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Society for Com-puter Simulation, 1995. Made available for distribu-tion over the Internet by permission of SCS.Keywords: machine learning, interactive simula-tion, military1 IntroductionThe Soar/IFOR project is developing human-like,intelligent agents that can interact with humans, andwith each other, in battle�eld simulations [10]. Ouragents play a variety of roles such as �ghter pilots, he-licopter pilots, and airspace controllers. The �ghterpilot agents in particular have been successfully de-ployed in large-scale simulation exercises, such as theSynthetic Theater of War (STOW) exercise in Novem-ber, 1994, which modeled a four day battle scenarioinvolving approximately 2000 military vehicles. Au-tonomous agents such as Soar/IFOR agents are ex-pected to continue to play a major role in battle�eldsimulations, which in turn are expected to provide anessential tool for military planning and training in thefuture.Soar/IFOR agents are implemented in Soar, a prob-lem solving architecture that integrates a number ofhuman cognitive functions, including problem solving,perception, and learning [4]. Learning occurs throughthe application of a general mechanism called chunkingthat summarizes the results of processing on subgoals,in the form of rules that can apply to similar sub-goals in the future. This chunking process is a form ofexplanation-based learning EBL [7, 6]. Chunking canlead to speedup in learner performance, and is instru-mental to the learning of new concepts. Some Soarsystems have managed to learn thousands, and evenhundreds of thousands, of chunks[2].From the previous experience with learning in Soar,it was taken as a given that the Soar/IFOR agents

could be made capable of applying chunking in serviceof their performance requirements. The �rst researchquestion that we focus on in this paper is then thefollowing: What kinds of knowledge can Soar/IFORagents learn in the combat simulation environment?In our investigations so far, we have found a numberof learning opportunities in our systems, which yieldseveral types of learned rules. For example, some rulesspeed up the agents' decision making, while other rulesreorganize the agent's tactical knowledge for the pur-pose of on-line explanation generation.Yet, it is also important to ask a second question:Can machine learning make a signi�cant di�erence inSoar/IFOR agent performance? The main issue hereis that battle�eld simulations are a real-world applica-tion of AI technology. The threshold which machinelearning must surpass in order to be useful in this en-vironment is therefore quite high. It is not su�cient toshow that machine learning is applicable \in principle"via small-scale demonstrations; we must also demon-strate that learning provides signi�cant bene�ts thatoutweigh any hidden costs.Thus, the overall objective of this work is to de-termine how machine learning can provide practicalbene�ts to real-world applications of arti�cial intel-ligence. Our results so far have identi�ed instanceswhere machine learning succeeds in meeting these var-ious requirements, and therefore can be an importantresource in agent development. We have conductedextensive learning experiments in the laboratory, andhave conducted demonstrations employing agents thatlearn; to date, however, learning has not yet been em-ployed in large-scale exercises. The role of machinelearning in Soar/IFOR is expected to broaden as prac-tical impediments to learning are resolved, and thecapabilities that agents are expected to exhibit arebroadened.1



