Event Tracking for an Intelligent Automated Agent

Milind Tambe and Paul S. Rosenbloom
Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, CA 90292
Email: {tambe, rosenbloom}@isi.edu

Abstract: In a dynamic, multi-agent environment, an
automated intelligent agent is often faced with the
possibility that other agents may instigate events that
actually hinder or help the achievement of its own goals.
To act intelligently in such an environment, an
automated agent needs an event tracking capability to
continually monitor the occurrence of such events and
the temporal relationships among them. This capability
enables an agent to infer the occurrence of important
unobserved events as well as obtain a better
understanding of interaction among events. This paper
focuses on event tracking in one complex and dynamic
multi-agent environment: the air-combat simulation
environment. It analyzes the challenges that an
automated pilot agent must face when tracking events in
this environment. This analysis reveals some novel
constraints on event tracking that arise from complex
multi-agent interactions. The paper proposes one
solution to address these constraints, and demonstrates it
using a simple re-implementation of an existing
automated pilot agent.

1. Introduction

An automated intelligent agent pursuing its
goals in a dynamic, multi-agent environment
often encounters a large number of events that
significantly impact the actions it takes to
achieve its goals. Some of these events may
be instigated by the agent itself. Others may
be instigated by other agents as they pursue
their own goals, which may conflict or
coincide with the goals of this agent. As time
marches on, these events continue to unfold.

To act intelligently in a world that is rapidly
moving by, the automated agent needs to
monitor the occurrence of events in its world
and monitor the temporal relationships among
them (e.g., the particular sequence in which
they occur). This information is essential for a
variety of reasons. For instance, this
information can be wused to infer the
occurrence of important unobserved events.
Consider the following example from the
simulated air-combat domain [5]. This
domain involves simulated air combat, where

the intelligent agents act as automated pilots
for the simulated aircraft. These automated
pilots will take part in exercises with human
fighter pilots, where they will aid in tactics
development and training. For effective
performance in this domain, these automated
pilots must, among other things, continually
monitor events in their environment. For
instance, one crucial event is an opponent’s
firing a missile at an automated pilot’s aircraft,
threatening its very survival. Yet, the
automated pilot cannot directly see the missile
until it is too late to evade it. Fortunately, the
automated pilot can monitor the opponent’s
sequence of maneuvers, and infer the
possibility of a missile firing based on them, as
shown in Figure 1. The automated pilot is in
the dark-shaded aircraft and its opponent in the
light-shaded one.

OR[N K| K

Figure 1: Inferring a missile firing event.

Suppose, initially, the two aircraft are
headed as shown in Figure 1-a. After reaching
her missile firing range, the opponent turns her
aircraft to attack heading (a point slightly in
front of the automated pilot’s aircraft, as
shown by a small x in Figure 1-b). In this
situation, the opponent fires a missile. While
the automated agent cannot observe this
missile, based on the opponent’s turn, it can
infer that the opponent may be attempting to
achieve attack heading as part of her missile
firing behavior. Unfortunately, at this point, it
cannot be certain about the opponent’s missile
firing, at least not to an extent where trained
fighter pilots would infer a missile firing.

However, if the opponent subsequently
executes an Fpole maneuver then that
considerably increases the likelihood of a
missile firing. This maneuver involves a
25-50 degree turn away from the attack
heading, as shown in Figure 1-c (it is executed
after firing a missile to provide radar guidance
to the missile, while slowing the closure
between the two aircraft). While at this point
the opponent’s missile firing is still not an
absolute certainty, its likelihood is high
enough, so that trained fighter pilots react as
though a missile has actually been fired. The
automated pilot must react in a similar manner.
Thus, if the opponent engages in this sequence
of turns and changes in heading after reaching
her missile firing range, then the automated
agent can infer a missile firing.

