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Abstract. 1o multi-ageat envivonments, an intelligent agent often needs to inter-
act with other individuals or groups of agents to achieve its goals. A genr fracking
is one key capability required for intelligent interaction. It involves monitoring the
observable actions of other agents and infering thei unobserved actions, plans,
goals and behaviors. This aticle examines the implications of such an agent
tracking capability for agent architectwes. 1t specifically focuses on real-time and
dynamic enviconments, where an intelligent agent is faced with the challenge of
tracking the highly flexible mix of goal-diiven and reactive behavious of other
agents, in teal-time. The key implication is that an agent architectue needs to
provide ditect support for flexible and efficient reasoning about other agents’
models. 1n this aticle, such suppout takes the foum of an acchitectural capability
to executethe other agent’s models, enabling mental simulation of theiv behavios.
Other architectural requirements that follow include the capabilities for (pseudo-)
sinmltaneous execution of multiple agent models, dynamic shaving and unshaving
of multiple agent models and high bandwidth inter-model communication.

We have implemented an agent architecture, an experimental variant of the Soar
integrated architecture, that conforms to all of these requitements. Agents based
on this architecture have been implemented to execute two different tasks i a
real-time, dynamic, multi-agent domain. The aticle presents experimental results
illustrating the agents’ dynamic behavior.

1 Introduction

In a multi-agent environments, intelligent agents often need to interact with each other,
eithercollaboratively or non-collaboratively, to achieve their goals. Many of these multi-
agent domains are real-time and dynamic, requiring the interaction to be highly flexible
and reactive, as well as real-time. Examples of such environments include applications
in arenas such as education, entertainment, and training. For instance, in the education
arena, intelligent tutoring systems need to interact with students in real-time[32]. In
the arena of entertainment, recent work has focused on real-time, dynamic interactivity
among multiple agents within virtual reality environments[5, 12, 17]. Similarly, in the
arena of training, there is a recent thrust on dy namic, real-time interactive simulations[24,
26, 33]. In these simulations, humans may interact with tens or hundreds of intelligent
agents, as they participate in realistic traffic environments that simulate traffic jams



and pedestrians[8], or air-traffic control environments that simulate multiple aircraft
on airfields[19], or large-scale combat environments that simulate friendly and enemy
troops[30]. Such real-time interaction is also seen in robotic environments, particularly
in wotk such as rebotic collaboration without communication[16].

In all these environments, agent tracking is a key capability required for intelligent
interaction. It involves monitoring other agents’ observable actions and inferring their
unobserved actions or high-level goals, plans and behaviors. This capability is important
in both collaborative and non-collaborative settings. Certainly, in non-collaborative
settings, it is usually not in a competitot s intetest to directly communicate its goals and
plans to an agent — the agent thus needs to infer them to compete effectively. Even in
collaborative settings, such communication may not be possible due to the cost or the
risk involved, the lack of a common communication language, or inexpressivity of the
common cominunication language; creating a need for an agent tracking capability for
cffective collaboration[14].

This agent tracking capability is closely related to plan recognition, which involves
recognizing agents’ plans based on observations of their actions[15, 2, 23]. One key
difference is that plan-recognition effotts typically focus on tracking a narrower (plan-
based) class of agent behaviots, as seen in static, single-agent domains. In particulat,
they assumne that agents rigidly follow plans step-by-step. Agent tracking, in contrast,
can involve tracking a broader mix of goal-driven and reactive behaviors. This capability
is important for dynamic environments where agents do not rigidly follow plans.

This article discusses the implications of such an agent tracking capability for
agent architectures — specifically, ways in which an architecture may facilitate agent
tracking.! Why seck architectural support for this capability? There arc at least two
key reasons. First, agent tracking is a ubiquitous capability in multi-agent worlds.
As discussed above, irrespective of whether agents are engaged in collaborative or
competitive activity, agent tracking is essential to their interaction. It would be more
efficient to provide architectural support for such a capability. Second, recent research in
the fields of cognitive and developmental psychology has focused on the theory of mind
hypothesis[4]. This hypothesis suggests that an innate (neurocognitive) capability has
evolved to enable humans to ascribe mental states to others[3]. This research appears
to indicate that automated intelligent agents would be well-served by an architectural
capability to reason about other agents’ mental states.

