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time, flexibly use a small amount of tacticalAbstract
knowledge about two classes of one-versus-

This article reports on recent progress one (1-v-1) Beyond Visual Range (BVR)
in the development of TacAir-Soar, an tactical air scenarios.  In the non-jinking
intelligent automated agent for tactical air bogey scenarios, one plane (the non-jinking
simulation. This includes progress in bogey) is unarmed and maintains a straight-
expanding the agent’s coverage of the and-level flight path.  The other plane is
tactical air domain, progress in enhancing armed with long-range radar-guided,
the quality of the agent’s behavior, and medium-range radar-guided, and short-range
progress in building an infrastructure for infrared-guided missiles.  Its task is to set up
research and development in this area. for a sequence of missile shots, at

increasingly shorter ranges, until the non-
Introduction jinking bogey is destroyed.  Though such

scenarios are not common in the real world,At the Third Conference on Computer
they are used as training exercises becauseGenerated Forces and Behavioral
they teach pilots how to position their planesRepresentation we presented an initial report
for later shots while simultaneously takingon an effort to build intelligent automated
earlier ones.  In the aggressive bogeyagents for tactical air simulation (Jones et al,
scenarios, one plane is attempting to protect1993). The ultimate intent behind this effort
a High-Value Unit (HVU), such as anis to develop automated pilots whose
aircraft carrier, via a Barrier Combat Airbehavior in simulated battlefields is nearly
Patrol (BARCAP); that is, the plane patrolsindistinguishable from that of human pilots
between the HVU and the anticipated threat(and to go beyond this to develop generic
(by cycling around a racetrack pattern), andagents that are readily specializable for this
then intercepts any threat that it detects in itsand other domains). If such agents can be
sector. The other plane is attempting tocreated, they should provide close to ideal
attack the HVU, but to do so it must firstforce supplements for many of the
intercept the defensive aircraft.applications anticipated for distributed

The prototype agents were allinteractive battlefield simulation.
implemented as parameterized variations ofAs of the initial report, prototype agents
a single multi-functional tactical-air agent,had been constructed that could, in real-



called TacAir-Soar (or TAS for short).  TAS decisions to be informed by the current
is built within Soar, a software architecture situation (and interpretations of it, as
that is being developed as a basis for both an generated by rule firings) − and the use of
integrated intelligent system and a unified ModSAF (Calder et al, 1993) as the
theory of human cognition (Rosenbloom, interface to the DIS environment (Schwamb,
Laird, & Newell, 1993; Newell, 1990).  Soar Koss, & Keirsey, 1994).
provides TAS with basic support for When combined with the very
knowledge representation, problem solving, preliminary domain knowledge that was
reactivity, external interaction, and learning. encoded at the time, this combination of
Soar also provides a potential means of capabilities yielded competent behavior for
integrating into TAS additional planning, the non-jinking bogey scenarios, but only
learning, and natural language capabilities fragments of behavior for the aggressive
that are being developed independently bogey scenarios (due to insufficient
within Soar. knowledge about this class of scenarios).

The prototype TAS agents actually One type of aircraft, similar to an F14, was
utilized only a subset of the capabilities flown in these scenarios.
provided either directly by Soar, or built The purpose of this article is to provide
separately within it.  However, this subset − a report, one year later, on the progress in
along with the domain-specific (and moving TAS from the initial prototype
domain-independent) rules that were added agents towards the ultimate goal of human-
to Soar’s long-term memory − was like automated pilots that are broadly
sufficient to yield a combination of capable in tactical air scenarios.  This report
knowledge-based decision making, is intended to be complemented by the more
task(/goal) switching and decomposition, detailed articles about particular aspects of
and real-time interaction with the DIS TAS that also appear in these proceedings
environment. Knowledge-based decision- (Johnson, 1994a; Jones & Laird, 1994;
making arises from Soar’s ability to make Jones et al, 1994; Koss & Lehman, 1994;
decisions based on integrating preferences Laird & Jones, 1994; Rubinoff & Lehman,
generated by arbitrary sets of rules.  Task 1994; Schwamb, Koss, & Keirsey, 1994;
switching also arises from Soar’s decision- Tambe & Rosenbloom, 1994; van Lent &
making abilities, but here as specifically Wray, 1994), rather than to substitute for
applied to the selection and switching of them. Thus, where there is a potential
tasks. Tasks(/goals) are represented as overlap between this report and any of the
operators in Soar, and are one of the main more detailed articles, this report will
foci of its decision making.  Task become more terse and defer (and refer) to
decomposition arises from using the same the appropriate detailed article(s).
decision mechanism to drive task In the body of this report, progress on
performance, plus Soar’s ability to domain capabilities will be covered first.
automatically generate a new performance The focus here is on expanding the classes
context when a decision is problematic. of domain scenarios in which the agents can
When these mechanisms are combined with behave appropriately.  Second, progress on
rules that generate preferences about which intelligent capabilities will be covered.  The
subtasks are appropriate for which focus here is on expanding the classes of
problematic parent tasks (in the particular basic intelligent abilities − such as coping
situation of interest), task decomposition with multiple interacting tasks, plan
occurs. Real-time interaction with the DIS recognition, learning, planning, self-
environment arises from the combination of explanation, and natural language −
Soar’s incorporation of perception and exhibited by the agents.  Third, progress on
action within the inner loop of its decision infrastructure capabilities − such as
making capabilities − thus allowing all integration with the DIS simulation



