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Abstract

Eliminating combinatorics from the match in production systems (or rule-based systems) is important for
expert systems, real-time performance, machine learning (particularly with respect to the utility issue),
parallel implementations and cognitive modeling. In [71], the unique-attribute representation was
introduced to eliminate combinatorics from the match. However, in so doing, unique-attributes engender
a sufficiently negative set of trade-offs, so that investigating whether there are alternative representations
that yield better trade-offs becomes of critical importance.

This article identifies two promising spaces of such alternatives, and explores a number of the alternatives
within these spaces. The first space is generated from local syntactic restrictions on working memory.
Within this space, unique-attributes is shown to be the best alternative possible. The second space comes
from restrictions on the search performed during the match of individual productions (match-search). In
particular, this space is derived from the combination of a new, more relaxed, match formulation
(instantiationless match) and a set of restrictions derived from the constraint-satisfaction literature.
Within this space, new alternatives are found that outperform unique-attributes in some, but not yet all,
domains.



1. Introduction
Production systems (or rule-based systems) are used extensively in investigating and building a wide

range of intelligent systems; including expert systems 147, 77], real-time systems t381, learning

systems [51, -,01, parallel systems [30, 521, and cognitive models [5, 59, 781. However, despite this

extensive use, there remains a key performance bottleneck within the core recognize-act cycle that dnves

production-system behavior. The problem turns out to not be with action - once the system recognizes

which production(s) should fire, the act phase, and the working-memory modifications that it engenders,

require minimal resources. Instead, the critical performance bottleneck turns out to be with the

recognition process that enables this action. During the recognize phase, productions are matched against

the data elements in working memory via a combinatoric (NP-hard) process. (Section 2 of this article

provides additional background on production systems and match.)

This combinatoric match process creates problems in all of the areas in which production systems have

been applied. In expert systems, it can cause performance degradations that impose a significant burden

on the programmer to restructure the system so as to eliminate the causes of the degradation (see, for

example, Section 6.2 of [15]). In real-time systems based on production systems, achieving guaranteed

(or predictable) response times is critical [10, 22, 38]. However, with a combinatorial match, many real-

time tasks are precluded because only unacceptably large exponential bounds can be guaranteed for the

match. In systems that learn new productions, combinatorial match can lead to a slowdown with learning

-causing what is known as the utility problem in explanation-based learning (EBL) [49] - rather than

the anticipated speedup [49, 75]. These expensive productions can, in the extreme, convert a

subexponential problem-solving effort into an exponential match problem, causing a severe degradation

in performance. In parallel systems, large variances can occur in matching individual productions and

even in matching individual conditions of productions [30). These variances result in load-balancing

problems, which penalize the parallel implementation with synchronization and communication

overheads [31, 741, In cognitive models, the problem is plausibility (in addition to functionality). As

pointed out in [59], it is possible to encode a traveling salesman problem into the match of a single

production, and "there are good reasons to believe that humans do not have this much power in the

recognition match, so that it ought to be replaced by a weaker capability" (p. 253).

A variety of types of solutions to the problem of combinatoric match have been proposed within the

individual problem areas, In expert systems, it is suggested that the programmer hand modify the rules to

reduce the sources of match cost[151. In real-time systems, proposed approaches to improving

predictability include restricting variability through the setting of a priori limits on the amount of work

that can occur during the match (such as through a preset limit on the amount of effort spent matching

individual production conditions) [32]; gathering run-time statistics on the match process 110); and

analyzing at compile time all possible ways that the productions can match to working memory [761. In

learning, the utility problem has been addressed by increasing the selectivity of production acquisition,

deletion, and/or use [23, 35, 46, 48]; and by modifying learned productions [17, 49). In parallel systems,

the load-balancin- problem has been alleviated by using a fine-grained decomposition of the match

computation in parallelization [301.



In our own work, we are attempting to take an integrated approach to the problem of combinaroric
match, with the intent of ultimately developing a solution that will prove adequate across all of these
problem areas. We have been using Soar, an integrated problem-solving and leaming system that has
been applied in all of the above problem areas. in driving this effort. Soar has already been well-reported
in the literature [40, 661. For the purposes of this article, we will need to focus on just two key aspects of
Soar: its use of a production system to implement its knowledge-base: and its use of chunking [41], a
variant of EBL [21, 57, 651, to learn new productions.

In [71, 751, we proposed one integrated approach to eliminating combinatoric match based on
restricting the representation used in the production system. In particular, we proposed and evaluated a
specific representational restriction, called unique-attributes, that guarantees a linear bound (in the
number of production conditions) on the match cost of individual productions. This simple restriction
reduces the load on the programmer by eliminating the need to hand modify expensive rules, greatly
enhances real-time predictability (while hopefully reducing load-balancing problems in parallel systems)
by reducing the variability in match time, effectively eliminates the cost of learned rules as a factor in the
utility problem,1 and eliminates the plausibility problem (at least this particular one) dogging cognitive
models. Because of such advantages, unique-attributes have now been used in encoding a variety of
complex tasks [4, 11, 12, 42, 43, 68, 701. Outside of Soar, Chalasani and Altmann [19891 have pointed
out that the knowledge representation scheme adopted by Theo, a frame-based architecture for problem
solving and learning [56], already corresponds to the unique-attribute representation. Unique-attributes
have also been mapped over (in an extended form) to the PAMELA expert system [6, 9], to the K
production system [141, and simple unique-attribute set structures have been mapped over to Prolog
control rules [181.

Despite all of this promise, the unique-attribute representation does not come without its own set of
costs: it imposes restrictions on expressiveness. In particular, it imposes restrictions on the processing of
sets of objects in working memory: a single condition in a production can no longer examine (or consider)
more than one element of a set at a time. Such processing of multiple set elements, to the extent that it is
really needed, must now occur across multiple production matches and firings. This reduction in
expressiveness of individual rules can yield both reduced generality in learned rules and additional
programmer effort in encoding tasks [75]. Thus, though unique-attributes demonstrated the overall
promise of eliminating combinatoric match by restricting expressiveness, it was not at all clear by the end
of the investigation that unique-attributes provided the best stch restriction. (Section 3 of this article
reviews what is presently known about unique-attributes.)

The purpose of the present article is to take a first step in addressing the question of whether there exist
representational restrictions other than unique-attributes that can eliminate match combinatorics while
introducing fewer negative trade-offs2. The ideal way to prosecute such an investigation would be to first
characterize the space of all possible alternatives, and then to systematically evaluate them. We have not

'Two other recent attacks on the utility problem based on imposing restrictions can be found in 1791 and 1231.
2This article is an expanded version of an earlier conference paper [721.



yet been able to derive such a single space of alternatives that is guaranteed to be complete. However, we
have been able to characterize two distinct spaces that between them do cover a significant number of

interesting alternatives. One interesting question is then how to evaluate these alternatives. Section 4

introduces the approach that has been developed for evaluating the alternatives. It combines a set of

absolute requirements (i.e., constraints), any of whose violation is sufficient to eliminate an alternative

from consideration, with a set of relative requirements that can be used to compare alternatives that meet

the absolute requirements.

Our two spaces of alternatives are actually derived from two of the absolute constraints used in
evaluating the alternatives (whether any of the other constraints can also be so used remains an open

question). The first constraint is that any representational restriction must fit naturally as a local syntactic

restriction on the production system. The first space of alternatives is thus comprised of representations
that all provide local syntactic restrictions on the production system (but may or may not a priori provide

polynomial match bounds). For example, for unique-attributes, the local syntactic restriction is that the

set of attribute-value pairs which make up an object in working memory can contain at most one value for

any particular attribute; that is, each attribute of each object has a unique value. In fact, the name
"unique-attributes" was derived from this space - each attribute is unique in value. To go beyond

unique-attributes we view working memory as a labeled, directed graph structure, in which each attribute-
value pair of an object specifies a labeled, directed edge from an "object" node to a "value" node. We

then systematically generate a set of restrictions on the edges entering and leaving these nodes.

Because alternatives generated in this first space are not a priori guaranteed to provide polynomial

match bounds, they must be explicitly tested with respect to their complexity. For unique-attributes, the
linear match bound easily satisfies this requirement. Whether or not any of the other elements of this

space will also do so, while also yielding better overall trade-offs than do unique-attributes, is the first

major issue addressed by this paper - in Section 5. The rather surprising conclusion from this

investigation is that unique-attributes are actually the best representation possible within the space of local

graph restrictions that has been identified.

The second constraint is that the representational restriction must yield a polynomial bound on the

search performed during the match of individual productions (match-search). The second space of

alternatives thus consists of polynomially bounded match-search topologies. The unique-attributes

restriction provides a linear search topology. Each node in the search has at most one successor (and the

length of the search is bounded by the number of conditions in a production). Other polynomial search

structures are conceivable, such as a fixed overall depth limit on the search, but it is not clear a priori

either whether they yield sensible syntactic restrictions or whether they provide a better set of trade-offs

than does unique-attributes. The second major issue addressed by this paper is whether such alternatives

do exist. The focus here will be on a novel set of such alternatives that has been generated by weakening

the requirements on what the match must produce. Traditional production match algorithms produce

instantiations; that is, compatible combinations of bindings of condition variables. If there are m

conditions and n bindings for the variables in each condition, and all of the bindings for each condition

are compatible with all of the bindings for the other conditions, then em instantiations must be produced



by the match. However, with the new instantiationless match formulation that is presented in Sec::on 6,
all that must be provided by the match is the m sets of n items that are compatible (that is, n*m items).

While instantiationless match can't by itself guarantee polynomial --atch-search, it can when combined
with other restrictions. Fortunately, there turns out to be a mapping between instantiationless match and
constraint-satisfaction algorithms [44, 20, 261 that provides a rich body of complexity results on different
representational restrictions, and which can therefore act as a generator for the space of polynomially
bounded instantiationless-match alternatives. Most of the results reported here, in Sections 7 and 8, are
based on combining instantiationless match with one simple such restriction: each production's
conditions must be structured as a tree. This instantiationless-tree formulation is only the simplest of a
range of intriguing possibilities; however, it is sufficient to show both the potential and the problems with
approaches based on instantiationless match. In Section 9 we go a bit beyond the instantiationless-tree
formulation, to look at the use of partial-2-trees (201, in order to illustrate what can be gained in moving
up to one of the more complex possibilities.

Section 10 summarizes the ideas developed here and relates them to other efficiency issues in
productions systems and constraint satisfaction.

2. Production Systems
Section 2.1 explains the terminology used in the remainder of this article. Section 2.2 presents a model

production system that abstracts away from some of the idiosyncratic details of Soar, to both simplify the
overall analysis and allow transfer of these results to other systems. Section 2.3 provides a simple model
of the production match, to free the analysis presented in this article from the complexities of the
implementation.