The above example illustrates that an
automated pilot needs to continually monitor
events in its world, such as the opponent’s
turns and her (inferred) missile firing behavior,
and record information about the temporal
relationships among them, so as to react to
them appropriately. We refer to this capability
as event tracking. An event here may be
considered as any coherent activity over an
interval of time. This event may be a low-
level action, such as an agent’s Fpole turn, or
it may be a high-level behavior, such as its
missile-firing behavior, possibly inferred from
a sequence of such turns. The event may be
internal to an agent, such as maintaining a goal
or executing a plan, or external to it, such as
executing an action. The event may be
instigated by any of the agents in the
environment, including the agent tracking the
events, or by none of them (e.g., a lightning
bolt). The event may be observed by an agent,
or simply inferred. Tracking any one of these
events refers to recording that event in
memory, recording the temporal relationship
of that event with other events, and monitoring
the progress of that event.

To understand event tracking in more detail,
it is useful to view it from another perspective.
In particular, event tracking can be viewed as
answering queries of the following form: given
an event E which consists of a set of sub-
events {Eq, E,,..EN} and a set R = {(E; ry E),

(E; r, E,)...} of temporal relationships among
the sub-events, does E occur in the world?
That is, does the set {E4, E,,...EN} occur in the
world so as to satisfy the relationships in R?
While this query type may appear limited in
scope, there are at least two degrees of
freedom that make it powerful, enabling it
support a variety of capabilities. The first
degree of freedom is that there are no
restrictions on the event type E: it can be any
one of the wvariety of event types
(higher/lower-level, observed/unobserved,
etc.) mentioned above. This allows an
automated agent to infer events related to the
behaviors of other agents. Thus, the event E
may be opponent’s missile firing behavior, and
the relevant query may check if an opponent
has engaged in a particular sequence of turns
and changes in heading, after reaching her
missile-firing range. Alternatively, a query
may involve events instigated by different
agents. For example, a query may check if the
automated pilot fired its missile before the
opponent fired a missile at it. Responses to
such queries allow an agent to better
understand event interactions so as to react to
them appropriately.

The second degree of freedom involves the
time at which a query can be presented. In the
most unrestricted form, a query about an event
E may be presented at any time before, during
or after E’s occurrence. In this paper, we will
restrict this degree of freedom: queries about
E may be presented only during the
occurrence of that event. We will refer to these
restricted queries as local queries, and the
unrestricted queries as non-local queries.
Non-local queries may be used in service of
planning and post-hoc explanation, and require
that the system either maintain a long-term
memory of past events or be capable of long-
term prediction of future events.

Thus, the event tracking problem can be
seen as covering a broad spectrum of
problems. One aspect of this problem —
related to inferring events based on other
events — is closely related to plan-recognition
[6,9, 3, 4] and model tracing [2]. Another
aspect of this problem — related to
maintenance of temporal relationships among

events — corresponds to temporal
reasoning [1]. Other aspects of the problem,
corresponding to non-local queries, are related
to planning and explanation.

One possible approach to the event tracking
problem then is to address all its different
aspects individually. An alternative approach
is to treat event tracking as a single problem
with a single, unified solution. We believe it
IS reasonable to work towards such a unified
solution, since it may be able to exploit the
interdependencies involved among the
different aspects of this problem. Therefore,
this is the approach that we take in this paper
(although at present the scope of the problem
is restricted to local queries).

The rest of this paper is organized as
follows: Section 2 analyzes the requirements
for event tracking in the air-combat simulation
domain, revealing some challenging
constraints. Section 3 proposes a solution for
event tracking that addresses these constraints.
The key idea is to exploit the similarity among
the characteristics of the different agents. This
solution is demonstrated using a simple re-
implementation of an automated pilot agent for
air-combat simulation. This automated pilot is
based on a system called TacAir-Soar [5],
which is developed within Soar, an integrated
problem-solving and learning architecture [8].
For the purposes of this paper, we need to
focus only on Soar’s problem space model of
problem solving. Very briefly, a problem
space consist of states and operators. An agent
solves problems in a problem space by taking
steps through it to reach a goal. A step in a
problem space usually involves applying an
operator in the problem space to a state. This
operator application changes the state. If the
changes are what are expected from the
operator application, then that operator
application is terminated, and a new operator
is applied. If the changes do not meet the
expectations, then a subgoal is created. A new
problem space is installed in the subgoal to
attempt to achieve the expected effects of the
operator.