2 The Problem DomainSoar/IFOR agents are designed to work within dis-tributed interactive simulations (DIS) of military exer-cises. But unlike conventional \semi-automated" enti-ties in distributed simulations, Soar/IFOR agents arefully capable of autonomous decision making withoutoutside human intervention. They are intended to berealistic models of military agent behavior, so muchso that to an outside observer their behavior is indis-tinguishable from that of people. They must performmost if not all of the functions that human personnelwould be called upon to perform, e.g., to issue and/orunderstand commands, to coordinate their activitieswith friendly forces, and to interpret and respond tothe actions of enemy units. Needless to say, achievingthese goals successfully is a signi�cant achievement forarti�cial intelligence.Soar/IFOR agents interact with distributed simu-lations via the ModSAF simulation package [1]. Eachagent is assigned to a ModSAF simulation of a vehicle,e.g., an aircraft. Soar/IFOR receives inputs from thevehicle, via an abstract interface [8], information sim-ilar to what a human controlling the same vehicle inthe real world would receive, such as position of the ve-hicle, presence of enemy vehicles in the area, etc. TheSoar/IFOR agent interprets the situation based uponthe information received, decides on actions to take,and communicates these to ModSAF as commands forthe vehicle to execute. Some of the details of psy-chomotor control and resource contention are omittedfrom the model, e.g., a Soar/IFOR pilot controls itsaircraft by specifying desired altitudes and headingsinstead of by simulating stick movements. However,these abstractions do not simplify the agents' decisionmaking task.Soar/IFOR has been tested in simulated exercisesincorporating manned simulation devices such as 
ightsimulators, semi-automated forces, as well as auto-mated forces. Soar/IFOR agents are assigned missionsprior to the engagement, and are otherwise left to carryout their missions themselves. Agents are evaluatedaccording to how appropriately they perform in eachindividual engagement.Although such exercises are useful for demonstrat-ing agent capabilities, they do not in themselves en-sure that Soar/IFOR agents meet the needs of po-tential users of distributed simulations. For example,in order for users to be certain that agent decisionmaking is realistic, they need to understand the ra-tionales for the agent's decisions. This has led to thedevelopment of an automated explanation capability,

called Debrief, that enables users to engage agents ina question-answer dialog, in a manner analogous to anafter-action review [3].3 Learning in Soar AgentsThe air-combat simulation environment|by virtueof its complex, real-world characteristics|presentsSoar/IFOR agents with a number of challenging func-tional and performance requirements. There are alsomany ways in which machine learning can help theagents meet these requirements. Chunking in IFORhas been found so far to enable the following func-tional capabilities and performance improvements.� Decision making speeds up over time.� A memory of past episodes is maintained.� Problem solving knowledge is reorganized in orderto support explanation and e�cient execution.� Interpretation of situations and events improvesin quality with experience.A Soar/IFOR agent engages in some of this learn-ing on-line, i.e., while it is engaged in simulated com-bat. Prime candidates for such on-line learning includechunking for speedup, episodic memory and knowl-edge compilation. However, not all learning can orshould occur on line. In particular, some of the learn-ing requires that a Soar/IFOR agent consider the con-sequences of its decisions, explore alternative decisions,and learn from the results. Because of the real-timepressures of air-to-air combat, a Soar/IFOR agent maynot have the free time to engage in such deliberation.Time pressures are certainly not continuous: there canbe momentary lulls in activity that could be used fordeliberation and learning, but as yet are not. Instead,Soar/IFOR agents rely upon o�-line analysis for suchlearning. It waits for the combat situation to termi-nate, so it can analyze past situations without inter-ruption. This enables the agents to explain their rea-soning during after-action review, for example.Learned chunks are applied to future decisions inthe following ways. A chunk learned during an engage-ment may apply later on within the same engagement.It may apply during after-action review of the engage-ment. Finally, chunks created during a mission or dur-ing after-action review are saved so that they can beemployed by agents in future missions and review ses-sions, enabling the agents to learn from accumulatedexperience.