The article begins with an analysis (in Section 2) of some of the key requirements
for agent tracking in real-time, dynamic environments. This analysis is based on tasks
in a real-world, multi-agent environment and assumes that an agent is situated in the
environment, as it tracks other agents while simultaneously interacting with them. Key
requirements revealed by this analysis include:

1. Tracking other agents’ highly flexible mix of goal-driven and reactive behaviors.

. Recursively tracking its own actions from the perspective of other agents, so as to
understand their impact on the other agents’ behaviors.

3. Tracking groups of other agents, possibly acting in coordination.
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! This atticle is based on our previous wotk on agent tracking[28, 25]. However, it focuses mainly
o architectural implications of that wouk, vather than the tracking capability itself.



4. Simultaneously tracking and reacting to other agents’ actions.
5. Tracking other agents’ activities in real-time, while resolving ambiguities.

Section 3 presents an approach to agent tracking that addresses the first item above:
tracking flexible and reactive behaviors. The approach is based on the model tracing
technique used in intelligent tutoring systems (ITS) for tracking student actions[1, 32].
To track the activities of a student, an I'TS executes a model of that student to generate
predictions. Ttracking proceeds by matching these predictions with actual observations.
However, as with plan recognition, previous ITS work has primarily focused on static
environments.> This article describes the application of model tracing in real-world
dynamic tasks, where agents exhibit a complex mix of goal-driven and reactive behav-
iors. Section 3 illustrates that in tracking such behaviors, one key implication for agent
architectures is the capability to execute models of other agents. That is, an architecture
must not only generate an agent’s own behaviors; it must, in addition, execute models
of other agents.

Section 4 discusses the architectural implications of the next two issues from the
above list: recutsive agent tracking and agent-group tracking. Recursive agent tracking
requites an architecture to support the execution of the agent’s recursive model, i.e., an
agent’s model of some other agent’s model of itself (the original agent). For example,
to recursively track an agent D, its architecture needs to be capable of executing its
(D’s) model of some other agent’s model of itself (D). Similarly, tracking agent-groups
requires the architecture to be capable of execution of an agent’s models of all of
the different agents in a group. Unfortunately, the recursive tracking of a large group
of agents can involve the execution of a large number of models. In particular, the
presence of N other agents and r levels of tecursively nested models may create a need
for tracking an exponential number (O(N™)) of models. Since this computational cost
is unacceptable, especially in real-time envirommnents, an architecture needs to suppott
heuristic optimizations such as mode! sharing to reduce the number of models it has to
execute. Thus, an agent architecture may need the capability to share multiple similar
models. Such shared models may need to be dynamically unshared when they grow
dissimilar.

Section 5 discusses the fourth item on the list: simultancous tracking and react-
ing. This requires an architecture to be capable of (pseude-)simultaneous execution of
multiple models, essentially to simulate the simultaneity in agents’ actions in the world.

The fifth and final item on the above list is one of real-time tracking with accurate
tesolution of ambiguities. This article will only briefly touch upon this last item. Previ-
ous model tracing and plan recognition systems have certainly dealt with the problem of
ambiguity resolution — although, many of these solutions are not necessarily intended
for real-time environments[28, 27]. Elsewhere, we have presented an approach called
RESC (for REal-time Situated Commitments), that builds upon the technique from Sec-
tion 3, and aims to resolve ambiguities in real-time[28]. The architectural implications
of agent tracking described in this atticle are not dependent on RESC. Nonetheless, we

2 Thete are some ecent 1TS applications that have ventured into dynamic envitonments, e.g.,
REACTI[13], but they still primacily vely upon a plan-diiven tracking stiategy, dealing with the
dynamic aspects as exceptions.



briefly describe RESCin the following as an example technique for real-time ambiguity-
resolution: RESC’s situatedness is based on its ability to continuously track the other
agents’ actions in the current world state. Despite the ambiguities it faces, RESC quickly
commits to a single interpretation of the otheragents’ on-going actions — there is noex-
haustive examination of alternatives. These comunitments constrain future tracking and
interpretation. Thus, comumitments in RESC play the same constraining role in tracking,
as they do inconstraining planning in some plan-based architectures, such as IRMA[6].
With additional information becoming available latet, these commitments may turn out
to be inapptopriate. In such cases, the interpretations are revised in real-time, via an
on-line repair mechanism. RESC’s real-time character detives from its situatedness, its
quick commitments, and its on-line repair.

Section 6 presents an implementation of an agent architecture, a variation on the
Soar integrated architecture[18, 22], that conforms to the requirements cutlined above.
In our descriptions, we assume some familiarity with Soar’s problem-solving medel,
which involves applying operators to states to reach a desired state. Section 6 also
presents experimental results illustrating the dynamic behavior of agents based on this
architecture. Section 7 presents related work, and Section 8 concludes.