2.1. Terminology
Production systems are composed of two parts: production memory and working memory. Production

memory is composed of a set of productions (or condition-action rules). The condition side of a
production is called the left-hand side (or LHS), while the action side is called the right-hand side (or
RHS). The representation in the productions and working memory is usually based on objects that are
described in terms of attribute-value pairs. Figure 1 shows an example production system. The
production memory consists of a single production (Figure 1-a), which contains four conditions
(condition elements or CEs) and one action. In the figure, up-arrows (A) indicate attribute names and
angle brackets (<>) indicate variables.

Working memory is composed of a set of data items called working memory elements (or WMEs).
Figure I-b shows the ten WMEs in the example production system. These WMEs describe objects A,B
etc. that are described in terms of their connectedness to other objects. While the production's conditions
contain variables (<x>, <y>, etc.) or constants (current-position, e ".), the WMEs can only
contain constants (A, B, etc.). In Figure 1-a, the production's conditions test •' a path of length three
between the current position (<x>) and some other point (<w>).



q

(A ^is current-position i

(Production: Length (A Aconnected B)

(<x> AiS current--position) (A ^connected C.

(<x> Aconnected <y>) tB 'connected D)

(<y> Aconnected <z>) (C Aconnected DM

(<z> ^connected <w>) (D Aconnected E)

"'> (D Aconnected F(write path of length 3 from <x> to <w> D)

(a) (b)

Figure 1: An example production system: (a) a production, (b) working memory.

Currently, production systems use a type of match that involves the cornputation of one or more

instantiations of the production with the working memory. This form of match will henceforth be

referred to as instantiation match.3 As mentioned in the introduction, an instantiation is a collection of

consistent bindings for the variables in the production, resulting from the match with the working

memory. In our example, there are two paths of length three between the current position A and point E,

and two paths of length three between A and point F. This generates four instantiations for the production:

(<x> = A, <y> = B, <z> = D, <w> = E), (<x> = A, <y> = B, <z> = D, <w> =

F), (<x> = A, <y> = C, <z> = D, <w> = E),and (<x> = A, <y> = C, <z> = 0.
<w> = F). When one of these instantiations fires, the action side of the production is executed in the

context of the variable bindings for that instantiation. For instance, if (<x> = A, <y> = B, <z> =

D, <w> = E) fires, the action side of the production in Figure I is executed with the binding A for

variable <x> and binding E for <y>. This results in the fact (path of length 3 from A to E)

being written.

The complexity of the production-match process can be understood by using a directed labeled graph

representation for productions and working memory. Consider the production shown in Figure I-a. This

production encodes a directed labeled graph, where the variables and constants in its conditions are nodes

of the graph and attributes are the edges between the nodes (Figure 2-a). Similarly, the WMEs in Figure

1-b encode another graph (Figure 2-b). Here, symbols in working memory are nodes of the graph and the

attributes are again the edges between the nodes. In general, productions and WMEs can encode arbitrary
directed graphs. The task of generating a single instantiation then reduces to the problem of subgraph
isomorphism - finding a subgraph of the working memory graph that is isomorphic to the production

31n previous work, this form of match was referred to as token match [721; however, the name has been changed to emphasize
what the match produces rather than how it produces it. Likewise the earlier usage of tokenless match has been replaced here by
instantiationless match.



graph - which is a well-known NP-complete problem [27, 49]. The problem becomes even haider if
more than one instantiation is to be computed.

current-position

cornected

<y>
connected

connected C connected ID connected

F
<Z>

connected
connected

connected is connected

current-position A B<W>

(a) (b)

Figure 2: An example production system: (a) graph of the production from Figure I-a,
(b) graph of the working memory from Figure 1-b.

2.2. The Model Production System
To abstract away from some of the idiosyncratic details of Soar, a model production system language

has been developed for use in this investigation. This model is a close enough approximation to Soar's
production system that analysis based on it applies almost directly to Soar. Yet, it is also abstract enough
to simplify the overall analysis and to allow transfer of the analysis other systems. In the remainder of
this article, the model production system is used for any theoretical analysis, and Soar is used for
experimental investigation.

The model production system is based on the following assumptions:
1. Computation of all instantiations: When a production matches working memory, all

possible instantiations of the production with the working memory are computed. Besides
Soar, some other production systems depend on this assumption as well, including
Prodigy [50] (in matching its search control rules), and some set-oriented production
systems from the field of expert-database systems [29, 331. Nearly all implementations of
OPS5 [151 and related systems also make this assumption.4

"4It has recently been pointed out that OPS5 need not compute all instantiations - instead, computation of just the dominant
instantiation can be sufficient 1551. However. there are still cases in which the direct computation of the dominar" instantiation is
sufficiently complex that it is preferable to compute all of the instantiations first and then select the dominant one rather than
trying to compute it directly [6, 7].
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2. Triple-based representation: The production system representation is based on (object
"Aattribute value) triples. For instance, WMEs are of the form (A "connected B), while

conditions of productions are of the form (<x> "connected <y>). In the conditions,
the object field contains variables, the attribute field contains constants, and the value field
may contain variables or constants. Note that it is possible to have different predicate tests
on the value field, e.g., (<a> "length <>5), etc. Triple-based representations. and
their close relatives (such as binary relations), are quite common throughout Al.

3. Pre-bound object field: During the match, a variable in the object field of a condition is
assumed to be pre-bound. That is, a variable in the object field must occur in some previous
condition of the production. Thus, unbound variables can only appear in the value fields of
conditions. (Obviously. the first condition in a production cannot adhere to this constraint.)
For instance, consider the production in Figure I-a. The variables in the object fields of the
second, third and fourth conditions are pre-bound. Unbound variables like <y> in the
second condition can only occur in the value field.

This constraint corresponds to the connectivity heuristic, which is used in ordering 0
conditions of productions to achieve better match efficiency [37, 671. An identical
restriction of a pre-bound object field is also used in the ALL knowledge representation
language 119]. In terms of the graph representation, this constraint implies that the variable
occurring in the identifier field of the first condition acts as a root (or originating point) of
the production graph. For instance, in Figure 1-a, the variable <x> acts as the root of the
production graph.

4. Single match for the first condition: The first condition of a production can onl- match a
single WME. For instance, the first condition in the production in Figure l-a can only
match the WME (A ^.s current-position).

While the first three assumptions play a significant role in our exploration of a polynomial
match bound, this fourth assumption only simplifies our analysis. Since the first condition in 0
a production cannot adhere to the constraint of a pre-bound object field, this constraint
limits the match for the first condition. Eliminating this constraint may only lead to a
slightly higher polynomial bound, e.g., a linear term may become a square term.

In addition to Soar, other systems that meet the constraints of this abstract model include the K

production system [14, 131 -- where unique-attributes have in fact already been applied - and schemas

in the ART production system [36, 3]. However, it is important to note that our results are not strictly

limited in their applicability to systems that conform to the underlying assumptions. For other systems

that don't completely map into this model, it may be feasible to restrict them to do so. For example,

Soar's production system actually arose as a restricted version of OPS5 [39]. Thus, it will be possible to 0
restrict OPS5 to conform to this model. Beyond this, it may also be possible to further abstract this model

so that the main results can be carried over directly without further restriction. For example, Barachini

and Veretenual [9] have mapped unique-attributes on to the PAMELA expert system [8]. Their mapping

works in a domain where WMhEs primarily contain integers as values. It exploits the integer values by

using pre-determined intervals (e.g., -5..5) to partition the set of WMEs matching a condition into smaller

subsets. If each subset contains exactly one WME, then a representation similar to unique-attributes

emerges. In general, the subsets contain more than a single WME, and a more generalized form of

unique-attributes emerges. While this scheme does not guarantee a polynomial bound on the match,

Barachini and Veretenual show that in practice it prevides a good upper bound on the match for

individual productions.
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In addition to the base assumptions about production systems. the model production system also
assumes that, as in Soar, a knowledge compilation mechanism such as explanation-based
learning/chunking [21, 57, 65], is used to learn new rules. Mechanisms of this type compile new rules

0 from the performance traces of existing (old) rules, with the intent of speeding up future performance.

2.3. Modeling Match Algorithms: The K-search Model
The k-search model of production match covers match algorithms that find all possible solutions.

without the aid of heuristics, This includes widely used algorithms such as Rete [25] and its variations [61,
Treat [521, as well as others, such as Tree [131, Scaffolding 1621, Dynamic-join [601, etc. The k-search
model allows analysis of match cost independent of the complexities of the physical machine or match
algorithms typically used in production systems. The model is based on the notion of tokens. Tokens are
partial instantiations of productions indicating what conditions have matched and under what variable
bindings.

Consider the match of the production in Figure I-a with the working memory in Figure 1-b. While
matching the production. tokens will be generated, some of which are: (2 ; <x> = A, <y> = B),
(2; <x> = A, <y> = C) etc. The first number in the token indicates the number of conditions
matched and the other elements indicate the bindings for the variables. Thus, the token (2 ; <x> = A,
<y> = B) shows that the first two condition elements were matched with the bindings A for variable
<x>, and B for variable <y>. An instantiation is then just any token generated as the result of matching
the last condition of a production. Each such instantiation encodes one set of consistent bindings for all

of the variables in a production. All of the algorithm, .ited above generate instantiations as the end result
of the match, so they can be referred to as instantiation-match algorithms.

The tokens generated in the match can be represented in the form of a tree, as shown in Figure 3. Each
arc in this tree represents a token. The tree represents the search conducted by the matcher in order to
match the production. Since this search is done within the productions, i.e., in service of retrieving
information from the system's knowledge base, it is called k-search in order to distinguish it from the
higher level problem solving search that may also be occurring across multiple production firings

Measurements indicate that the time spent in match per token is approximately constant [74, 58, 491.
Therefore, we assume the number of tokens in the k-search tree to be a reasonable estimate of the work
done in performing match. In particular, this simple estimate appears to be sufficient for comparing
combinatorial and non-combinatorial matches for productions5.

The source of combinatorics in production match can now be understood. Combinatorics arises in
production match due to the branching in the k-search tree. This branching arises due to multiple WMEs
that match a single condition of the production. For instance, in Figure 3, the two WMEs (A
^connected B) or (A ^connected C) lead to branching in the k-search tree - nile matching the

5Tokens may not have equal cost across match algorithms (58]. However, the cost difference is a small constant and can be
ignored for the purpose of comparing combinatorial and non-combinatorial match.
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Figure 3: The k-search tree of tokens generated when the production in Figure I-a matches

the working memory in Figure I-b.
second condition, The WMEs matching the fourth condition lead to further branching in the k-search
tree. In a production with multiple conditions, a cascading effect of such branching leads to an
exponential match effort, i.e., a k-search tree with a number of tokens O(#WMEscondiCwnf) (751. This
cascading effect is also referred to as the cross-product effect [30, 311, since it yields the cross-product of
the bindings for the variables6.