2. Constraints on Event Tracking

The primary constraint on event tracking in
air-combat simulation arises from the fact that
this is a dynamic environment, where agents
continually interact. This continuous
interaction implies that the agents cannot
rigidly commit to performing a fixed sequence
of actions. Instead, they need high behavioral
flexibility and reactivity in order to achieve
their goals. For example, suppose an
automated pilot is tracking an opponent’s turns
and changes in heading while the opponent is
executing its maneuver to fire a missile (see
Figure 1). Suppose just before the opponent
fires its missile (Figure 1-b), the automated
pilot suddenly turns its own aircraft. In
response, the opponent may need to turn its
aircraft again before firing its missile, and its
Fpole (Figure 1-c) may be executed in a
different manner as well. (For detailed
examples of agent interactions in this domain,
see [10].) This dynamic interaction among the
agents leads to the primary constraint on event
tracking in this domain: an agent must be able
to track highly flexible and reactive behaviors
of its opponent(s). This is a challenging
constraint — previous investigations in the
related areas of plan/situation
recognition [6, 9, 4, 3] and model tracing [2]
have not addressed this constraint. In
particular, plan recognition models have not
been applied in such dynamic, interactive
situations, and hence do not address strong
interactions among agents and the resulting
flexibility and reactivity in agent behaviors.

A second related constraint on event
tracking here is that it must occur in real-time
and must not hinder an agent from acting in
real-time. For instance, in Figure 1, if the
automated pilot does not track the missile
firing event in real-time or does not react to it
in real-time, the results could be fatal. The
third and final constraint on event tracking is
that agents must be able to expect the
occurrence of unseen, but on-going events.
This constraint arises from the weakness of the
sensors in this domain an agent must
sometimes track opponent’s actions even
though they are not visible on radar. In
particular, an opponent may drop off (become
invisible from) the automated pilot’s aircraft

during the combat. In such situations,
expectations about the opponent’s location can
help in quickly re-establishing radar contact
with her.

These constraints rule out a variety of
solutions for event tracking. In fact, as a first
try, we attempted to address the event tracking
problem by explicitly recording in memory all
of the events and all of the temporal
relationships ~ among them. In the
implementation of this solution in TacAir-
Soar, if a new event Ey,, was seen to occur
after (or at the same time as) N events
Eq....En, then this was stored in TacAir-
Soar’s memory using N explicit records of the
form: after(g;, Ey4q) (or same-time(E;,
En+1))- Unobserved events such as missile
firings were inferred by using pre-compiled
queries, where each query listed a sequence of
events {E;..Ey} and the temporal
relationships among them. However, this
solution could not satisfy the constraints
outlined above. More specifically, the solution
only recorded events that had already
occurred, and did not generate expectations. It
also caused a slowdown — the automated
pilots were unable to function in real-time.
More importantly, this solution ran into a
problem in inferring unobserved events.
Basically, a small number of pre-compiled
queries were insufficient to capture the range
and complexity of events resulting from the
highly flexible and reactive agent behaviors.
The next section proposes an approach for
event tracking that addresses all of the
constraints outlined above.

3. A Solution for Event Tracking

The key idea in the proposed solution for
event tracking is based on the following
observation. All of the agents in this
environment possess similar types of
knowledge, they have similar goals, and
similar levels of complexity in their behaviors.
In particular, consider an automated pilot
agent in this environment that requires the
ability to track the complex chain of events
corresponding to the flexible and reactive
actions and behaviors of other agents. This
automated pilot itself instigates an equally
complex chain of events corresponding to its

own flexible and reactive behaviors. Thus, the
key idea is that all the knowledge and
implementation level mechanisms that the
automated pilot itself uses in instigating events
may be used in service of tracking events
instigated by other agents.