environment, low-cost interfaces for human When the F14 is finally close enough
pilots, knowledge acquisition, and (that is, it has the MiG29 within its LRM’s
documentation − will be covered.  Finally, launch-acceptability region), and is oriented
the article will be concluded with plans for correctly, it launches a long-range missile,
the future. and performs an fpole (a turn that decreases

the rate of closure between the aircraft − to
delay the arrival of any missiles that mightDomain Capabilities
have been launched from the MiG29 −

Progress on domain capabilities has while simultaneously keeping the MiG29 on
occurred in two general areas: (1) improving the F14’s radar). The MiG29 detects the
the robustness and range of the scenarios fpole, and beams in response, by turning
within 1-v-1 BVR tactical air; and (2) perpendicular to the F14 (to render blind the
scaling up the scenarios in terms of the Doppler radar that is guiding the F14’s
number of vehicles, the range of vehicle missile). The F14 then attempts to search
types, and the complexity of the required for and reacquire the MiG29, while
organization and communication among the simultaneously changing altitude in order to
vehicles. confuse the MiG29’s search and acquire

activities.Within 1-v-1, the TAS agents can now
exhibit competent behavior in the BVR Both planes then generally attempt to
tactical-air segments of the aggressive bogey set up for further missile launches, and to
scenarios. This includes the ability to patrol avoid missiles launched by their opponents.
in a racetrack pattern; select radar modes, Depending on the exact timing of the
detect opponents on radar, perform search engagement, and on the willingness of the
and acquire activities when opponents drop two planes to take risks (this is a TAS
off of radar, and maneuver so as to confuse parameter), zero, one, or both of the planes

1the opponent’s search and acquire activities; may be shot down in the process.
determine and attempt to achieve This scenario can be played out with
appropriate intercept geometries and launch- both planes flown by TAS agents, or with
acceptability regions (LARs); select, fire, one or the other flown by a human pilot in a
and support missiles; and detect and evade flight simulator.  A formal demonstration of
enemy missiles. the aggressive bogey scenario in the

As played out in the DIS environment, a WISSARD laboratory at Oceana Naval Air
typical aggressive bogey scenario involves Station during June ’93 successfully pitted
an F14 which is defending its aircraft carrier two TAS agents in simulated F14s against
against possible attack by a MiG29.  The two human pilots (in F18 simulators, but
F14 patrols in a racetrack until it spots the acting as MiG29s). This demonstration was
MiG29 (the F14’s radar and missiles both set up as two independent 1-v-1
have longer ranges than do the MiG29’s). engagements (out of radar range of each
The F14 continues to monitor the MiG29 other). Given the early state of development
until its commit criteria are achieved, at of the agents at the time, the human pilots
which point it begins the intercept by were constrained in terms of the kinds of
attempting to achieve a good geometry from
which to fire a long-range missile (LRM).
At some later point the MiG29 detects the
F14 and also then begins an intercept. This 1In real engagements, if one or more of the aircraft
makes it difficult for the F14 to achieve any survive the BVR segment of the scenario, either a
further advantage in intercept geometry, so within-visual range (WVR) engagement − that is, a

dogfight − or an air-to-ground attack on the HVUit gives up on that, and turns to maximize
may then occur.  However, these aspects of thethe rate of closure (and thus to minimize the
scenario are not part of BVR tactical air, and are thustime before the intercept is complete).
not pursued by the TAS agents.