3.1 Speeding Up DecisionsIn much machine learning research, such as [5],speedup is measured by comparing problem solvingtime after learning to problem solving time withoutlearning. Such a measure is inappropriate for learn-ing in Soar/IFOR, because chunking does not yield anoverall speedup, i.e., it does not reduce the overall du-ration of the engagement. In other domains such lackof speedup might be attributable to the high cost ofmatching and retrieving the learned chunks[11]. How-ever, for Soar/IFOR agents, the cost of matching andretrieving learned rules is not much of an overhead.Rather a combination of the following two e�ects areat work. First, combat simulation involves performing(simulated) physical actions and responding to exter-nal events. Learning cannot a�ect the duration of suchactions and events; at best it can reduce the time re-quired to decide on an action or interpret an event.Second, cognitive activity is concentrated in isolatedepisodes, separated by periods of relative inactivity.Speedups in deliberation contribute very little to re-ductions in the overall duration of a scenario. For in-stance, suppose a Soar/IFOR agent decides to launcha missile at an opponent. To that end, it must decidewhich type of missile to employ, and how best to ap-proach the opponent's aircraft. These decisions takeup at most a few seconds. The agent then has to wait,sometimes for up to a minute or more while the op-ponent gets into its missile �ring range. Decision timethus has little or no e�ect on overall time to interceptthe opponent.Although learning has little e�ect on the overall du-ration of engagements, it can make a substantial dif-ference in time-critical situations. In such situations,small delays in an agent's action can jeopardize its sur-vival, or prevent the agent from exploiting momentaryadvantages over an opponent. For instance, when aSoar/IFOR agent �res a missile at its opponent, theopponent may engage in a missile evasion tactic thatcan cause it to break radar contact (disappear from theSoar/IFOR agent's radar). The opponent may thenturn quickly to �re a missile at the Soar/IFOR agent.This is an extremely time-critical situation. Whenthe opponent turns back after its missile evasion ma-neuver, the Soar/IFOR agent obtains a new contact(blip) on its radar. This blip could be the opponent,or perhaps a friendly aircraft who has just arrived inradar range. The Soar/IFOR agent must quickly de-termine the contact's identity, and then launch a sec-ond missile before the opponent �res her missile. Ifthe Soar/IFOR agent is delayed in re-establishing the

opponent's identity, it may get shot down. Chunkingcan enable Soar/IFOR agents to arrive at importantdecisions more rapidly the next time a similar situa-tion is encountered. The end result is that the agentscan survive longer, and �ght better.A possible way of measuring speedup might be tomeasure an agent's reaction time, i.e., the from an ex-ternal event until the agent's response to that event.This presupposes, however, that the stimuli are con-trolled so that there is a clear relationship betweenstimulus and response. However, battle�eld engage-ments are not like controlled laboratory experiments:instead, agents are constantly exposed to a variety ofstimuli, and perform a variety of tasks, often at thesame time. Reducing the amount of time required tointerpret one stimulus often has the indirect e�ect ofenabling the agent to attend to other stimuli that werepreviously overlooked, such as a second opponent thathas just arrived in radar range. This clearly can havean impact on overall agent performance, but in a waythat is di�cult to quantify.3.2 Maintaining an Episodic MemoryIt is useful for Soar/IFOR agents to have an episodicmemory, so that they can recall episodes from previousengagements during after-action review or subsequentmissions. Episodic memory can be regarded as an as-pect of learning, insofar as the problem solver's rea-soning after memory formation is di�erent from thatbefore memory formation. It is instrumental to othertypes of learning: for example, if an agent can recog-nize that the current situation is similar to previoussituations, it can then apply its previous experience tothe new situation.We have found that chunking can be readily em-ployed to address part of the episodic memory prob-lem, namely to learn to recall the circumstances inwhich a given event occurred. That is, when presentedwith a description of an event, chunks �re which recre-ate a description of the world state that prevailed atthat time. Other aspects of episodic memory, such asrecalling what events occurred as part of a given mis-sion, are not as yet handled via chunking; the agentinstead simply records the events that occur in a con-ventional list data structure.The episodic memory mechanism relies on two setsof chunks. The �rst set consists of recognition chunks,which are common in a range of Soar systems. Recog-nition chunks �re in response to some description thatserves as a memory probe, indicating that an instance