To understand this idea in detail, it is first
useful to understand how an agent generates
its own flexible and reactive behaviors. For
this we turn to a concrete implementation of an
automated pilot agent (call it A;) in TacAir-
Soar. Figure 2 illustrates the problem spaces
and operators A, employs while it is trying to
get into position to fire a missile. In the figure,
problem spaces are indicated with bold letters,
and operators being applied in italics. In some
problem spaces, alternative operators are also
shown (these are not italicized). In the top-
most problem space, named TOP-PS, A, is
attempting to execute its mission by applying
the execute-mission operator. This is the only
operator it has in this problem space. The
expected effect of this operator is the
completion of A;’s mission, which may be for
example to protect its aircraft carrier. Since
this is not yet achieved, a subgoal is generated.
This subgoal involves the EXECUTE-
MISSION problem-space. There are various
operators available in this problem space to
execute Aj’s mission, including intercept (to
intercept an attacking opponent), fly-racetrack
(to fly in a racetrack pattern searching for
opponents), etc. A, selects the intercept

operator — given the presence of the
opponent, this is the best option available.
Since the intercept is not yet complete, a
subgoal is generated. This subgoal involves
the INTERCEPT problem space, where A,
applies the employ-missile operator. However,
the missile firing range and position is not yet
reached. Therefore, A, applies the
get-missile-lar operator in a subgoal. (LAR
stands for launch-acceptability-region, the
position for A, to fire a missile at its
opponent). This subgoaling continues until the
application of the start-turn operator in the
DESIRED-MANEUVER problem space,
which causes A to turn. Later, the stop-turn
operator is applied to stop the aircraft’s turn

when it reaches a particular heading (called
collision course). This heading will be
maintained until missile firing position is
reached. At that time, the expected effect of
A,’s get-missile-lar operator will be achieved,
and that will be terminated.

EXECUTE-MIssION | TOP-PS

1

INTERCEPT
FLY-RACETRACK

EXECUTE-MISSION

EMPLOY—MISSILE INTERCEPT

CHASE-OPPONENT

GET-MISSILE-LAR | EMPLOY-MISSILE

FINAL-MISLE-MANVER

ACHIEVE-PROXIMITY | GET-MISSILE-LAR
CUT-TO-LS

START-TURN DESIRED-MANEUVER

STOP-TURN

Figure2: A_’s problem space/operator hierarchy.

Thus, by subgoaling from one operator into
another a whole operator/problem-space
hierarchy is generated. This organization
supports reactive and flexible behaviors given
appropriate operator selection and termination
mechanisms [7]. For instance, there is a global
state shared by all of the problem spaces. If
this state changes so that the expected effects
of any of the operators in the operator
hierarchy is achieved, then that operator can be
terminated. All of the subgoals generated due
to that operator are then automatically deleted.
A, can also terminate an operator even if its
expected effects are not achieved (e.g., if
another operator is found to be more
appropriate for a given situation).

Since all of the above operators are used in
generation of Aj’s own actions, they will be
henceforth denoted using the subscript own.

For instance, employ-missile,,,, will denote

the operator A, uses in employing a missile.
Operator,,,, Will be used to denote a generic
operator that A, uses to generate its own
actions. The global state in these problem
spaces will be denoted by state,,,. Problem-
spaces that consist of state,,,, and operator,,,
will be referred to as self-centered problem
spaces. The motivation for using this method
for denoting states, operators and problem
spaces will become clearer below.
3.1. Tracking Other Agent’s Behaviors