tactics they were allowed to use.  Under engagements a section (i.e., a coordinated
these circumstances the demonstration pair of planes) must be able to fly together
proceeded successfully, in real-time, and in in formation and execute coordinated
an otherwise unscripted manner. The tactics. In service of this they must be able
resulting behavior was much as described in to communicate with each other, and to be
the typical example above.  Feedback from aware of each other’s positions.  The TAS
Navy personnel in attendance at the agent is now capable of doing this (as
demonstration was uniformly positive. discussed in the next section) to support

competent 2-v-1 behavior, within the sameDespite this demonstrable success −
kinds of limits described for 1-v-1 (Jones &and the fact that in numerous subsequent
Laird, 1994; Laird & Jones, 1994).presentations to domain experts and other

Navy personnel TAS has consistently In 1-v-2 engagements a single aircraft
impressed with its quality of behavior − it must be able to identify and sort out the
must be noted that TAS is still not close to activities of a pair of adversaries who may
covering the full complexity of the domain or may not be flying together as a section
abilities described above, or the interactions (Jones & Laird, 1994).  It must be able to
among them. For example, only a subset of work out intercept geometries that take both
the radar modes are used; search and acquire opponents into account − so as, for
in three dimensions is not strong; and only a example, not to be sandwiched between
subset of the possible tactics for patrolling, them. It must also be able to determine
confusing, intercepting, and evading are which of the pair is the primary threat, target
used. Fleshing out these abilities does not the primary threat, and determine when to
look conceptually difficult at this point, just also fire at the secondary threat. For
time consuming. example, if the pair are flying in a

coordinated fashion, then firing a missile atAnother dimension of complexity in 1-
one is likely to cause both to beam.  It wouldv-1 BVR tactical air that is not fully
thus be a waste to launch missiles at bothaddressed at this point by TAS is the space
under such circumstances.  The current TASof possible missions that the agents need to
agents are also capable of performingbe able to perform.  The aggressive bogey
competently in such 1-v-2 engagements.scenarios cover two types of missions

(BARCAP-HVU and ATTACK-HVU); In 2-v-2 engagements, many of the
however, there is still a handful of others. same issues come up as in 1-v-2 and 2-v-1.
One other mission to which TAS has However, additional capabilities are
recently been extended is a MiGSWEEP. A required to sort the opponents (determining
MiGSWEEP is a sweep by one side’s which friendly aircraft has the responsibility
fighters through the other side’s territory to for which opponent aircraft), to decide when
clear out a corridor for later aircraft (such as one or both aircraft should launch missiles,
bombers). In addition to the abilities and to decide when to split the single 2-v-2
required for the previous missions, a engagement into two independent 1-v-1
MiGSWEEP requires the ability to fly to engagements (i.e., to strip). Though work
waypoints, and to break off an intercept and on 2-v-2 has just recently begun, there is
"blow through" an opponent (that is, engage now at least one working example of a
in a small amount of WVR behavior in order section of TAS agents successfully sorting
to accomplish a high-speed pass of an and firing at another section of TAS agents.
opponent and continue with the planned Once 2-v-2 is completed, larger
flight path). engagements (2-v-N, 4-v-4, N-v-N, etc.)

will still remain to be covered.In scaling up from these 1-v-1
scenarios, the biggest change has been the Other aspects of scale up that are
incorporation of an ability to detect and currently in progress include adding the
manage multiple aircraft. In 2-v-1 ability to fly an F18 (to the original F14 and



the recently added MiG29), and the addition by Soar has turned out to be non-trivial −
of an air intercept control (AIC) agent in an and is currently a topic of intensive
E2 (a specialized radar plane that is similar investigation − workable strategies have
to an AWACS) (Rubinoff & Lehman, 1994). been found for TAS agents to coordinate
The AIC’s job is different in a number of their behavior in the presence of all of these
ways from that of a fighter pilot, so goals and their interactions (Jones et al,
stretching TAS to accommodate this new 1994). A second capability is integrating
type of agent should force further information from multiple sources about
generalization of its capabilities. multiple agents (Jones & Laird, 1994).  The

sources of information about other agents
have been expanded from just radar, to alsoIntelligent Capabilities