2 Agent Tracking in a Real-world Setting

Our investigation of agent tracking is based on an on-going effort to build intelligent
pilot agents for a synthetic combat environment[26]. This environment is based on a
commercially developed simulator called ModSAF[7], which has already been used
in an operational military exercise involving human participants. ModSAF provides
a synthetic yet real-world setting for studying a broad range of challenging issues in
agent tracking. Given the real-world nature of this environment, we expect that lessons
learned here from analysis of agent tracking will be breadly applicable to other real-
time, dynamic multi-agent environments, such as the ones discussed at the beginning of
Section 1.

For an illustrative example of agent tracking in this combat simulation environment,
consider fitst the ait-to-air combat scenario in Figure L, involving fighter jets. The pilot
agent L in the light-shaded aircraft is engaged in combat with pilot agents D and E in
the dark-shaded aircraft. Since the aircraft are far apart, L can only see its opponents’
actions on radar {and vice versa). In Figure 1-a, L observes its opponents turning their
aircraft in a coordinated fashion to a collision course heading, i.e., with this heading,
they will collide with L at the point shown by x. Since the collision course maneuver
is often used to approach one’s opponent, L. infers that its opponents are aware of its
(L’s) presence, and are trying to get closer. Given a highly hostile environment, L may
also infer that opponents are closing in to fire their missiles. However, L has a missile
with a longer range, so L reaches its missile range first. L then tutns its aircraft to point
straight at D’s aircraft and fires a radat-guided missile at D (Figute 1-b). Subsequently, L
executes a 35° fpole turn away from D’s aircraft (Figure 1-c), to provide radar guidance
to its missile, while slowing its rate of approach to the enemy aircraft.

While neither D nor E can observe this missile on their radar, they do observe L’s
pointing turn followed by its fpole turn. They track these to be part of L’s missile firing
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Fig. 1. Pilot agents D and E are engaged n combat with L. An arc on an awvcraft’s nose shows its
turn divection.

behavior, and infer a missile firing. Therefore, they attempt to evade this missile by
executing a 90° beam turn (Figure | -d). This causes their aircraft to becone invisible
to L’s radar. Deprived of radar guidance, L’s missile is rendered harmless. Meanwhile,
in Figure |-d, L tracks its opponents’ coordinated beam turn (even while not seeing the
complete turn). L then prepares counter-measures in anticipation of the likely loss of
both its missile and radar contact.

Thus, the pilot agents need to continually engage in agent tracking. They need to
track their opponents” actions, such as turns, and infer unobserved actions and high level
goals and behaviors, such as the fpole, beam or missile firing behaviors. Agent tracking
in this real-time, dynamic, multi-agent environment can be seen to raise the key issues
outlined in Section 1. More specifically:

L. Tracking flexible and reactive behaviors: Pilot agents must track other agents’
highly flexible mix of goal-driven and reactive behaviors. For instance, in Figure 1,
pilot agents need to track each othet’s continuous reactions. Indeed, if D and E had
executed a 90° pre-emptive beam turn prior to Figure [-b, L would have needed to
track that and react by not going through with its missile firing.

. Recursive agent trackin g: Pilot agents continually influence each other’s behaviors,
creating a need for recursive tracking. For instance, in Figure 1-d, to successfully
track D’s beam, L. must also recursively track how D is likely to be tracking L’s
own actions — that D is aware of L’s missile firing, and it is beaming in response.

3. Agent group tracking. An agent may nheed to track coordinated (or uncoordinated)
activities of a group of agents, e.g., as just seen, L. needed to track two coordinated
opponents.

4. Simultaneous acting andtracking: As participants in their environment, pilot agents
must track opponents’ maneuvers and simultaneously react appropriately. For in-
stance, I and E need to track L’s behaviors, as they maneuver their own aircraft.

5. Real-time ambiguity resolution: Pilot agents need to resolve ambiguities in other
agent’s actions in real-time. To survive in the scenario presented in Figure 1, D and
E need to correctly interpret L’s missile firing in real-time, although alternative
intetpretations of L’s tutns ate possible.