Given the similarities between A, and its
opponent, the key idea in our approach to
event tracking is to use A,’s operator
hierarchy to track opponent’s behaviors. To
illustrate this idea, we begin with the
simplifying assumption that A, and its
opponent are exactly identical in terms of
problem spaces and operators at their disposal
to engage in the air-combat simulation task.
Thus, A, can essentially use a copy of its own
problem-spaces and operators to track the
opponent’s actions and behaviors. We will
refer to these copies as opponent-centered
problem spaces. Operators in these problem
spaces represent A,’s model of its opponent’s
operators. These operators are denoted using
the subscript opponent. Thus, the
execute-missiong,onene OPerator is used in
modeling an opponent’s execution of her
mission. Similarly, operator,,,ent is Used to
denote a generic operator used by the
opponent. The global state in these problem-
spaces represents A,’s model of the state of its
opponent, and is denoted by state ,,,pent- We
assume for now that A, can easily generate an
accurate stateqn,onent- (NOte that we will make
a few such assumptions in explaining event
tracking in this section, and address them later
in Section 3.2. Note also that while this section
does not directly describe the operation of an
actual implementation, it is based on an actual
implementation that will be described in
Section 3.3. Basically, the description
presented here will be used to motivate some
representational modification leading up to the
implementation described in Section 3.3.)

To engage in air-combat simulation, it is
possible for A, to execute the two sets of

problem spaces — self-centered and opponent-
centered — in parallel. This will allow A to
generate its own actions with the help of self-
centered problem spaces, and track opponent’s
behaviors with the help of opponent-centered
problem spaces. With the opponent-centered
problem spaces, A, can essentially pretend to
be the opponent. A, can then track the
opponent’s behaviors and actions by
pretending to engage in the same behaviors
and actions as the opponent. In particular, A,
applies operator,, pponent to stateqponents thus
modeling the opponent s actual appllcatlon of
her operator to her actual state. Since A,

modeling the opponent’s action
OPErator yynonent d0€S NOt change stateqynonent:
Instead, if the opponent takes some action in
the real-world, then that change is modeled as
a change in state If this change

opponent-

matches the expected effects of
operatory,nonent: then that effectively
corroborates AJ’s modeling of
Operatorgynonent: OPEratorgpyonent 1S then
terminated.

To understand this in concrete terms,
consider the example in Figure 1.

Specifically, consider the situation just at the
beginning of Figure 1-a. Given our
assumptions above, A, can use an opponent-
centered copy of its set of self-centered
problem spaces from Figure 2 to track its
opponent’s behaviors. Here, the
execute-mission,,,qneye Operator models the
opponent’s execution of her mission. Since the
opponent’s mission is not completed, a
subgoal is generated, where the operator
interceptynoonent 1S applied. This operator
subgoals |nto employ-missileyyponene and S0
on, until start-turng,,,nene 1S applied to
stategpyonent- 1T the opponent actually starts
turnlng, then the operator start-turny,,oent i
corroborated and terminated. he next
operator in this problem space is
Stop-turnypponent: When the opponent actually
stops turning after reaching collision course,
then stop-turnggngnent is corroborated. This is
the situation In Figure 1-a. Right at the
beginning of Figure 1-b, the opponent actually

reaches the
get-missile-lar

missile LAR, and
iIs corroborated and
terminated. o now applies
final-missile-maneuver o onent in the
EMPLOY-MISSILE problem space. This
subgoals into achieve-attack-heading,n,qnent-
This subgoals into start-turng g, nent- When the
opponent actually turns to attack heading as
shown in Figure 1-b,
achieve-attack-heading,,,nen; is corroborated
and terminated. A new operator from the
FINAL-MISSILE-MANEUVERS problem
space — push-fire-buttongngneny — is now
applied. This operator predicts a missile
firing, but it is known that that cannot be
observed. Hence, push-fire-buttong,,nent is
terminated even though there is no direct
observation to support that termination. (This
corroboration without observation requires the
addition of some knowledge that is specific to
opponent-centered problem spaces, i.e., not
copied from self-centered problem spaces.)
This also corroborates and terminates
final-missile-maneuversy,nnent. However, the
resulting missile firing is marked as not being
highly likely. Following that, an Fpole, ponent
operator in the EMPLOY-MISSILE problem
space predicts an Fpole turn. When the
opponent executes her Fpole turn in Figure
1-c, the Fpolegyyonent OPErator is corroborated
and terminated. With this Fpole turn, the
missile firing is now considered as being
highly likely. A, may now attempt to evade
the missile.