2include radio and vision; and the number of
With respect to intelligent capabilities, agents about which information can be

the most significant advance over the represented has been expanded from one up
prototype agents has been the addition to to an arbitrary number.  A third capability is
TAS of the ability to maintain episodic communication and coordination among
memories of its engagements, and to use multiple agents (Laird & Jones, 1994).
these memories in reconstructing what it Instead of modeling a group of related
did, why it did what it did, and what else it agents − such as a section of aircraft or a
would have done if the situation had been platoon of tanks − as a single aggregate
slightly different (Johnson, 1994a; Johnson, unit, the behavior of groups is being
1994b). These description and explanation modeled at the individual platform level.
capabilities are available through an This provides additional flexibility and
interactive debriefing interface, in which realism in the simulation, but also
questions can be asked via selection from necessitates modeling how the groups
dynamically created menus, and answers are actually do communicate and coordinate
generated in (approximate) English. In among themselves.
contrast to explanation in most expert

Additional capability investigations aresystems, where there is a distinct
also underway in the areas of learning,"explanation" system that has direct access
planning, plan recognition and naturalto the "performance" system’s knowledge
language. Learning and planning are aand derivational traces, TAS generates the
relatively common part of Soar’s repertoireexplanations itself based only on (1) what it
of behaviors in general (Laird &can remember about what happened and (2)
Rosenbloom, 1990); however, they are notwhat it can later reconstruct about what it
yet a routine part of TAS’s behavior.might have done (and why it might have
Investigations of their use in TAS havedone it). This is a process that can be misled
begun − for example, the debriefingby circumstances, but it is expected to be
capability depends on learning being activemore like how human pilots would actually
within certain key portions of the TASdescribe and explain their own behavior
agents − but it is too early to commentduring post-mission debriefing (though the
generally on their outcome.  In contrast, planpsychological and behavioral accuracy of
recognition is now a routine part of TAS’sthis has not yet been studied).

In addition to these debriefing
capabilities, significant progress has also
been made on incorporating several other 2The radar, vision, and radio inputs attempt to
capabilities into TAS.  One capability is provide TAS with the information a human would
coping with multiple interacting goals. extract from those sources.  However, this
Though mapping a forest of interacting information is provided symbolically, and no actual

visual or audio processing on the part of the agent isgoals onto the single goal stack maintained
required.



behavior, but only of a simple, low-level, ad DIS (Schwamb, Koss, & Keirsey, 1994).
hoc variety. For example, when an ModSAF already contains an interface to
opponent turns, a new (hand-coded) task DIS, so it was only necessary to add an
may be selected to interpret whether the interface between Soar and ModSAF. To do
opponent is performing an fpole (as part of a this we have implemented a cockpit
missile launching plan) or a beam (as part of abstraction on top of ModSAF that allows
a missile evasion plan).  General plan TAS to focus on behaving like a pilot, while
recognition turns out to be particularly ModSAF simulates vehicles, sensors, and
difficult in the DIS environment because of weapons. TAS is not utilizing ModSAF’s
the presence of partial information about own pilot behaviors (such as Sweep, CAP,
multiple, flexible, interacting agents. and Fly Route), as programmed into its tasks
However, a more systematic approach based and task frames; however, TAS’s piloting
on abstract model tracing (Anderson et al, task has been simplified somewhat by
1990; Ward, 1991) in (multi-agent) world- providing it high-level flight control via a
centered models is being investigated in a ModSAF library function that accepts as
version of TAS, and is showing some parameters a desired altitude, heading, etc.
promise (Tambe & Rosenbloom, 1994). In addition to adding the cockpit abstraction
Finally, an investigation is in progress on (and getting Soar to use it), we have
how to incorporate independently extended the implementation of Soar so as
developed, Soar-based, natural-language to allow multiple independent Soar agents
abilities (Lehman, Lewis, & Newell, within a single process.  This has allowed
1991) into TAS (Rubinoff & Lehman, multiple TAS agents to be compiled