Given the representational constraints in the model production system, the WMEs that lead to
branching in the k-search tree can be identified clearly. In particular, in the model production system, an
unbound variable can only occur in the value fields of conditions. Therefore, branching can only occur in
matching a condition of the model production system if there are multiple possible bindings for the value
field. This situation can only occur in the presence of a multi-attribute, i.e., a set of WMEs with identical
object and attribute fields, but with differences in the value field. For example, the following two WMEs
from Figure 1-b form a multi-attribute: (A ^connected B), (A ^connected C). Here,
connected is a multi-attribute of A, with v~thes B, and C. The WMEs (D "connected E) , (D
"connected F) form the second multi-attribute. Matching such multi-attributes leads to branching in
the k-search tree, as shown in Figure 3.

6Two recent efforts have shown how this cross-product effect can be reduced by only computing a single instantiation [55] or
by using a collection-oriented match (based on the work here on instantiationless match) [I]; however, neither approach can
completely eliminate cross products and their combinatorics.
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3. Unique-attributes
The principle behind the unique-attribute representation is to eliminate the branching in the k-search

tcee. With unique-attributes, a condition can match only a single WME. This limits the number of tokens
in the k-search tree to the number of conditions in the production. Thus, the match cost of a production

becomes linear in the number of conditions, ie., the match cost is bounded linearly rather than being
NP-hard. For productions containing variables, this Oconditions) match bound is optimal, since all the
conditions of a production must be examined for match in any event.

For the model production system, eliminating branching implies the elimination of multi-attributes
from working memory (hence the name of the unique-attribute representation). Figure 4 shows the
WMEs from Figure 1 in the unique-attribute representation. Note that the production system without any
representational restrictions will now be referred to as the unrestricted representation.

(A AiS current-position)

(A ,right B)

(A Aup C)

(B Aup D)

(C Aright D)

(D Aup E)

(D Aright F)

Figure 4: An example of working memory with the unique-attribute representation.

The important step involved with the unique-attribute representation is the analysis of: its impact on
performance, how it interacts with learning; what its tradeoffs are; whether it can support performance of
large tasks; and so on. These issues are addressed in detail in [75, 70]. However, in order to illustrate
some of the answers, the following section reproduces the analysis of a simple task, the Grid task, from

[75]. This task is related to the example presented in Figure 1. Besides illustrating the issues in unique-
attributes, this analysis is also useful background for the discussion of the Grid task in instantiationless
match presented in Section 8.1.

3.1. The Grid Task
The Grid task is shown in Figure 5. To simplify some of the following analysis, assume that the grid is

infinite. The problem is to go from point A to point B, a path of length four. This problem is solved first
using the unrestricted representation and then using unique-attributes.

In the unrestricted version, the grid is represented using connected as a multi-attribute of a point on the
grid. Any point Y adjacent to a point X on the grid is represented as: (X Aconnected Y). The state
of the problem solver is its position on the Grid, which is encoded as: (A "jS current-state).
There is only a single operator: move. If the current position is at point x, then for each point y connected
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Figure 5: The Grid task.

to point x, the operator move will be instantiated. The problem-solver will solve the problem perhaps

using some heuristics, or guidance from an outside teacher [281, generating a k-search tree of tokens as
shown in Figure 6-a. This process generates 16 tokens, with four tokens per step generated from the four
options available to the problem solver at each point on the grid. The learned rule formed after solving the
task is shown in Figure 6-b. The rule says that if the goal is to reach a point <d>, and if the current
position is point <x>, and if there is a path of length four between them, then prefer the instantiated move

operator along that path. (The prefer action indicates a preference for a path from <x> to <y> over all
othei paths.) This rule does not consider the points along which the path goes or the direction the path
takes, The rule will therefore transfer to all pairs of points with a path length of four between them.

Figure 6-c shows the k-search tree formed in matching the rule. For the sake of simplicity in the
analysis, the first and last conditions on the rule are not considered. (Considering these conditions does
not change the results in any significant way.) Here, each condition has multiplied the number of tokens
by four, which is the number of points connected to any given point. Since there are four conditions in
the rule (for a path of length four), the total number of tokens is (41 + 42 + 43 + 44). Thus, for a path
length of p, the cost will be XP-t 4 k.

(chunk: :multi-attr

A (<x> ^is current-state)

(<x> ^connected <y>]

(<Y> ^connected <z>)

(<z> ^connected <w>)

(<w> ^connected <d>)

(<d> ^is desired) B.

(prefer path <x> ^to <y>))
B

(a) (b) (W)

Figure 6: The Grid task in the unrestricted representation: (a) the k-search tree for the entire
task consisting of four problem solving steps; (b) the learned rule (the prefer

action indicates a preference for a path from <x> to <y> over all other paths);
(c) the k-search tree formed in matching the learned rule.
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In the unique-attribute version, each location points to its four adjacent locations using specific unique-

attributes: up, down, left, and right. Instead of one move operator, there are four different operators,

move-up, move-left, move-right, and move-down. The problem solver again moves from A to B exactly as

in 6-a, generating an identical k-search tree of 16 tokens as shown in Figure 7-a. However, the learned

rule formed in this process (Figure 7-b) is different. It says that if the goal is to move to point <d> from

point <x> and if the connection between the two points is through the specific relation (up-right-up-right)

described, then move up one step. The k-search tree formed is shown in Figure 7-c. There are only four
tokens per step formed in this case. The learned rule is much cheaper than the rule in the unrestricted

case. However, the rule will transfer only if the two points are connected in a specific manner

up-right-up-right in this case, as opposed to any arbitrary connection of length four in the earlier case.

(Chunk: :Unique-attr

(<x> ^is current-state)

i<x> ^up-connected <y>)

(<y> -right-connected <z>)

0(<z> ^up-connected <w>)N

(<w> -right-connected <d>)
a

(<d> ^is desired)

(prefer path <x> ^to <y>))

(a) (b) (W)

Figure 7: The Grid task with unique-attributes: (a) the k-search tree for the entire task
consisting of four problem solving steps; (b) the chunk formed (the prefer action

indicates a preference for a path from <x> to <y> over all other paths); and (c) the
k-search tree formed in matching the learned rule.

Table I summarizes the cost and generality of the two representations. The match cost is measured in
tokens. The generality is measured in terms of the number of transfers in an nxn grid, i.e., the number of

source-destination pairs to which the learned rule can transfer (or apply). The length of the path traversed

in the grid is assumed to be p.

Representation Match cost per Generality in Number of learned Match cost with
used rule number of transfers rules for same all rules for same

level of generality level of generality

Unrestricted (4P+' - 4)/3 n2 *(p+1) 2  I (4P+ - 4)/3

Unique-attributes p n2  (p+ 1)2  (p+!) 2 *p

Table 1: The cost and generality of the unrestricted and unique-attribute representations for
the Grid task. Here n is the number of nodes in the grid and p is the path length.

This example illustrates some of the tradeoffs with unique-attributes. Consider the total match cost of

the two systems after they have both learned enough rules to cover all paths of length p (this requires only

one rule for the unrestricted representation, but (p + 1)2 rules for unique-attributes). As expected, the cost
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of the match in the unrestricted representation is exponential in the path length p. However, the cost of

match with unique-attributes is a small polynomial. This reduction in match cost, despite the equivalent

level of generality, comes about because the unrestricted system computes all possible paths of length p
from the start point to the destination point. However, the action side only requires information about the

first step in a path that leads to the destination point. If two paths share the first step, then only one of

them should really be computed. Thus, much of the computation in the unrestricted system is
unnecessary or extra. The unique-attribute system avoids this unnecessary k-search. A single rule in

unique-attributes computes one path to one destination; and different rules cover the paths to different
destinations. The unique-attribute system is thus able to reduce its k-search to a small polynomial.

In many situations (especially those involving expensive learned rules), the unrestricted representation
causes a large amount of such unnecessary k-search. By getting rid of this unnecessary k-search, the

unique-attribute system can provide a big performance improvement. Additional performance

improvements can also be obtained by using the more efficient implementation technology allowed by the

unique-attribute representation, e.g., for Soar systems, the Uni-Rete matcher in unique-attributes can

provide a more than 10-fold speedup over the Rete matcher employed in the unrestricted
representation [73]. In some situations, the unrestricted representation does not engage in unnecessary

k-search. In such situations, the performance gains in unique-attributes are only in terms of the more

efficient implementation technology.

The Grid task also illustrates the price paid by unique-attributes, in terms of loss of expressive power,

for obtaining this performance improvement. In the unrestricted system, multi-attributes allow a single

condition in a production to successfully match an entire set of WMEs. For instance, a single condition
can successfully match the multi-attribute: (A ^connected B) and (A ^connected C). Here,

the multi-attribute connected essentially represents an unstructured set of objects (B, C} that are
connected to point A. However, with unique-attributes, all such sets have to be represented so that a

single condition can successfully match only a single WME. This can be achieved by structuring the set

of objects. In Figure 4, the set of objects B and C is structured in a task-specific manner by introducing a
different attribute for each object. However, more task-independent structures, such as lists and trees, are

also possible. For instance, (A ^first-connected B) (B ^next C) (C ^next nil) is a
list structure for the two objects B and C. Since the type of set structure employed can impact problem-

solving performance, introducing such structured sets appropriately is not always easy. For a further

discussion on the issues involved in structuring sets, see [12, 70].

Finally, the Grid task illustrates the loss in coverage or generality of productions engendered by unique-

attributes. That is, a larger number of unique-attribute productions may be required to gain the same
coverage as a single unrestricted production. In the Grid task, (p + 1)2 more rules have to be learned with

the unique-attribute representation. This loss of generality results from the fact that, with unique-

attributes, each production engages in a lower amount of k-search. To compensate for this weakened

k-search, a larger number of unique-attribute productions may be required. An alternative way of

compensating is to actually perform this search across multiple recognize-act cycles. Consider a multi-

attribute set that is replaced by a list-structured unique-attribute, as illustrated in the previous paragraph.

4
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The system may actually process this list in multiple recognize-act cycles, by looping over the list, and

examining one element per cycle. The advantages and disadvantages of these two approaches to

compensating for weakened k-search, and their interaction with learning are discussed in detail in (751.
SlThe key point to note here is that these techniques result in additional encoding effort in some tasks. This

encoding difficulty, along with the concomitant loss in generality, provides the motivation to search for

alternative representations.