Viewing the above in terms of event
tracking, essentially, each operatorgg,qneny i
an event E. The suboperators of
operator,nonent COrrespond to the set {E,
E,.En}, and their sequence of execution
corresponds to the temporal relationships R
among the events. Thus, the execution of
Operatorynonent COrresponds to the dynamic
generation and execution of the query
regarding the event E. This method allows A,
to track events related to behaviors of other
agents without pre-compiling all possible
queries related to those behaviors. However,
this method does face an interesting challenge
when responding to queries involving events

opponent

instigated by different agents. For instance,
consider a query that checks if the automated
pilot fired its missile before the opponent fired
a missile at it. Responding to such a query
requires the execution of an operator in both
self-centered and opponent-centered problem
spaces, which this method does not directly
support. The next section outlines a solution
that facilitates responding to such queries.
3.2. Addressing Constraints

The previous section described a mechanism
for A, to generate its own behaviors while
tracking opponent’s behaviors: A, executes

two sets of problem spaces — self-centered
and opponent-centered — in parallel. This
section analyzes the weaknesses in this
mechanism particularly given the constraints
on event tracking identified in Section 2.

The first constraint on event tracking was for
an agent to track highly flexible and reactive
behaviors of its opponent. The use of
opponent-centered problem spaces with
Operatorgynonent @Nd sStateqpyonent Nelps in
partly addressing this constraint (this was the
motivation behind this approach to begin
with). In particular, operator,,,,en Can be
activated and terminated in the same flexible
manner as operator,,,,. There is complete
uniformity in the treatment of the two types of
operators.

However, one assumption in our description
of event tracking with opponent-centered
problem spaces is that A, can generate an
accurate stateqn,qnen- While this seems like a
highly problematical assumption at first
glance, there are several ways in which this
problem is simplified. First, there are some
strong assumptions that A can make about its
opponent’s state based on the "intelligence"
information. This information may include
things such as the approximate range of the
opponent’s radar, the range and types of
missiles the opponent’s aircraft can carry, and
so on. Based on these strong assumptions, A,
can make further weak assumptions about the
opponent’s state. For instance, based on the
opponent’s radar range, A, can assume that its
aircraft would be visible to the opponent’s
radar at a particular range. This is a weak

assumption because information about the
opponent’s radar range is approximate, and
more importantly, the opponent’s radar may
not be pointed in A,’s direction. So should A,
assume that it is visible on opponent’s radar?
If A, assumes that it becomes visible on
opponent’s radar as soon as the range is
reached, A, may not maneuver to gain
positional advantage. On the contrary, as A,
moves closer and closer to the opponent, the
chances of the opponent seeing it continually
increase, and A, can commit a serious mistake
if it continues to assume that the opponent
cannot see it. Thus, the general problem here
is understanding when to make (nor not make)
such weak assumptions, without committing
serious mistakes.

The solution we are experimenting with is to
inject the weak assumption into stateq o, nen at
the point where the opponent indicates (by
turning her aircraft) that there is likely some
change in her state. The motivation here is to
avoid making the weak assumption too soon,
by triggering it with at least some indication of
a change of state from the opponent. The
injected assumption is verified by
corroborating the resulting operator,,oent
with the opponent’s actual actions. For
instance, if the weak assumption of A, being
visible to the opponent is injected into
stateyynonent: the resulting operator oo nent
indicates that the opponent is likely to turn to
collision course. If the opponent does indeed
turn to collision course, the weak assumption
is considered validated.