31994). In theory, two automated agents together with ModSAF in a single process,
could communicate without using natural and thus allowed communication between
language; however, to do so can affect how the agents and ModSAF to be mediated
they are perceived by agents that are directly by calling library functions (rather
eavesdropping on them. In the longer run, than through slower interprocess
natural language is also a critical capability communication mechanisms, such as
if automated agents are ever to interact in a sockets).
seamless way with human agents. Natural Given a cockpit abstraction, it turned
language communication will initially be out to be relatively easy to reuse it in
provided between a pair of TAS agents − a support of a low-cost interface for human
fighter and an AIC (in an E2) − with further control of ModSAF aircraft.  The Human
deployment hopefully to follow. Instrument Panel (HIP) provides an X-

Windows-based interface to a vehicle’s
cockpit abstraction (van Lent & Wray,Infrastructure Capabilities
1994). This enables a human pilot to

With respect to infrastructure, progress perceive graphically-presented sensor
has been made on four topics: (1) integration information and to control the aircraft’s
of Soar with the DIS simulation flight, weapons, and sensors at the same
environment; (2) provision of a low-cost level at which they are controlled by TAS
interface for human pilots; (3) knowledge agents. Easily being able to control
acquisition methodology; and (4) ModSAF vehicles at this level of detail, and
documentation tools and methodology. on any workstation, has proven to be quite
These topics are covered in turn here. useful in testing and experimenting with

TAS agents are now able to act as full
participants within the DIS battlefield
simulation environment.  The key to this has

3been the use of ModSAF 1.0 (Calder et al, Soar is currently implemented in C − as is
ModSAF − without which this integration would1993) as an intermediary between Soar and
have been considerably more difficult.



TAS agents.  However, the HIP clearly can’t goals, integrating information from multiple
completely replace the functionality of sources about multiple agents,
higher fidelity (and cost) flight simulators. communication and coordination, episodic

memory, and reconstructive self-descriptionWith respect to knowledge acquisition,
and self-explanation.the most important development has been

the opening of the WISSARD laboratory at The basic TAS agent is coded within
Oceana Naval Air Station (in Norfolk, VA). Soar via 145 operators, where each operator
The lab contains two high fidelity (dome) corresponds to a task (or goal) at some level
aircraft simulators; two medium fidelity of granularity. In terms of rules, the
aircraft simulators; plus workstations for implementation involves approximately
running ModSAF, TAS, and several 1,500. Most of these rules are responsible
visualization and analysis tools. The for proposing, selecting, and applying the
laboratory has enabled us to add to the operators, but some do perform other tasks
standard knowledge acquisition (such as encoding perceptual input, and
methodologies the ability to watch, tape, and elaborating state descriptions). The
log, engagements among human pilots (both debriefing capability adds another 80
official "subject matter experts", as well as operators, amounting also to approximately
operational pilots), and engagements 1,500 rules.  So the combined system
between human pilots and TAS agents. consists of 225 operators and approximately

3,000 rules.  The natural languageWith respect to documentation, we have
capabilities that are currently being addeddeveloped substantial portions of a three
utilize an additional 56 operators, andlayer hypertext document that links together:
approximately 900 rules.  Note that these(1) knowledge about the domain (as
operator and rule counts are all "beforeextracted from books, experts, etc.); (2) a
learning", as learning can increase both thedescription of the structure and content of
number of rules and the number ofTAS; and (3) the actual rules that comprise
operators.TAS (Koss & Lehman, 1994). This

documentation has been developed within Beyond the agent itself, progress has
NCSA Mosaic, a distributed, multi-media, also been made on building an infrastructure
hypertext system. It is expected to facilitate to support research and development on
understanding and validation of the intelligent automated agents for tactical air,
knowledge and code embodied in the and beyond.
automated agents. Plans for the coming year include

completing 2v2 BVR tactical air, and
transitioning TAS from tactical air to closeSummary and Future
air support (a form of air-to-ground

TAS is now capable of performing engagement). We also expect to have
competently in beyond-visual range tactical- planning, learning, and plan recognition
air scenarios containing up to three working routinely in TAS, and to have
interacting aircraft.  Moreover, it can do so limited amounts of natural language also in
while flying two types of aircraft in service routine use. Meanwhile, incremental
of three types of missions. It can also improvements are expected to continue on
participate in interactive post-mission the infrastructure for research and
debriefings about its engagements. development.