4. Evaluating Alternative Approaches
An important question arises as we search for alternatives to the unique-attribute representation: How

should we select the best among these alternative representation schemes? Ideally, a representation

scheme that imposes the least restriction on expressiveness and engages in the best tradeoff would be the

best one. However, as shown in this article, different representation schemes restrict the production

system language in different ways and engage in qualitatively different tradeoffs. Given these diverse

tradeoffs, the concepts of the least restrictive approach and the best tradeoff are not precisely defined.

Thus, a complex scheme of evaluation becomes necessary to select the best among the different

representation schemes. We have devised a method that evaluates the schemes on two levels: absolute

and relative. The absolute level evaluates if a representation scheme meets some minimum requirements

of acceptability. Any scheme must meet these requirements. The relative level compares different

acceptable schemes to select the better one.

Evaluation at the absolute level is performed using a set of absolute requirements. These requirements
are described below:

1. Polynomial bound on match complexity: Any given representation scheme must achieve a
polynomial bound on match complexity. This requirement is primarily motivated by the
issue of real-time performance, from Section 1. However, this bound is also expected to
alleviate our concern regarding parallel implementations and the modeling of human
cognition.

2. Closure under learning: If the productions and the working memory meet the
expressiveness restrictions imposed by a given scheme before learning, the learned
productions should also meet the restrictions. In Soar, this requirement implies that chunks
should not violate the expressiveness restrictions of a given approach. If chunking violates
the restrictions and chunks require a combinatorial match, clearly that defeats the purpose of
this exercise. (Small modifications to the learning mechanism to meet this requirement are
admissible.) In addition to the issues that motivated the first absolute requirement, the key
issue motivating this requirement is the utility issue in machine learning.

3. Correctness of match: Any given method of restricting expressiveness must not cause
match to provide incorrect results.

4. Expressible as a local syntactic restriction: For a restriction to be usable by programmers, it
must be obvious when s/he is about to violate it; for example, the unique-attributes
restriction is violated whenever an attribute in working memory has more than one value. If
a violation can only be detected via some complex algorithm, the restriction won't be
operational.

The relative level of evaluation compares the different approaches for restricting expressiveness using
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the following relative requirements:
I. Relative expressive adequacy: This term refers to the investigations of how easy/difficult it

is to encode various tasks in a given representation. Schemes that allow easier encoding are
preferred. This is an informal requirement: it is analogous to evaluating the ease of
programming in different programming languages.

2. Relative Efficiency: Within the space of representations with a polynomially bounded
match, schemes with smaller polynomial bounds are preferred.

3. Learning generality: This requirement is based on the notion of the number of rules
required to cover a space of problems. Consider two different situations. In the first,
suppose a small number (N1) of productions are learned for covering a space of problems.
In the second, suppose N2 number of productions (greater than N1) have to be learned to
cover the same space of problems. Then the productions learned in the first situation are
more general than the productions learned in the second situation. Schemes that provide
higher learning generality are preferred.

4. Completeness: If learned rules only affect the speed of performance, there is no significant
problem with not learning at some occasions when learning is possible. However, if learned
rules can also affect correctness - that is, they represent new knowledge - failing to learn
a rule that could have been learned will degrade more than just efficiency. Thus, schemes
that learn whenever new information is available are preferable to those that are more
selective.

5. Uniformity: Representations that do not introduce arbitrary divisions in productions or
working memory are preferred. For instance, a representation scheme that explicitly labels
and separates multi-attribute WMEs from unique-attribute WMEs violates the principle of
uniformity.

The uniformity requirement prefers simplicity in the representation scheme. Though this is clearly

important when building integrated architectures like Soar, it still has a lower priority than the other

relative requirements, and so may be sacrificed in service of them. Beyond this, it is difficult to prioritize

the other relative requirements. This leads to difficulties in comparing different representation schemes in

some situations. For instance, how can two representation schemes be compared when one has better

efficiency but lower learning generality than the other? As seen later, despite such difficulties, the

requirements outlined above are a substantial help in comparing different representation schemes.

As an example of the use of these requirements, consider a combination of unique- and multi-attributes

that attempts to introduce limited amounts of multi-attributes to gain expressibility without sacrificing •

efficiency. First, suppose this representation adheres to the principle of uniformity and does not explicitly

separate out unique- and multi-attributes from each other. Then, it has no way of controlling the number

of multi-attributes matching a production - it is exactly like the unrestricted system. The match cost of

productions becomes unpredictable and the polynomial match bound requirement is violated.

Now, suppose the violation of the principle of uniformity is accepted: the system explicitly labels and

separates unique- and multi-attributes. It can then bound the number of multi-attribute-matching

conditions in any single production - thus controlling the match cost. However, it is possible for such a

system to learn rules that are expensive to match, i.e., to learn rules where the number of multi-attribute-

matching conditions exceeds the specified bound. This violates the requirement of closure under learning.
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If we suppose even further that it is possible to maintain closure under chunking by bounding the total
number of conditions (and thus the total number of multi-attribute-matching conditions) - for example,

by excluding learning over recursive constructs [231 - then relative requirements come to the fore. In
particular, though the computational cost may be polynomially bounded, it may be a large enough
polynomial so as to make the approach quite unattractive. The approach may also suffer significantly
along the completeness dimension, as it is quite selective in the rules that it learns.

Thus, none of these simple unique- and multi-attribute combinations generate attractive alternatives.

5. The Space of Local Syntactic Restrictions
The unique-attribute representation restricts the triple-based representation - (object

"attribute value) - in just one specific way. However, there is a large range of possible
restrictions on the triple representation, and any of these could potentially provide an alternative
representation that meets the absolute requirements, but has better expressivity and generality than
unique-attributes. In this section we investigate this space of local restrictions on the set of triples in
working memory (or equivalently, on the graph structure that they form).

Consider, for instance, a restriction that disallows multiple WMEs having identical value fields,

irrespective of their objects and attributes. In terms of the directed labeled graph representations of
production and working memory (see Section 2.2), this restriction disallows multiple directed edges from
entering (i.e., terminating in) a single node; that is, it forces all graphs to be tree-structured. Since
isomorphism between tree-structured graphs can be performed in polynomial time [27], this restriction
may possibly provide a polynomial bound on production match. Thus, a tree-structured restriction may
potentially provide a good alternative to unique-attributes.

A second restriction that might also provide useful alternative(s) to unique-attributes, is motivated by
considerations of symmetry. For instance, given the directed graph representation of productions and
working memory, restrictions applied to the edges entering a node could also be symmetrically applied to

edges leaving (or originating from) a node. When applied to the tree-structured graph mentioned above,
this consideration of symmetry yields a representation that disallows multiple edges leaving any of the
nodes. This may also lead to a representation with a non-combinatorial match. A similar consideration of
symmetry with respect to the unique-attribute representation leads to the unique-object representation. In
particular, unique-attributes eliminate WMEs which have identical object and attribute fields, but have
different value fields. A symmetrical restriction would eliminate WMEs which have identical value and
attribute fields, but have different object fields. Thus, this restriction would disallow having the pair of
*WMEs (A "connected C) and (B "connected C), because they are identical in their value and
attribute fields, but have two different entries in the object field: A and B. Interestingly, when the Grid
task is represented with unique-attributes (as in Section 3.1), it automatically adheres to the unique-
objects constraint. Thus, for the Grid task, the unique-object representation provides the same benefits as
the unique-attribute representation. Thus, symmetrical restrictions may potentially also provide us
alternatives to unique-attributes.



What is needed most here is a ,ystematic way of generating these alternatives, plus any other such
restrictions that may also be worth investigating. The approach we have taken is to formulate a set of
independent dimensions with respect to the directed labeled graph representation of working memory.
Figure 8 reproduces a portion of this graph representation from Figure 2. Consider a node in the working
memory graph and the directed labeled edges leaving the node as shown in Figure 8-b. The labels on the
edges can be considered as a function F of the edges. Figure 9 shows this function F. It maps an edge to
its corresponding label. Since each WME has an attribute associated with it, F is defined for everN edge
leaving a node. Note that F is a local function, so that a new F. with its own set of edges and labels, is
defined for every node in the graph. F is a function, and not a general relation, because a single edge
cannot map onto multiple labels - that would imply more than one attribute in a single WME. However.
F can map multiple edges onto a single label, thus denoting a multi-attribute. For instance, in Figure 9,
the two edges mapped onto a single label yield the multi-attribute: (A ^connected B) (A
"connected C).

A is current-position
•A "is current-positiorn• /•

(A ^connected B) conne nnected

(A Aconncctcd C)
B C

(a) (b)

Figure 8: A few WMEs from Figure I-b and the corresponding graph.

curTent-position

................................................Is

A
...... ......... ............................. .. *-' connected
.. . .. . . .. . . ...........................

...... ... ... e.te

C I________

Set of edges leaving Set of lables
node A

Figure 9: Labels on edges leaving a node as a function F of the set of edges.

Function F helps in systematically generating different working-memory representations. This is
achieved by using two different dimensions to impose restrictions on F. A value along a specific
dimension gives a specific restriction on F. This in turn yields a specific restriction on the working
memory graph, and thus a specific working-memory representation. The two dimensions are motivated
from basic set-theoretic considerations about F: (i) the type of the function F, i.e., whether it is one-to-
one or many-to-one; and (ii) the cardinality of the range set, i.e., the cardinality of the set of labels. Other
such dimensions may exist as well; however, discovering them remains an interesting issue for future



work.

In more detail, the two dimensions, and the values along them. are:

1 The type of F: We focus on two values along this dimension: one-to-one (denoted as I- -I
and many-to-one or unrestricted (denoted as *- I ). If F is of type I - I. then it forces a unique
label per edge leaving a node. This is shown in Figure 10. This I-I restriction on F
generates the unique-attribute representation, since no two edges leaving a node can have
the same attribute. If F is of type *- I, then it allows multi-attributes.

currcnt-position

.......................... .............................................. is

A . ................................... . ......... right

B

................................................... ............ ......... up

Set of edges leaving Set of labels
node A

Figure 10: Restricting the function F to be one-one.

2. Cardinalitv of the set of labels: We focus on two values along this dimension: I and
unrestricted (*). A cardinality of I forces the same label on every edge leaving a node, as
shown in Figure I1.

current-position

.............................................................

............................ I............. ...................... .... ::.. connected
B . .......................... .. . . . . . . . . . . .... . . .

S.............

C I_ __ _ __I_ _

Set of edges leaving Set of lables
node A

Figure 11: Restricting the cardinality of the set of labels.

