data. previous work on tokenless match [32, 31]. Hence, there

Treat [22] is the other major algorithm found in the are some similarities between tokenless match and
production systems literature. The key difference between collection-oriented match.  However, tokenless match is
Rete and Treat is that Treat does not maintain beta targeted towards real-time systems and focuses on
memories as a part of its match state; it only maintains the achieving a polynomially bounded match by limiting
alpha memories and the instantiation set (see Figure 4-1). expressiveness. In contrast, collection-oriented match
However, the operations it performs to determine the imposes no restrictions on expressiveness. As a result, even
instantiations are similar to those of Rete ⎯ it too creates though it is able to improve production system
left tokens, compares these tokens with tuples in alpha performance, it does not improve the asymptotic
memories to create new left tokens and so on. Treat can be complexity of the match problem.  Understanding the
easily transformed to Collection Treat, along the same lines relationship between tokenless match and collection-
as Collection Rete. In Collection Treat, left collection- oriented match remains an interesting issue for future work.
tokens are compared with collections in alpha-memories, 8. Conclusions and Future Work
instead of individual tuples, and new left collection-tokens We can now answer the question that was raised at the
are formed. Collection Treat enjoys three advantages over beginning of this paper.  Yes, collection-oriented match
Treat: (i) a reduction in the size of the instantiation set, algorithms can support a large number of powerful match
which is the main source of space consumption in operations and yet scale well as the amount of data
Treat [24]; (ii) a reduction in the total execution time, given increases. Results related to the maximum working
that collection-oriented tokens and instantiations are memory size in our benchmarks show that in several cases,
formed; and (iii) direct support for collection-oriented which we expect to occur in practice, collection-oriented
semantics. match is able to match OPS5-style productions against

A’-Treat [17] is a refinement of Treat which replaces large amounts of data in reasonable amounts of time. While
alpha memories by virtual alpha-memories, which do not these results are based on an implementation of Collection
maintain state. Since collection-oriented match does not Rete, a collection-oriented analogue of Rete, this paper also
change the organization of the alpha memories, A’-Treat discussed how other tuple-oriented match algorithms can
can be transformed in the same way as Treat and the be transformed to their collection-oriented analogues.
advantages listed above for Treat would carry over to A’- Based on a preliminary analysis, we expect the transformed



algorithms to scale better than the tuple-oriented originals. 8. Buneman, P. and Clemons, E.  "Efficiently monitoring
Note that although the results in the paper are presented in relational databases". ACM Transactions on Database
the context of main-memory resident systems, the Systems (September 1979).
collection-oriented approach as such is independent of this

9. Delcambre, L. and Etheredge, J. N.  The Relationalfeature. In particular, tuple-oriented match algorithms that
Production Language: A Production Language forutilize secondary storage [5, 27, 34] will also benefit from
Relational Databases.  Proceedings of the Secondthe collection-oriented approach.
International Conference on Expert Database Systems,

While our results have demonstrated large time and 1988, pp. 333-352.
space improvements for COPL, much remains to be done.

10. Easwaran, K.  Specification, implementation andOur immediate plans for further research are to complete
interactions of a rule subsystem in an integrated databasethe design and implementation of COPL. This will allow
system. IBM Research Report, RJ1820, August, 1976.us, and others in our environment, to build large

applications in COPL. This, in turn, will provide us a better 11. Forgy, C. L.  "Rete: A fast algorithm for the many
understanding of the nature of computation in collection- pattern/many object pattern match problem". Artificial
oriented match and its utility for real-world tasks. We also Intelligence 19, 1 (1982), 17-37.
hope to use these tasks to evaluate the relative efficacy of
hashing and merging optimizations.  Another investigation 12. Forgy, C. L.  The OPS83 Report.  Tech. Rept. CMU-
we plan to take up in near future is the development of a CS-84-133, Computer Science Department, Carnegie
uniform framework to understand and evaluate the different Mellon University, 1984.
ways of dealing with collections in production systems

13. Gordin, D. N. and Pasik, A. J.  Set-Oriented constructs:including collection-oriented match and tokenless match.
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