These various capabilities arise from
combining knowledge about the tactical air
domain with a set of "intelligent" abilities
embodied by TAS for knowledge-based
decision making, reactive real-time
interaction, coping with multiple interacting



simulators. Proceedings of the ThirdAcknowledgment
Conference on Computer Generated

This research was supported under Forces and Behavioral Representation.
subcontract to the University of Southern Orlando, FL.  pp. 33-42.
California Information Sciences Institute Jones, R. M., Laird, J. E., Tambe, M., &
from the University of Michigan, as part of Rosenbloom, P. S.  1994. Generating
contract N00014-92-K-2015 from the behavior in response to interacting goals.
Advanced Systems Technology Office Proceedings of the Fourth Conference on
(ASTO) of the Advanced Research Projects Computer Generated Forces and
Agency (ARPA) and the Naval Research Behavioral Representation. Orlando, FL.
Laboratory (NRL).  Critical support has Koss, F. & Lehman, J. F.  1994. Knowledge
been provided by Dennis McBride of acquisition and knowledge use in a
ARPA/ASTO; Tom Brandt, Bob Richards, distributed IFOR project. Proceedings of
and Ed Harvey of BMH Inc.; Andy the Fourth Conference on Computer
Ceranowicz and Joshua Smith of Loral Inc.; Generated Forces and Behavioral
and David Keirsey of the Hughes Aircraft Representation. Orlando, FL.
Co. Laird, J. E. & Jones, R. M.  1994.

Coordinated behavior of computer
References generated forces in TacAir-Soar.

Proceedings of the Fourth Conference onAnderson, J. R., Boyle, C. F., Corbett, A. T.,
Computer Generated Forces and& Lewis, M. W.  1990.  Cognitive
Behavioral Representation. Orlando, FL.modeling and intelligent tutoring.

Laird, J. E., & Rosenbloom, P. S.  1990.Artificial Intelligence , 42, 7-49.
Integrating execution, planning, andCalder, R. B., Smith, J. E., Courtemanche,
learning in Soar for externalA. J., Mar, J. M. F., & Ceranowicz, A. Z.
environments. Proceedings of the Eighth1993. ModSAF behavior simulation and
National Conference on Artificialcontrol. Proceedings of the Third
Intelligence. Boston: AAAI, MIT Press.Conference on Computer Generated
pp. 1022-1029.Forces and Behavioral Representation.

Lehman, J. F., Lewis, R. L., & Newell, A.Orlando, FL: Institute for Simulation &
1991. Integrating knowledge sources inTraining. pp. 347-356.
language comprehension. Proceedings ofJohnson, W. L.  1994. Agents that explain
the Thirteenth Annual Meeting of thetheir own actions. Proceedings of the
Cognitive Science Society. Hillsdale, NJ,Fourth Conference on Computer
Erlbaum. pp. 461-466.Generated Forces and Behavioral

Newell, A.  1990. Unified Theories ofRepresentation. Orlando, FL.
Cognition. Cambridge, MA:  HarvardJohnson, W. L.  1994. Agents that learn to
University Press.explain themselves. Proceedings of the

Rosenbloom, P. S., Laird, J. E., & Newell,Twelfth National Conference on Artificial
A. (Eds.) 1993. The Soar Papers:Intelligence. Seattle: AAAI, In press.
Research on Integrated Intelligence.Jones, R. M. & Laird, J. E.  1994. Multiple
Cambridge, MA:  MIT Press.information sources and multiple

Rubinoff, R. & Lehman, J. F.  1994. Naturalparticipants: Managing situational
language processing in an IFOR pilot.awareness in an autonomous agent.
Proceedings of the Fourth Conference onProceedings of the Fourth Conference on
Computer Generated Forces andComputer Generated Forces and
Behavioral Representation. Orlando, FL.Behavioral Representation. Orlando, FL.

Schwamb, K. B., Koss, F. V., & Keirsey, D.Jones, R. M., Tambe, M., Laird, J. E., &
1994. Working with ModSAF: InterfacesRosenbloom, P. S. 1993. Intelligent
for programs and users. Proceedings ofautomated agents for flight training



the Fourth Conference on Computer intelligence techniques in the areas of
Generated Forces and Behavioral computer-based training and software
Representation. Orlando, FL. engineering. His current projects are