Given the earlier discussion regarding symmetry of restrictions, a function G can be defined that is

symmetrical to F. The function G applies to edges entering a node. The corresponding two dimensions of

restrictions - the type of the function and the cardinality of the set of labels - can also be defined for

the function G. Thus, four dimensions of restrictions on the working memory graphs are obtained, two

for edges leaving a node, and two for edges entering a node. These dimensions, along with the values

along them, are shown below:
1. Type ofF (for edges leaving a node): I-I or *-1

2. Cardinality of the set of labels (for edges leaving a node): I or .

7Since the cardinality of the set of labels is considered as a dimension. the cardinality of the set of edges could also serve as a
dimension. However. as discussed below, the two values of interest along this dimension are I and unrestricted. These values
can be derived from values along the other dimensions. i.e., the cardinality of the set of edges is not an independent dimension for
the two values of interest.



3. Type of G (for edges entering a node): I - I or *- 1.

4. Cardinality of the set of labels (for edges entering a node): I org.

Figure 12 shows the four dimensions in a tabular format. To lay out these four dimensions in two

dimensions, the dimensions for the edges leaving a node are paired. Similarly, the dimensions for edges
entering a node are paired. The figure shows that different combinations of values along these dimensions
identify different working memory representations. Note that to illustrate the symmetry in the
combination of values, the first row and the first column are repeated.

Our exclusive focus on the values of(1, *) and (I-1, *-1 ) along the four dimensions. as opposed to say
(2. *) or (2-1, *-I ). is an interesting issue. As discussed below, the present choice of values covers all the
representations discussed earlier, including unique-attributes, unique-objects, tree and the unrestricted
representation. Furthermore, there is a symmetry in the set of values along the four dimensions. Thus, the
choice of values along the four dimensions appears to be appropriate. However, it remains unclear
whether other values might be useful.

In the unrestricted representation. there are no restrictions on the working memory graph. Thus, for
edges leaving a node. the type of F is *- I, and the cardinality of the set of labels is *. Similarly, for edges
entering a node, the type of G is *-I, and the cardinality of the set of labels is *. Therefore, the
unrestricted working memory occupies the square in the center of the table, where the co-ordinates are [*,
*1, 1-11. For unique-attributes, the restriction is only on the type of F - it is restricted to 1-1. Its
other dimensions are unrestricted, and thus the co-ordinates for unique-attributes are: [*, I -1, * *- 11.

In Figure 12, the square marked as Tree indicates the representation discussed earlier - it restricts the
working memory and production graphs to tree structures. In particular, it restricts the dimensions for

edges entering a node: limiting the type of G to 1-I and the cardinality of the set of labels (for edges
entering a node) to I. leading to the tree restriction. Its symmetrical counterpart, which restricts F to I-1
and the cardinality of the set of labels (for edges leaving a node) to 1, is also covered in the table. The
symmetrical counterpart of unique-attributes - unique-objects - is also covered in the table. The
unique-object representation restricts the type of G to 1-1, but does not restrict any other dimension. It

forces a unique label per edge entering a node, i.e., it forces the object field to be unique given identical
attribute and value fields.

Thus, all the representations discussed earlier are in this table. Furthermore, some additional
representations have been generated, including some that combine the restrictions from the different
representations. For instance, the square [*, 1-1, *, 1-1] combines the restrictions from the unique-
attributes and unique-objects representations.

This tabular organization enables drawing a variety of conclusions about these representations. First,
information can be derived about how the representations relate to each other in terms of amount of
restrictiveness. The table shows that the unrestricted representation is the least restrictive one, given this
set of dimensions. It occupies the center square in the table. The other representations form a restriction
lattice - the arrows along the side of the table show increasing restrictiveness. The most restrictive
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Figure 12: Dimensions of alternative representations.

working memory representation is the one with the co-ordinates [I. 1-1, 1, 1-I. The table also shows that

the Tree representation is more restrictive than unique-objects; but that unique-attributes are unrelated in

terms of restrictions to either the Tree or the unique-object representat')n.

Second, the table shows that the Tree representation does not hold up as an alternative to unique-

attributes. In particular, as modeled in the model production system formulation, this representation

allows F to be *-1, i.e., it allows multi-attributes. As discussed earlier, match in the presence of multi-
attributes is combinatoric - at least with instantiation match - so the tree representation violates the
absolute requirement of a non-combinatorial match. This conclusion, which is clearly contrary to the
earlier intuition, holds even if an optimized polynomial-time tree-matching algorithm is used. The reason
is that as formulated here, the tree-representation allows the generation of a combinatorial number of
instantiations from the match of a single production. The unique-object representation is also seen to
allow F to be *-I, i.e., it also allows multi-attributes, and hence does not provide a non-combinatorial
match bound. In fact, all the working memory representations in the third and fourth columns allow
multi-attributes (they are labeled [Multi-attr]). These representations can now all be ruled out as



alternatives to unique-attributes.

The earlier observation about increasing restrictiveness also allows comparing unique-attributes (in the
second column) with all the other representations in the first two columns of the table. This comparison

can be performed using the relative requirements defined earlier. All the representation in the First two
columns are more restrictive than unique-attributes. The representations that are more restrictive than
unique-attributes do not reduce the match bound - since all the conditions of a production must be
examined for match, the G(conditions) bound in unique-attributes is optimal to begin with. Furthermore.
these representations are guaranteed not to be better than unique-attributes along the expressive adequacy
or learning generality requirements, since they are more restrictive. i.e.. unique-attributes subsume these
representations.

Thus, the final conclusion that can be drawn from the table is that unique-attributes provide :Me best
possible representation within the four dimensions investigated. That is, within this space of local

syntactic modifications, unique-attributes provide the best fit to all the absolute and relative requirements.
All other representations are either combinatoric, so that they violate the absolute requirement of a
polynomial match bound, or they are more restrictive than unique-attributes.

6. A Space of Bounded K-Search: Instantiationless Match
There are many conceivable ways to restrict the structure of the k-search trees to guarantee a size that is

polynomial in both the number of production conditions and the size of working memory. Here we focus
on just one such approach, based on instantiationless match. •

The standard instantiation match produces complete instantiations as the end result of the match.
Consider the production system in Figure 1. The end result of the match is four instantiations: (<x> =
A, <y> = B, <z> = D, <w> = E), (<x> = A, <y> = B, <z> = D, <w> = F), (<x>

= A, <y> = C, <z> = D, <w> = E), and (<x> = A, <y> = C, <z> = D, <w> = •

F). Each instantiation indicates what variable bindings go together, e.g., in the first instantiation, the
binding A for variable <x>, B for variable <y>, D for variable <z>, and E for variable <w> go together.

Instantiationless match is a new approach that weakens the requirements on what the match is to
produce. Instead of generating separate instantiations, this match only recqiires that each variable obtain a
set of bindings. If the production in Figure I-a is matched with the working memory from Figure 1-b
using instantiationless match, the end result will be a set of bindings for the variables as follows:

<x> = A; <y> = B, C; <z> = D; <w> = E,F.

Tht matcher guarantees that these bindings are consistent with each other. Here, consistency implies
that the variables obtain the same bindings as they would have obtained in the instantiations generated via
instantiation match. For instance, there are two bindings - B and C - for the variable <y> in the two
instantiations generated with instantiation match for the production. Therefore, in instantiationless match.
variable <y> will obtain bindings B and C. •

As mentioned in Section 1, the motivation behind instantiationless match is its ability to restrict the



structure ofl k-,earch trees. and thus possibl\ bound match cost. Consider the example from Fi-gure 1. the

variables ::>, -y. <zy> and ,w> had one or two bindings each, generatine I x , i 2 =i 4

instantiation,. But. suppose all of these variables had N iN >> I) bindings each, then instantiation match

will generate iV x N x N x V=) N4 instantiations. However, instantiationless match ", ill onl\, require

each ,ariable to obtain its set of N bindin-. resulting in the creation of only (,V -N .V -N -t- N =-j 4N
bindings omerall- This rnaý not translate into a reduction of match cost to 4N. given the requirement of

consistenc% ot binding,e but. at least. the burden of generating N4 instantiations is eliminated. Thus.

mintantiationiess match co,'d allow the reduction of cross-products and thus potentially replace the

multiplicati~e process in instantiation match h, an additive process. In terms of the structure of the

k-search tree. instantiationless match alleviates the cascading (or cross-product) effect in the k-search tree

- multiple W'IEs may match a condition, but their branching effect is avoided.

While this ,hift in the nature of match f'rom instantiation match to instantiationless match appears,

promising. it ,till needs to be evaluated with respect to the overall objective. Specifically, (i) whether a

production s'stem can function without instantiations, (ii) whether this shift guarantees a non-
combinaterial match bound, and (iii) what tradeoffs it implies. The first two of these issues are addressed

in the remainder of this section. The third issue is then covered in the next section, but only with respect

to a particular combination of instantiationless match and a tree-structured restriction on production
conditions.

6.1. Functioning with Instantiationless Match

Instantiations are unnecessary in a production system as long as there is no change in either the (RHS)

actions produced or the times at which they are produced. This is what instantiationless match aims to

achieve. It simply changes the computation of the bindings for the variables in the actions. As discussed
in Section 2.2. with instantiation match. bindings for actions are obtained from individual instantiations.

With instantiationless match, bindings are obtained directly from the bindings for individual variables. In

Figure I-a. the actions produced with instantiationless match would be the same as the actions produced
with instantiation match -the variables <x> and <w> obtain identical bindings in both cases.

However. in general. producing id'-ntical actions with instantiationless match may appear unworkable.

This is mainly due to the problem of binding confusion on the action side. Figure 13 illustrates this
problem. Figure 13-a shows a production that adds the relation Adist-2 between the bindings of <ci>

and <c3>. Given the working memory in 13-b, instantiationless match results in two bindings each for

the variables <ci> and <c3>, as shown in 13-c. Therefore, this production firing will result in adding a

"^dist-2 attribute between the following pairs of symbols: (Cl, C3), (Cl, C6), (C4, C3). and

(C4, C6). In contrast, with instantiation match, two instantiations - (<s> = Si, <cl> = Cl,

<c2> = C2, <c3> = C3),and (<s> = S1, <cl> = C4, <c2> = C5, <c3> = C6) -

would be generated. When they fire, the attribute "dist-2 would be added only between (Cl, C3),

and (C4, C6).

A closer inspection reveals tilat binding confusion is not quite as problematical as it may at first seem.
First, only a few of the variables from the condition side actually appear on the action side, i.e., the action
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Figure 13: The problems of binding confusion in instantiationless match: (a) a production,
(b) WMEs that match the production, (c) the result of instantiationless match.

side requires only a small subset of variable bindings. Second, binding confusion can arise only in the

presence of multiple bindings for multiple of the variables involved. For instance, in Figure 13, both

variables <cl> and <c3> have multiple bindings. If only one of the variables had multiple bindings, then

only two actions would be possible, and the result of instantiation and instantiationless match would be

identical. Indeed, in a small set of tasks described later, variables on the action side are seen to have

single bindings, and thus binding confusion is not an issue.