matching the probe has been seen before. In theSoar/IFOR case, the memory probe consists of a de-scription of an event, together with a possible statechange. If the state change occurred at the timethe event was observed, the recognition chunk will�re. These recognition chunks are created in a specialepisodic-memory subgoal, which is processed wheneverthe agent notices a signi�cant state change. The sec-ond set of chunks are recall chunks, which recall thecomplete state in which an event occurred, when pre-sented with an event description as a memory probe.The �rst time Soar/IFOR attempts to recall the stateassociated with an event, it �rst tries to �nd an earlierevent for which it can recall a state. It then tries torecall which state changes occurred between the earlierstate and the state of interest. The previously createdrecognition chunks identify the relevant state changes.Once the recall process is complete, a recall chunk iscreated, so that the next time the event is used as amemory probe the state is immediately recalled.Episodic memory illustrates how chunking can serveas an underlying mechanism for a variety of types oflearning besides simple speedup. Such learning mayrequire problem spaces that are specially designed togenerate particular types of chunks such as recognitionchunks or recall chunks.3.3 Reorganizing KnowledgeChunking also enables Soar/IFOR agents to reor-ganize their knowledge. In knowledge based systemsgenerally, the form in which knowledge is encoded de-pends upon how the knowledge engineer intends theknowledge to be used. Learning enables knowledgeencoded for one purpose, i.e., controlling the agent'sbehavior, to be employed for other purposes, e.g., ex-plaining the agent's decisions.Soar/IFOR's interactive explanation capability,called Debrief, makes extensive use of chunking forknowledge reorganization [3]. The agents can explainthe rationales for decisions made during an engage-ment, by relating chosen decisions to the critical fac-tors in the situation that led to those decisions. Theknowledge needed to generate such explanations, i.e.,associations between decisions and sets of situationalfactors, is di�erent from the knowledge used to gener-ate the decisions in the �rst place. For one thing, theprocess of generating the decision may involve inter-nal reasoning mechanisms that are of little interest tosomeone who is not an agent developer. Recognitionchunks are built which identify the key factors leadingto a decision in a given situation. This is accomplished

by reconsidering the decisions after the engagement isover, and proposing hypothetical changes to the situa-tion in which the decision was made. The set of statefeatures that prove signi�cant, because altering themalters the outcome of the decision, is saved in a chunk.If the agent is asked to explain a similar decision in asimilar situation, the recognition chunk will �re iden-tifying those features of the situation that should beincluded in the explanation.Knowledge reorganization also allows knowledge or-ganized for ease of knowledge engineering to be ren-dered in a form suitable for e�cient execution. TheSoar/IFOR project is developing a variety of types ofagents, among which only some knowledge is shared.Rules therefore tend to be factored so as to separatethe shared knowledge from the unshared knowledge.Chunking is used in some cases to combine this knowl-edge into larger agent-speci�c rules, thus reducing thenumber of rules that must execute. This happens be-cause chunking summarizes the results of all rules thatare executed in a subgoal, in the form of a single rulethat represents their combined e�ect. Agent develop-ers are thus free to encode the knowledge in a factoredform, with the expectation that the factored rules willbe combined when they are executed by the agent.3.4 Improving Situation InterpretationsAccurate interpretations of the rapidly evolvingbattle�eld situation is key to a Soar/IFOR agent's suc-cessful task performance. One important componentof such an interpretation is accurate tracking of anopponent's ongoing actions, to infer her higher levelgoals, plans or behaviors. For instance, a Soar/IFORagent cannot actually observe a missile, but needs toinfer a missile �ring based on the opponent's maneu-vers, as shown in Figure 1. Here, the Soar/IFOR agentis piloting the dark-shaded aircraft and its opponentthe light-shaded one. In Figure 1-a the two aircraftare on collision course|if they 
y straight they willcollide at the point shown by x. After reaching hermissile �ring range, the opponent turns her aircraft topoint at the Soar/IFOR agent's aircraft (see Figure1-b). In this situation, the opponent �res a missile.She then turns 45-degrees|an Fpole turn|to provideradar guidance to the missile, while slowing the closurebetween the two aircraft. The Soar/IFOR agent can-not observe this missile, but based on the opponent'sturn to point at its aircraft and the subsequent Fpoleturn, it needs to infer that the opponent has �red amissile.Unfortunately for the Soar/IFOR agents, the hu-