Besides the weak assumptions, the second
major issue in stateqn,qnent is the overhead of
computing and maintaining derived
information in state,,,,nen- FOr instance,
assuming for now that A is indeed visible to
the opponent’s radar, statey;,q,ent NE€S to be
elaborated with the information that the
opponent is likely to obtain from her radar.
This includes A,’s heading, altitude, the range
between the two aircraft, target aspect from the
opponent’s perspective (the angle between the
A’s flight path and the opponent’s position)
the angle off from the opponent’s perspective
(the angle between the opponent’s flight path

and A,’s position) and so on. Calculating
angles such as target aspect, angle off etc from
the opponent’s perspective can be very
expensive. Additionally, given the dynamic
nature of the environment, there is a need to
continuously update all of this information to
keep it consistent. For instance, as A, turns,
state,ynonent Nas to be modified to change all
of the information on it regarding A,’s
heading, target aspect and so on.

The problem A, faces here is that opponent-
centered and self-centered problem spaces are
compartmentalized operator hierarchies. This
leads to problems in modeling the strong agent
interactions present in this domain. As one
entity changes in one compartment, there is a
substantial overhead of keeping all the
information consistent with it in (all of the)
other compartments. The solution we are
investigating here is to merge the different
operator hierarchies into a single compartment,
which we will refer to as a world-centered
problem space (WCPS for short). WCPS
eliminates the boundaries between different
self-centered and opponent-centered problem
spaces. Instead, the different operator
hierarchies are maintained within the context
of a single WCPS, with a single world state.
This single world state can now allow
information sharing between state,,,, and
state ,ononent: thus helping to keep it consistent.
For instance, the A,’s range to its opponent is
identical to the opponent’s range to A,. Thus,
the range information, which A, has available
on state,,,, from its radar, can be directly
shared with state,n,onen- AS this range
changes in state,,,, it is automatically updated
in state,nonent- The angle off (target aspect)
from the opponent’s perspective is also shared,
since that turns out to be the target aspect
(angle off) from A,’s perspective. WCPS
encourages such sharing of information, and
thus dramatically reduces the burden of
modeling state ,,,nent-

WCPS also facilitates responding to queries
such as the one discussed at the end of Section
3.1, which checks if the automated pilot fired
its missile before the opponent. In WCPS this
query can be executed by directly executing a

multi-agent
Operatorself-and-opponent’
both state,,, and stateqpnonent

The second constraint on event tracking
relates to A,’s ability to track events in real-
time. One key impact of this constraint is on
the generation of an accurate operator,,,qnent
hierarchy. In particular, this constrains the
amout of time A, can spend in generating an
accurate operator hierarchy: an exhaustive
search is definitely ruled out. This issues is on
the top of our list of items for future work.
The third constraint on event tracking was the
generation of expectations for an unseen, but
on-going event. In WCPS, the application of
an operatoryy,onene IN essence s the
expectation for the opponent to execute a
certain plan or action. Thus, this constraint can
be addressed in a straightforward manner.

Finally, the key assumption in the previous
section was that the automated pilot agent A,
and its opponent are identical. The main
implication of this assumption is that A, can
create a copy of its own operator and problem
space hierarchy to model the opponent. If A,
does have some additional knowledge about
how some of the opponent’s operators differ
from its own, then A, could use those
operators in modeling the opponent, instead of
using copies of its own operators. If A, does
not have this additional knowledge, then A,
will need to model its opponent with
incomplete information, or to learn that
information from observation of the
opponent’s actions.
3.3. A Prototype WCPS-based Agent