While this approach has proven adequate for the tasks investigated here, it clearly isn't sufficient for

guaranteeing correct performance across arbitrary tasks. One possibility for providing such a guarantee is

a hybrid system that keeps instantiation information just with respect to those variables that occur in both

the conditions and actions. If the number of variables that could be so shared was then bounded (e.g., to

2), then it may be possible to tractably eliminate binding confusion without seriously impacting

expressibility. A second possibility is to order the bindings for the variables in some pre-determined way

[541. For instance, in Figure 13-c, a pre-determined ordering on the bindings for variables could be

exploited to put C1 (the first binding for <cl>) in correspondence with C3 (the first binding for <c3>),

and analogously C2 in correspondence with C4. This would allow production firings to add the attribute

"-dist-2 only between (Cl,C3), and (C2,C4). Essentially, this ordering maintains some of the

instantiation information. A third possibility is to extend the semantics of the production system so that it

can handle sets in the object and value fields of WMEs. If this could be done, and yield a sufficiently

functional system, then binding confusion could simply be ignored, as the use of a variable in an action

could simply mean that that variable should be instantiated with the the set of possible bindings, rather

than with individuals values from the set. A fourth possibility that has been suggested is to replace the

use of equality tests in the conditions of productions with an equality testing function on the action side.

However, this turns out to not help at all - if there are multiple bindings for variables, then, given the

absence of instantiations, the system cannot pinpoint which pairs of bindings should be associated with

each other, and therefore which pairs should be tested for equality. A more detailed investigation of this

space of possible general solutions to the binding confusion problem is left for future work.



A ,econd apparent problem with instantiationless match arises from the conflict-re-iolutton phase

embedded in some production systems. e.g.. OPS5 1151. In OPS5. conflict resolution immediatels follows

match. It arbitrates among different production instantiatbons to select one, which is ,uhsequenil% fired. A

variety of strategies for conflict-resolution are possible. but at least some of these cannot function without

instantiations. However, the key point to note here is that conflict-resolution strategies are often simple
heuristics that substitute for more principled reasoning [801, and they have been criticized on a variety of

counts - from causing maintainability problems [801 to being inadequate as the basis for integrated Al
architectures [591. In fact. systems such as Soar (and Prodigy (501) have already abandoned OPS5-style

conflict resolution in favor of more principled reasoning. and thus do not require specific production
instantiations. However, for systems that do depend on instantiations. the heuristics in the conflict-

resolution phase would need to be modified so as to suit instantiationless match.

Thus. instantiationless match is not as problematical as it may appear at first. Some difficulties remain

to be resolved - binding contusion in particular-- but they do not appear to be insurmountable.

6.2. The Complexity of Instantiationless Match
On the second issue, unfortunately, instantiationless match by itself is unable to guarantee a non-

combinatorial match bound. One way to understand why this is true is to map instantiationless match
onto constraint-satisfaction problems. This mapping allows tapping into a rich vein of existing results.
Some of these results bear directly on this issue of the combinatoric nature of instantiationless match.

However, other results go beyond this to reveal additional restrictions that may yield polynomial match

algorithms when combined with instantiationless match, as well as algorithms for performing these

matches8.

A constraint-satisfaction problem is defined as follows: given a set of N variables each with an
associated domain and a set of binary constraining relations between the variables 9. find all possible

N-tuples such that each N-tuple is an instantiation of the N variables satisfying the constraining

relations [45]. This problem can be represented as a constraint graph where the variables are represented
by nodes and the constraints by arcs. Each constraint specifies the set of permitted pairs of values for the

two variables involved. Thus, if Xi and X are two variables with domains Di and D respectively, then

the constraint Rii between Xi and Xj is a subset of the cartesian product of their domains, i.e.,

RI) g Di x D)

The match for a single production maps on to the constraint-satisfaction problem as follows. The
variables in the conditions form the variables in the constraint-satisfaction problem. For example, the

production in Figure I-a can be represented as the constraint graph in Figure 14 (this is same as the

production graph in Figure 2-a). The symbols occupying the identifier and value fields of WMEs form

the domains of the variables. A condition containing two variables forms an arc between the two

80Others have also started to investigate constraint-satisfaction algorithms in the context of production match 1631, but not
specifically to bound the cost of match.

9[n general. the constraints need not be limited to being binary, however, in this article, only binary constraints are considered.



variables in the constraint graph. The condition specifies (or selects) the WMEs with its attribute. so that
each WME represents a permitted pair of values for the variables linked by the condition. Thus. the
condition, and the WMEs it selects, form a constraint between the two variables linked by the condition.
Figure 15 shows the conditions in the production with the permitted pairs of values for the ,arwbh~le,
linked by the conditions, given the working memory in Figure I-b.0 0 Resolving the conflict betwkeen the
possible values for variables and finding all possible solutions of the constraint satisfaction problem
formed by a production will result in finding all possible instantiations of the production using
instantiation match.

<x>

connected is

n <Y current-position

connected

<Z>
connected

Figure 14: Viewing a production as a constraint graph.

<x>=A.B.C.D <y> = A. B.C. D <z> = A. B.C. D <x> A

connected connected connected is

<y> = B, C, D. E. F <z> = B. C. D. E, F <w> = B, C, D, E. F current-position

Figure 15: Permitted pairs of values for conditions, given the WMEs from Figure 1-b

In contrast with production-match algorithms, which check the consistency between bindings while
forming tokens and instantiations, many constraint satisfaction algorithms distinguish the two phases of
obtaining consistent bindings and forming instantiations [201. Once consistent bindings are obtained,
individual instantiations from the bindings are obtained separately. Instantiationless match computes an

10For a negated condition of the form - (<x> ^ater <y>) ,the domains of <x> and <y> consist of the symbols in the
identifier and value fields of all the WMEs except those of the form (A ^attr B).
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identical consistent set of bindings, without forming any instantiations. In the example from Figure 14,

instantiationless match achieves the bindings <x> = A; <y> = B,C <z> = D; <w> = E, F

Thus, there is a mapping between instantiationless match and obtaining consistent bindings in

constraint satisfaction problems. This mapping directly provides a number of results in terms of
implementations, algorithms, and complexity analyses. Given a focus on polynomially bounded match.
the complexity results in the curistraiit satisfaction literature are uf particular interest. The basi,e eailt
here is that obtaining consistent bindings for the variables in an unrestricted constraint graph is
NP-hard [201. This result implies that if the production graph is not restricted, then instantiationless
match remains NP-hard.

Results from the constraint satisfaction literature also show that by restricting a constraint graph in
specific ways. it is possible to obtain consistent bindings for its variables in polynomial time. In terms of
instantiationless match, these results indicate that by restricting the production graph in different ways,
different non-combinatorial bounds on instantiationless match can be obtained. For instance, the graph in
Figure 14 is a tree. It is possible to obtain consistent bindings for its variables in polynomial time using

the arc-consistency algorithm [20]. A single instantiation can then be generated from these bindings in
time linear in the number of variables [261. Generating this single instantiation requires collecting the
bindings for variables in a particular pre-determined order. However, generating all instantiations could
be a combinatoric process, since the variable bindings could result in a combinatorial number of

instantiations.

Thus, by restricting the match to be instantiationless, and by restricting the production graph in

different ways, it is possible to obtain different polynomial bounds on production match.

7. Instantiationless Match with Tree-structured Productions
* In the previous section it was shown that a combination of instantiationless match and tree-structured

production graphs - even with no restrictions on the structure of working memory - can yield a
polynomial bound on match when the arc-consistency algorithm is exploited. In this section, this result is

developed in more detail as the basis for a serious alternative to unique-attributes, called the
instantiationless-tree (or 1-Tree, for short) approach11.

In constraint-satisfaction problems, arc-consistency is a form of local consistency. It does not solve the
general constraint-satisfaction problem. A constraint graph is arc-consistent if each of its arcs is arc-
consistent. Suppose Xi and Xj are two nodes of the constraint graph with domains Di and Dj respectively,
and an arc Rii between Xi and X j. This arc is arc-consistent iff for any value x e Di there is a value
y e D. such that R. (x, y) [44]. Here Rij(x, y) stands for the assertion that (x, y) is permitted by the
explicit constraint R i. If Rii is a directed arc then arc-consistency requires the following in addition: if
there is a value y e D. then there is a value x e Di such that Rij(x, y) [201.

'iln [721. the computation in the 1-tree approach was shown'to be equivalent to the computation in the NETL parallel

marker-passing system 1241.



In terms of the mapping. the following has to be satisfied for a condition (<x> ^A! ,-y>) to be

arc-consistent: If there is a binding X for the variable <x> in its identifier field, then there is a binding Y

for the variable <y> in its value field, such that there exists a WME with attribute Al, identifier x and

value Y. iLe., (X ^A1 Y) . Since conditions in a production graph form directed arcs, the following t•

required in addition: if there is a binding Y for the variable <y> in its value field, then there exists 11

binding X for the variable <x> in its identifier field such that there exists a WME (X ^A1 Y. A

production is arc-consistent if each of its conditions is arc-consistent.

An important result stated in [20] is that arc-consistency achieves consistent bindings for tree-structured

constraint graphs, even in the absence of any restrictions on domains of variables (Theorem 2.4). Given

the mapping of constraint graphs on to production structure, the following corollary can be derived:

The I-Tree Corollary: If a production is tree structured, then arc-consistency provides consistent
bindings for the variables in the production. That is. for tree-structured productions, instantiationless
match can be achieved using arc-consistency. No restrictions on the working memory representation are
required. Furthermore, this arc-(.ounistency can be performed in O(#WMEs*#conditions).

Here, #WMEs refers to the number of working memory elements and #conditions to the number of

conditions in the LHS of a single production.

An algorithm has been derived for instantiationless match over tree-structured productions [70] that is

directly based on the algorithm for arc-consistency presented in [201. The complexity analysis of this

algorithm directly follows from its analysis in [201.

To understand this all better, let's briefly examine why each of the two restrictions - arc-consistency

match and tree structured productions - are individually not sufficient for achieving a non-combinatorial

bound on match. First. consider tree-structured productions with instantiation match instead of arc-

consistency match. Instantiation match, despite tree-structured pruductions, is still exponential. This is

illustrated by the tree-structured production in Figure 6-b, which leads to an exponential match. Second,

consider arc-consistency match with non-tree-structured productions. Here, arc consistency may provide

a wrong result. That is, it may provide a binding for a variable, when instantiation match for the same

production would have provided none.