Tambe, M. & Rosenbloom, P. S. 1994. developing tools that automate the
Event tracking in complex multi-agent generation of software documentation, and
environments. Proceedings of the Fourth that explain the problem solving of
Conference on Computer Generated intelligent agents.
Forces and Behavioral Representation. Randolph M. Jones received his Ph.D.
Orlando, FL. in information and computer science from

van Lent, M. & Wray, R.  1994. A very low the University of California, Irvine, in 1989.
cost system for direct human control of He is currently an assistant research scientist
simulated vehicles. Proceedings of the in the Artificial Intelligence Laboratory at
Fourth Conference on Computer the University of Michigan.  His primary
Generated Forces and Behavioral research interests lie in the areas of
Representation. Orlando, FL. intelligent agents, problem solving, machine

Ward, B. May 1991. ET-Soar: Toward an learning, and psychological modeling.
ITS for Theory-Based Representations. Frank V. Koss is a systems research
Doctoral dissertation, School of Computer programmer in the Artificial Intelligence
Science, Carnegie Mellon University, Laboratory at the University of Michigan,

where he is developing the interface
Biographies between the Soar architecture and the

ModSAF simulator.  He received his BS inPaul S. Rosenbloom is an associate
computer engineering from Carnegie Mellonprofessor of computer science at the
University in 1991 and his MSE in computerUniversity of Southern California and the
science and engineering from the Universityacting deputy director of the Intelligent
of Michigan in 1993.  He is a member ofSystems Division at the Information
IEEE and AAAI.Sciences Institute.  He received his B.S.

John E. Laird is an associate professordegree in mathematical sciences from
of electrical engineering and computerStanford University in 1976 and his M.S.
science and the director of the Artificialand Ph.D. degrees in computer science from
Intelligence Laboratory at the University ofCarnegie-Mellon University in 1978 and
Michigan. He received his B.S. degree in1983, respectively. His research centers on
computer and communication sciences fromintegrated intelligent systems (in particular,
the University of Michigan in 1975 and hisSoar), but also covers other areas such as
M.S. and Ph.D. degrees in computer sciencemachine learning, production systems,
from Carnegie Mellon University in 1978planning, and cognitive modeling.  He is a
and 1983, respectively.  His interests areCouncillor of the AAAI and a past Chair of
centered on creating integrated intelligentACM SIGART.
agents (using the Soar architecture), leadingW. Lewis Johnson is a project leader at
to research in problem solving, complexthe University of Southern California
behavior representation, machine learning,Information Sciences Institute, and a
cognitive modeling.research assistant professor in the USC

Jill Fain Lehman is a research computerDepartment of Computer Science. Dr.
scientist in Carnegie Mellon’s School ofJohnson received his A.B.  degree in
Computer Science. She received her B.S.linguistics in 1978 from Princeton
from Yale in 1981, and her M.S. and Ph.D.University, and his M.Phil. and Ph.D.
from Carnegie Mellon in 1987 and 1989,degrees in computer science from Yale
respectively. Her research interests span theUniversity in 1980 and 1985, respectively.
area of natural language processing:He is interested in applying artificial



comprehension and generation, models of
linguistic performance, and machine
learning techniques for language acquisition.
Her main project is NL-Soar, the natural
language effort within the Soar project.

Robert Rubinoff is a postdoctoral
research fellow in Carnegie Mellon’s School
of Computer Science. He received his B.A.,
M.S.E., and Ph.D.  from the University of
Pennsylvania in 1982, 1986, and 1992,
respectively; his dissertation research was
on ‘‘Negotiation, Feedback, and Perspective
within Natural Language Generation’’.  His
research interests include natural language
processing, knowledge representation, and
reasoning. He is currently working on
natural language generation within the Soar
project.

Karl B. Schwamb is a Senior
Programmer Analyst on the Soar Intelligent
FORces project at the University of
Southern California’s Information Sciences
Institute. He is primarily responsible for the
maintenance of the Soar/ModSAF interface
software described in this article.  He
received his M.S. in Computer Science from
George Washington University.

Milind Tambe is a computer scientist at
the Information Sciences Institute,
University of Southern California (USC)
and a research assistant professor with the
computer science department at USC. He
completed his undergraduate education in
computer science from the Birla Institute of
Technology and Science, Pilani, India in
1986. He received his Ph.D. in 1991 from
the School of Computer Science at Carnegie
Mellon University, where he continued as a
research associate until 1993. His interests
are in the areas of integrated AI systems,
and efficiency and scalability of AI
programs, especially rule-based systems.