(a) (b) (c)

x x xFigure 1: Tracking an opponent's normal missile �ringmaneuvers. An arc on an aircraft's nose indicates itsturn direction. The missile is indicated by {.man pilots in the STOW-E exercise (see Section 1)were briefed as to what cues Soar/IFOR looks forwhen interpreting opponent actions, and how theymight be able to fool Soar/IFOR by avoiding thesecues. They deliberately modi�ed their missile �r-ing behavior to �re missiles while maintaining a 25-degree angle-o� (i.e., pointing 25-degrees away fromSoar/IFOR agents' aircraft). The Soar/IFOR agentsfailed to track the missile �ring and got shot down. Ofcourse, human pilots are bound to come up with novelvariations on known maneuvers, and the Soar/IFORagents cannot be expected to anticipate them. Yet,at the same time, agents cannot remain in a stateof permanent vulnerability|for instance, getting shotdown each time the variation of 25-degrees gets used|otherwise they would be unable to provide a challeng-ing and appropriate training environment for humanpilots.The Soar/IFOR agents must adapt their opponenttracking to counter such adaptive behavior on the partof humans. To this end, we are developing the ca-pability to analyze the past combat episodes o�-line,and learn from obvious errors. In the above case, theSoar/IFOR agent records in its episodic memory thatit got shot down. Its episodic memory of the com-bat also reveals that it never detected the opponent'smissile �ring behavior. Simultaneously, however, theepisodic memory will note that the agent did face amysterious maneuver that it was unable to track (cor-responding to the missile �ring with a 25-degree angle-o�). Based on this episodic memory, the agent canlearn that the human pilot can �re a missile from a25-degree angle-o�.4 Practical Aspects of Using ChunkingGiven the Soar/IFOR agents' real-world environ-ment, the costs and bene�ts of chunking have to beevaluated from a practical perspective. The key ques-tion here is: Do the bene�ts of chunking outweigh its

costs as it stands today? In this regard, the followingfactors need to be taken into account:1. The Soar/IFOR agents' current knowledge is al-ready encoded in a highly optimized form, so thatthey can rapidly respond to opponents' maneu-vers. It is di�cult for chunking to improve uponsuch decisions, other than to reorganize the en-coded knowledge somewhat, as described above.2. The agents' current knowledge is the result of ex-tensive knowledge acquisition sessions. Some ofthe tactical knowledge gained from these sessionsis highly sophisticated and a result of careful anal-ysis of the capabilities of the opposing forces. Itis di�cult for chunking techniques to reconstruct,much less improve on, this expertise.3. Chunks learned are sometimes highly speci�c|their conditions refer to the agent's current situ-ation in terms of the value of its altitude, speed,range from an opponent, etc. Such chunks do nottransfer (apply) to other similar situations, thusreducing the e�ectiveness of chunking.4. The learning process itself can incur developmentoverhead. Modi�cations to agent code can in-validate previously created chunks. Thus as theagents are modi�ed, training sessions must be runrepeatedly in order to produce an up-to-date setof chunks.The above practical issues in applying chunking,combined with our earlier observations regarding thelack of overall speedups, implies that on-line chunkinghas to be very carefully applied, if at all, in service ofspeedups. We �nd it expedient to turn chunking onwhen the agents are making certain types of decisions,and turn it o� elsewhere.5 Long-Term ProspectsAs development of Soar/IFOR proceeds, new op-portunities continue to present themselves for makingmore extensive use of machine learning, and to em-ploy existing learning abilities in new ways. Episodicmemory is a good example of the latter: once an agenthas the ability to remember previous episodes, a va-riety of possibilities for learning from those episodespresent themselves. As the added capabilities a�ordedby machine learning accumulate, and the costs asso-ciated with learning are mitigated, the bene�ts stem-ming from learning are expected to dominate the coststo a greater and greater extent.
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