Figure 16 illustrates this last point with the help of an example. Figure 16-a shows a production in the

system. This production is non-tree structured, as shown by the constraint graph of the production

appearing in Figure 16-d. The conditions of the production test if an operator is stacking a block on top

of itself. The action of the production rejects that operator from consideration. Figure 16-b shows the

working memory in the system. There are two operators in working memory, none stacking a block on

itself. Figure 16-c shows the outcome of the instantiation match. The match for the fourth condition fails,

and there are no instantiations of the production, and no operator is rejected.

However, the arc-consistency match for the production succeeds, resulting in the bindings for the

variables as shown in 16-d. To understand how these bindings make the production arc-consistent,

consider the condition (<o> ^stacks-block <bl>) in the production. The WMEs (01

"stacks-block B1) and (02 "stacks-block B2) provide the bindings O1 and 02 for the

variable <o> and Bi and B2 for the variable <bl> according to the definition of arc-consistency.
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Figure 16: Arc-consistency match provides incorrect results for non-tree structured productions:
(a) a production, (b) WMEs to match the production, (c) the result of instantiation match,

(d) the result of arc-consistency match.

Similarly, consider the condition (<o> ^stacks-block-on <bl>). The WMEs (01 ^stacks-

block-on B2) and (02 'stacks-block-on BI) provide the bindings 01 and 02 for the

variable <o> and B1 and B2 for the variable <bl>. The key point to note here is that for both

conditions, the two variables obtain the bindings without maintaining information about which binding is

consistent with which other binding. Thus, for the first condition, 01 is consistent only with B1, while

for the second condition, 01 is consistent only with B2. This lack of information allows the arc-

consistency match to succeed (it is easy to verify that the other bindings make the remaining conditions in

the production arc-consistent). Since this arc-consistency match succeeds in providing bindings for all of

the variables, operators 01 and 02 are both rejected. Thus, arc-consistency match may fail to provide

consistent bindings for non-tree-structured productions (as per the definition of consistency from Section

6), i.e., the tree-structured restriction is necessary in achieving consistent bindings.

It is easy to confuse this last issue with the problem of binding confusion; however, they are in fact

quite distinct. Binding confusion assumes that you already have a consistent solution to the constraint

satisfaction problem defined by the production conditions. The problem there is that, given these

consistent bindings, it is difficult to determine which of the individual bindings of one variable are

consistent with which of the individual bindings of the other variables. This information is not needed for



the match, but is needed for action. On the other hand, the problem described here is whether the

arc-consistency-based match algorithm even returns consistent sets of bindings in the first place.

8. Evaluating the Instantiationless-Tree Formulation
The appropriate way to evaluate [-Tree is according to the absolute and relative requirements presented

in Section 4. The first absolute requirement is that of a pk ?nomial bound on production match. Section

7 indicates that [-Tree achieves a polynomial bound of O#WMEs*#conditions). I-Tree also meets the

requirement of correctness of match in that it provides consistent bindings for variables (assuming tree-
structured productions). It also meets the requirement of closure under learning. Chunking, as currently
defined, does not provide such closure: however, closure is provided by closely related EBL algorithms
that avoid introducing equality tests where they did not already exist in the original rules. Finally, it also

meets the requirement of expressibility as a local syntactic restriction: if a single variable appears in the
value field of two conditions, there is a violation,

With respect to the relative requirements, I-Tree must be compared with something. Here the focus
will be on comparing it with the only other active proposal for eliminating combinatorics, i.e., unique-

attributes; however, when appropriate, a few words will also be said with respect to the unrestricted

representation. The comparison will be performed in three steps. First, the Grid Task will be examined
in some detail, primarily to illustrate the gains in generality that I-Tree makes possible over unique-

attributes. Second, the expressive adequacy of I-Tree will be investigated in some depth. Third, the

results from these first two steps will be combined with results on the other relative requirements to
generate a summary comparison between the two approaches. The first two steps will be described in this

section. The next section will then focus on the third step.

8.1. The Grid Task in I-Tree

The Grid task, along with its encodings in the unrestricted and unique-attribute representations, was

introduced earlier in Section 3.1. For this task, the unrestricted encoding turns out to work without

change for I-Tree. The arc-consistency algorithm works because all of the productions implementing this

task already meet the tree-structured restriction, and no binding confusion results because key action
variables always have at most one binding. The rule learned from I-Tree also turns out to be identical to
the rule learned in the unrestricted representation (Figure 6-b).

Table II expands Table I by showing the cost and generality of the learned rule in I-Tree. While the

cost is measured in number of tokens for the unrestricted and unique-attribute systems, the cost for I-Tree

is measured in terms of binding operations, i.e., the operation of obtaining a consistent binding for a
variable (or deleting an inconsistent binding). The computation involved in this binding operation is

comparable to the computation involved in generating a token [701.

The cost of match in I-Tree is seen to be a small polynomial, comparable to the cost of unique-

attributes. As with unique-attributes, I-Tree is able to obtain this performance improvement over the

unrestricted representation by avoiding the computation of unnecessary information. In particular, by not
computing all of the instantiations, I-Tree avoids deriving all possible paths from the source to the
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destination (while the unrestricted representation unnecessarily derives all of these paths). However,

unlike unique-attributes, I-Tree is able to reduce its match cost without a change in the working-memory

representation, and without the concomitant losses in the generality of the learned rules. Thus, I-Tree

outperforms the inrestricted representation in performing the Grid task, while simultaneously achieving a

better learning generality than unique-attributes. (A similar analysis of the tree task. with similar

conclusions, appears in [70]. The tree task is identical to the grid task, except that the underlying graph is

a tree rather than a grid.)

Match cost Generality in Number of rules Match cost
per rule number of transfers learned for same with alI rules

level of generality

Unrestricted (4 P*I - 4)13 n2*(p+l) 2  I (4P+ _ 4)-3

Unique-attributes p (p+ ) 2  (p+1) 2*p

I-Tree 6p3  n2*(p+ 1)2 6p 3

Table I!: The cost and generality of various representations for the Grid task with a fixed path length p.
Cost for the unrestricted and unique-attribute systems is measured in terms of tokens.

In I-Tree cost is measured in terms of binding operations.

An arc-consistency matcher has been implemented to verify the results of this analysis. Figure 17

compares the performance of this arc-consistency matcher with a Rete matcher using the unrestricted

representation for this production from the grid task. A 5x5 grid is assumed, and match cost for different

path lengths is measured. The figure confirms that with increasing path length, the cost of instantiation

match increases exponentially, while the cost of arc-consistency match increases at a much slower rate.

o 3000

-Arc-corristency match ind-ops)

*Unrest loken match ns)

2000 -.

! /

I! .. /

* I
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010 2 4 6
Path length in the grid

Figure 17: Comparing the cost of arc-consistency match with instantiation match in the grid task
(in binding operations for arc-consistency match and tokens for instantiation match).

II
This arc-consistency matcher is still quite preliminary. In particular, such optimizations as state-saving

and sharing 1251 will need to be added before this matcher can compete effectively time-wise with

I
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optimized instantiation-match implementations. Due to the tack of such an optimized algorithm, and the
complexity of integrating such an algorithm within Soar (the tightly integrated nature of Soar makes it
difficult to arbitrarily replace components [741), we do not currently have an implementation of Soar with
arc-consistency match.

8.2. Expressive Adequacy
Two aspects of expressibility are of potential concern in I-Tree. The first aspect is the inability to use

variables to compare two value fields for equality, as mandated by the tree-structured production
restriction. The second aspect is the need to restrict variable bindings so that binding confusion does not
occur.

To understand the extent to which these two problems are likely to occur, and to enable further direct
comparisons with unique-attributes, five tasks that had earlier been implemented in unique-attributes
Eight puzzle. Grid, Farmer, Waterjug and Blocks-world - have now been converted over to I-Tree. 12

With respect to equality tests across value fields of conditions, one of the tasks (Grid) has none, and hence
there is no need to re-encode it in I-Tree. However, in the remaining four tasks, 50-80% of the
productions do have equality tests across value fields of conditions, and thus do require re-encoding.
With respect to binding confusion, there turns out to be no issue in any of the five tasks. Essentially, the
copy-and-constrain method [691 (described below) used to generate tree-structured productions increases
the likelihood of single bindings for key variables in productions.

So, the problem that really needs to be addressed with respect to thesc tasks is that of eliminating
variable tests across value fields of conditions. An example production (P1) embodying such an equality
test can be found in Figure 18. In I-Tree, such productions must be replaced. One simple method is to
perform a form of copy-and-constrain t69], in which troublesome variables are replaced with tests of
constants from the variables' domains. For example, in Figure 18, the production P1 can be replaced by
the two productions P2 and P3, assuming the domain of variable <r> consists of only the two values
red and green. Note that, with a good match algorithm, a larger number of productions does not
necessarily imply a slowdown; for example, even with a larger number of productions, unique-attribute

systems are more efficient than unrestricted systems.

(Production P1 (Production P2 (Production P3

(<o> ^color <r>) (<o> ^color REM) (<o> ^color GREEN)

(<o> ^code <r>) (<o> 'code RED) ('o> ^code GREEN)

(write *<o> is coded')) (write "<o> is coded')) (write *<o> is coded'))

Figure 18: Replacing variable tests to form tree-structured productions.

For two of the four problematic tasks - Waterjug and Farmer - re-encodings them via copy-and-
constrain proved successful. For the other two - Blocks-world and Eight puzzle - the conversion could

'2Given the absence of a Soar implementation with instantiationless match, we have resorted to simulating the restrictions in
Soar's unrestricted system. While this does eliminate the possibility of directly measuring time or binding operations, other
useful analyses are still possible.

---
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be done, but it resulted in big losses in generality of learning. For instance, the Eight puzzle showed an

approximately 60-fold increase in the number of learned rules (as opposed to the 6-fold increase with

unique-attributes). For these two tasks, more complex schemes are required to improve the generality of

the learned rules. For instance, in the Blocks-world, referring to blocks using indexical-functional

attributes [21, such as block-on-top-of-tower, and block-at-the-bottom-of-tower, and using these to replace

equality tests leads to a better generality of learning than referring to blocks as BI, B2 etc.

There are at least two critical issues with respect copy-and-constrain that don't come up in these tasks,
but may be critical in other tasks. First, copy-and-constrain leads to writing as many productions as there

are values in the domains of variables tested for equality (variables that are not tested for equality across
value fields need not be replaced). This could be quite problematical for variables with very large

domains. For instance, replacing the equality test in a production that checked whether the length of two
objects is the same - where the length of the objects ranges over the natural numbers - is impossible.

Second, it creates a combinatorial number of productions in situations where there are multiple equality

tests per production. For instance, if PI has N equality tests, then it will require 2N replacement

productions.