An important test of the WCPS model is its
actual application in a dynamic, multi-agent
environment. The task of developing an
automated pilot for the air-combat simulation
domain is tailor-made for this test. The
development of automated pilots in this
domain is currently based on a system called
TacAir-Soar [5], which is being developed
using Soar. TacAir-Soar is a non-trivial
system that includes about 800 rules. We have
implemented a variant of TacAir-Soar that is
fully based on WCPS. To create this variant,
we started with the operators and problem

operator, ie.,
which can operate on

spaces that are used by a TacAir-Soar-based
automated pilot in generating its flexible
actions and behaviors. We then generated (by
hand) a copy of these operators and problem
spaces to model the automated pilot’s
opponent within a single WCPS. The result is
an implementation that is able to track events
while generating expectations. It is also
promising in terms of being more robust in
tracking events that the current TacAir-Soar
implementation. The implementation tracks
opponent’s action and behavior as described in
Section 3.1. Simultaneously, by using WCPS
it reduces the overheads as outlined in Section
3.2. The implementation currently only works
in simple single opponent situations. Work on
extending the implementation to more
complex situations is currently in progress.
4. Summary

This paper makes two contributions. First, it
presents a detailed analysis of event tracking
in the "real-world”, dynamic, multi-agent
environment of air-combat simulation. This
analysis raises some novel issues for event
tracking. The second contribution is the idea of
world-centered problem spaces (WCPS).
WCPS is independent of problem spaces as
such — the key ideas are that an agent treats
the generation of its own behavior and
tracking of others uniformly and that it shares
as much information as possible to avoid
computational overheads. WCPS was used in
(re)implementing automated pilots for air-
combat simulation. The paper also outlined
several unresolved issues in WCPS. Among
them, resolving ambiguity in opponent’s
actions, learning from observation of
opponent’s actions, and so on. We hope that
addressing these issues will help in allowing
WCPS to perform event tracking in a more
robust fashion.
References

1. Allen, J. "Maintaining knowledge about
temporal intervals”. Communications of the
ACM 26, 11 (November 1983).

2. Anderson, J. R., Boyle, C. F., Corbett,

A. T., and Lewis, M. W. "Cognitive modeling
and intelligent tutoring”. Avrtificial
Intelligence 42 (1990), 7-49.

3. Azarewicz, J., Fala, G., Fink, R., and
Heithecker, C. Plan recognition for airborne
tactical decision making. National Conference
on Atrtificial Intelligence, 1986, pp. 805-811.

4. Dousson, C., Gaborit, P., and Ghallab, M.
Situation Recognition: Representation and
Algorithms. International Joint Conference on
Artificial Intelligence, 1993, pp. 166-172.

5. Jones, R. M., Tambe, M., Laird, J. E., and

Rosenbloom, P. Intelligent automated agents

for flight training simulators. Proceedings of

the Third Conference on Computer Generated
Forces and Behavioral Representation, March,
1993.

6. Kautz, A., and Allen J. F. Generalized plan
recognition. National Conference on Artificial
Intelligence, 1986, pp. 32-37.

7. Laird, J.E. and Rosenbloom, P.S.
Integrating execution, planning, and learning
in Soar for external environments.
Proceedings of the National Conference on
Acrtificial Intelligence, July, 1990.

8. Rosenbloom, P. S., Laird, J. E., Newell, A.,
and McCarl, R. "A preliminary analysis of the
Soar architecture as a basis for general
intelligence”. Artificial Intelligence 47, 1-3
(1991), 289-325.

9. Song, F. and Cohen, R. Temporal
reasoning during plan recognition. National
Conference on Atrtificial Intelligence, 1991,
pp. 247-252.

10. Tambe M., and Rosenbloom, P. S. Event
tracking in complex multi-agent environments.
Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral
Representation, May, 1994.

Table of Contents

1. Introduction
2. Constraintson Event Tracking
3. A Solution for Event Tracking

3.1. Tracking Other Agent’sBehaviors

3.2. Addressing Constraints

3.3. A Prototype WCPS-based Agent
4. Summary
References

List of Figures
Figurel: Inferringamissilefiring event.
Figure2: A, sproblem space/operator hierarchy.