The first problem can be solved by working with the primitive elements in a domain. Equality tests

over complex elements can be performed by testing equality of these primitive elements. In the domain

of natural numbers, these primitive elements are the digits 0,1...9. Only 10 productions are required to

test equality of these individual digits. Consider the example of testing if two objects have the same

length. This primitive-based scheme would lead to a digit-by-digit comparison of the numbers encoding

the lengths of the two objects. If the two numbers have N digits each, then N production firings would be

required to complete this comparison. A comparison of primitive elements may appear a high price to pay

for replacing equality tests. However, such a comparison is also a key requirement in some schemes for

knowledge-level learning with EBL [641, so if it is required there, nothing additional must be added to
support this use. Furthermore, in a learning system, such as Soar, these comparisons can be automatically

compiled into new rules that directly test for the N different digits in the two numbers involved. If two

objects with these same lengths are ever tested again for equality, the learned rules can fire, eliminating

the need for the sequential comparison. However, these learned rules are specific to the specific objects
lengths tested for equality. Thus, a very large number of rules will be learned while performing these

equality tests.

A variation on this same primitive-based strategy may also be used to address the second problem

above of combinatorial number of productions. The single production with N tests can be converted to a

sequence of N productions with a single test each. These productions would then fire in sequence and

perform the tests in N recognize-act cycles. Each of these N productions would then require only two

replacements, so a total of 2*N replacement productions would be needed.

In conclusion, all five of the tasks could be encoded in I-Tree; however, the expressibility limitations

did severely impact two tasks, and less severely impact two additional tasks. Therefore, improving

expressibility beyond what is provided here would still be desirable.



8.3. Summary Comparison of I-Tree and Unique-attributes
Ideally, when comparing two alternatives, one would dominate the other, When this happens, the

dominated alternative can simply be eliminated from further consideration. When no dominance
relationship can be established, there is extra impetus to search further for a new alternative that has (at
least) the best attributes of both of the existing alternatives. Unfortunately, with respect to a comparison
between I-Tree and unique-attributes, we are in the latter situation. Table [II summarizes where these two
alternatives stand with respect to the relative requirements.

Relative Unique-attribute Instantiationless-tree
requirement

Expressive Difficulty in encoding due Difficulty in encoding due
adequacy to elimination of unstructured to elimination of instantiations and

sets from working memory equality tests from productions

Relatixe Match bound Match bound
efficiency O(conditionsi O(WMEs'conditions)

Learning Loss due to Loss due to
generality lack of unstructured sets lack of equality tests

Completeness No violations No violations

Uniformity No violations Productions are
tree-structured but not 0

working memory

Table Ill: Relative comparisons between instantiationless-tree and unique-attributes.

The table shows that: (I) the two approaches are equal with respect to completeness; (2) unique-
attributes dominates I-Tree with respect to relative efficiency and uniformity; and (3) expressive 0
adequacy and learning generality yield no obvious dominance relationship. To get a better feel for these
last two requirements, it is useful to go down a level of detail, and compare unique-attributes and I-Tree
on a task-by-task basis. This comparison, as shown in Table IV, provides concrete examples of tasks that
are performed better in I-Tree than in unique-attributes, and vice versa.

Tasks better in Tasks better in I-Tree

unique-attributes

Waterjug Grid

Farmer Eight-puzzle

Blocks-world

Table IV: Task partitioning according to whether they are performed better in
unique-attributes or instantiationless-tree.

Three of the tasks - Waterjug, Farmer and Blocks-world - are performed better in unique-attributes
than in I-Tree. For all three of these tasks, the I-Tree representation ends up being very similar to the
unique-attribute representation. For example, the encoding strategy adopted for the Blocks-World in
I-Tree - based on indexical-functional attributes such as ^block-on-top-of-tower - is exactly
like the strategy used in unique-attributes. In particular, with unique-attributes, the blocks are represented
as (SI ^block-on-top-of -tower BI) etc, where SI is the state. Thus, the three tasks are
encoded in a similar fashion in the two representations schemes. However, due to the absence of explicit
equality tests across condition values in I-Tree, the tasks are harder to encode within this scheme (and



yield less learning generalitvy.

The other two tasks - Grid and Eight puzzle - are performed better in [-Tree than in unique-
attri-utes. As already discussed, the Grid task can proceed in I-Tree with thL onrestricted encodingz.
which makes it easy to encode, and yields a high leve! of learning generality. With the Eight puzzle.
while both unique-attributes and I-tree require re-encoding, I-tree obtains a better learning generality
This situation is explained in detail in [701.

Thus neither representation dominates, and the search must continue for better alternatives. This may
involve hybrid approaches between unique-attributes and I-Tree, or it could involve other novel
approaches. either within the spaces already delineated, or in other spaces.

9. Towards a Step Beyond Instantiationless-Tree
One particularly simple step beyond I-Tree can be found by delving further into the constraint-

satisfaction literature. In particular, if instead of restricting productions to tree structures, the less

restrictive class of partial-2-trees [201 is used, some equality tests can be allowed across value Fields of
conditions, while still guaranteeing a polynomial match bound. Figure 19-a shows an example partial-2-
tree, while Figure 19-b shows a contrasting example of a non-partial-2-tree. Partial-2-trees are
constructed by first creating a 2-tree. A 2-tree starts out with two nodes connected by an edge. Then any
time a new node is added, it is connected to two previous nodes that are already connec:ed by an edge.
Thus. the graph gets built up in triangles. Any subgraph of such a 2-tree is a partial-2-tree. These graphs
are strictly more expressive than trees. In particular, because they do allow some convergence of paths on
nodes, they do allow some testing of equality of value fields. An algorithm for recognizing partial-2-trees

appears in [201.

'0

o 1
(a) A partial-2-tree graph W A non-partial-2-tree graph

Figure 19: Illustrating partial-2-trees.

Polynomial match with production graphs structured as partial-2-trees - and, as with I-Tree, no
restrictions on working memory - can be achieved using the slghtly more expensive (although still
polynomial) path-consistency algorithm for determining consistent sets of variables bindings.

The expressive power of partial-2-trees is illustrated in Table V. The table indicates the number of



productions iboth hand-coded and learned) in the unrestricted encodings of Eight puzzle. Grid, Farmer,

Waterjue and Blocks-world that were found to be partial-2-trees. In I-Tree, 50-80% of the hand-coded

productions and 100% of the learned productions in the Eight-puzzle, Waterjug, Farmer and Blocks-

world were seen to be non-tree-structured. Only the Grid task contained all tree-structured productions.

Compared w~th that, only a small percentage of the productions in these five tasks violate the partial-'-

tree restriction. Thus, in terms of expressiveness. partial-2-tree productions are quite powerful, at least in

comparison with tree-structured productions. The only significant expressibility limitation is found in the

learned rules for the Blocks-world, where 80% are non-partial-2-tree.

Task Total Number of Percentage of Percentage of
productions tested hand-coded rules tiat learned rules that

are partial-2-tree are partial-2-tree

Grid 22 10to 100
Eight-puzzle 28 88 84

WaterJue 29 89 100

Farmer 34 100 100

Rlocks 84 84 20

Table V: Percentage of hand-coded and learned productions found to be partial-2-tree in five tasks' 3

Though partial-2-trees thus look like an interesting possibility, much remains to be understood about

them. Can the productions that don't meet the restriction be converted without sacrificing too much

generality? Can the approach be combined with an effective solution to the binding-confusion problem?

Is there a simple. local, syntactic guideline that programmers can follow in writing productions that meet

the restriction (trees support this, but the published algorithm for determining partial-2-treeness does not)?

Will the match algorithms be efficient in practice? Answering such questions is critical future work.

10. Summary
Eliminating combinatorics from production match is important for a number of areas of Al, including

expert systems. real-time perfor;:iance, machine learning, parallel implementation, and cognitive

modeling. In [711, the unique-attribute representation was introduced to eliminate these match

combinatorics. However, unique-attributes engender sufficiently problematic represenutional tradeoffs

that there is a strong motivation to investigate alternative representations.

This article has focused on exploring such alternative representations. Two different spaces of

alternatives have been characterized and explored. The first space consists of local syntactic restrictions

on working memory. Within t',i• space, it was shown that uniqu?- attributes are the best possible

restriction. The second space consis, of restrictions on match-search (i.e., k-search) trees that guarantee

polynomial boundedness. Focus here ,. as limited to a subset of this space based c a new approach to

'3ExcWp for the Blocks-world. all of the productions in all of the tasks were tested. In Blocks-world. all of the hand-coded productions were
tested, but since there was a large number of learned productions. only 10 representative ones were tested.
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match, called instantiauonless match. Through a mapping onto constraint-satisfaction algorithms. several
representational restrictions have been derived that, when combined with instantiationless match.

guarantee polynomially bounded match. Such alternatives show distinct promise by outperforming

unique-attributes in some domains; however, no such alternative has yet been found that completel)

dominates unique-attributes in all domains. A few problems, such as binding confusion, also remain

outstanding with these alternatives. Thus, though significant progress has been made in generating and

evaluating the set of possible alternatives, the investigation of non-combinatorial match formulations

must still continue.

If we look beyond our own goal of eliminating combinatoric production match, the results presented

here may also have significant implications for the weaker goal of speeding up standard (combinatoric,

production systems. In recent years. considerable research effort has been focused on this weaker goal.
much of it through the development of match algorithms such as Rete [251, modified versions of

Rete [30, 81, Treat [531, LEAPS [55], Matchbox [61], Scaffolding [62), Tree 1131, Dynamic-join [601 etc.

However. all of these algorithms are based on instantiation match. Clearly, instantiationless match
suggests a radical departure from these instantiation-match algorithms. The work reported here suggests

that a full instantiation match may not always be necessary, and that utilizing instantiationless match in

such situations may potentially lead to substantial improvements in performance. Instantiationless match

may be of particular relevance for production match algorithms in database environments [551, where
space efficiency is of concern. Indeed, recently, Acharya and Tambe [1] have proposed algorithms based
on instantiationless match for database environments. These algorithms, called collection-oriented

algorithms, do not require a restriction on the expressiveness of the production system, and they do not
change the worst case complexity of production match. However, because they can avoid insta"tiations

under some circumstances, they can reduce the generation of cross products, and thus reduce the space
and time consumed (by multiple orders of magnitude).

The principles for eliminating combinatorics identified in this article may also generalize beyond
production match. For instance, the key idea behind instantiationless match is to avoid the explicit

generation of cross-products. A similar idea has recently been used by Hubbe and Freuder [34] in their
method, called CPR, for efficient representation of partial solutions in solving general constraint-
satisfaction problems. CPR is used in conjunction with standard methods for solving constraint-

satisfaction problems, such as backtracking. CPR avoids the creation of a complete cross product of

values assigned to variables. Instead, it maintains the values that participate in the cross product in
separate sets. Identifying the applicability of key principles such as this may result in new methods for

attacking problems in combinatorial match and other research areas.
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