I~

Many of these same challenges also coine up in other tasks in the combat simulation
environment. For example, one such task involves a team of helicopters trying to
follow a flight plan, as shown in Figure 2-a. Here, as a participant in the team activity,
a subordinate may be required to track the leader (in the front) and possibly other
members, to detect distinct changes in their nethod of flight, €.g., following the ground



contout, flying nap-of the earth, or flying steady altitude[29], or to avoid collisions with
teammates, especially when they are about to break formation. At a specified (holding)
point {shown by X), the leader and other members may start hovering, an indicationto all
the teammates that they should wait at that point. The leader then pulls ahead, examines
the forward area (Fig 2-b), and returns to its teammates to bring them forward. Here, its
return may indicate to the teammates that they should get ready to start following (Fig
2-¢). The leader may not be able to verbally communicate all such information, since the
mission may requite radio silence to avoid detection by enemy forces. It then becomes
essential for an intelligent agent to infer relevant information (e.g., that the team has
reached the holding area) from observation of the actions of individual team members.
Thus, agent tracking in this context of helicopters also raises some of the issues outlined
above such as tracking groups of agents, tracking their flexible and reactive behaviors,
as well as simultaneous tracking and acting.
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Fig. 2. A simulated combat scenavio involving a team of helicopters.

3 Tracking Flexible and Reactive Behaviors

Our basic approach for tracking an agent’s actions is to execute a model of that agent,
while matching the model’s predictions against the agent’s actual actions. To track an
agent’s hehaviots in a dynamic environment, it is necessary to be able to execute that
agent’s model in a flexible fashion — the execution must be responsive to the dynamic
changes in the world situation. One key observation here is that the agent doing the
tracking is itself a participant in the environment: it is capable of the rich flexible and
reactive behaviors required in this environment. That is, its architecture can execute such
behaviors in this enviromment. Therefore, this architecture may be reused to execute a
model of another agent, to allow for flexible and reactive model execution. There is
thus uniformity in an agent’s generation of its own behaviors, and its tracking of other
agent’s behaviors.

To undetstand the above in concrete tetins, consider the fighter-jet air-combat sce-
natio in Figute 1. Here, D may track its opponent L’s actions, by utilizing uniformity
in acting and tracking. (The following description assuines agents implemented in the
Sear architecture, although the key concept of uniformity in acting and tracking is not
specific to Soar.) D’s internal state and operator hierarchy are as depicted in Figure 3-a.
D’s internal state maintains information regarding mission specifications, and receives



input from its radar sensor. Based on the state, D makes appropriate operator selec-
tions to generate the desired behavior in its external environment. Here, it has selected
execute-mission as the top operator. Since the termination condition of this operator —
completion of D’s mission — is not yet achieved, a subgoal is generated. The intercept
operator is selected in that subgoal. In the following subgoal, the employ-missife opera-
tor is selected. The subgoal after that applies get-firing-position to get to a missile firing
position. Skipping down to the final subgoal, maintain-heading enables D to maintain
heading, as seen in Figute 1-b. The operators in Figure 3-a used for generating D’s own
actions will hencefotth be denoted with the subscript DD, e.g., inferceptpy. Operatorpy
will denote an atbitrary opetator of D). Statepy will denote the state. Togethet, statepy
and the operatotyy hierarchy may be considered as D’s model of its present self, referred
to as modelpy.
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Fig. 3. (a) Modelp, (b) Modelp,. Solid lines indicate the actual operator hievarchy; dashed lines
indicate unselected alternatives, e.g., run-eway 1s an alternative to infercept.

Modelpy supports D’s flexible/reactive behaviots via its embedding within Soar;
and in particular, via two of Scar’s architectural features: (i) a decision procedure that
supports flexibility by integrating all available knowledge about preferences among
candidate operators before deciding to commit to a single operator; (ii) termination
conditions for operators that support reactivity by terminating operators in response
to the given situation[22]. These architectural features get reused when other agents’
models are executed on the same architecture. To illustrate this re-use, we assume for
now that D and L. possess an identical set of maneuvers.? Thus, D uses a hierarchy such

¥ This is not a necessary condition. The main tequitement is for a reasonably accurate model of
the other agent’s possible maneuvers. Bounded deviations fiom this model, e.g., differences in



as the one in Figure 3-b to track L’s behaviors. Here, the hierarchy represents D’s model
of L’s current operators in the situation of Figure |-b. These operators are denoted with
the subscript DL. The operatorpyy, hierarchy, along with the statepyy, that goes with
it, constitute D’s medel of L or modelyy,. Modelpy, obvicusly cannot influence L’s
actual behavior. For instance, in the final subgoal D has applied the start-&-maintain-
turny, opetator to statepy ,. This opetator cannot cause L to turn. It predicts L’s turn
and matches the prediction against L’s actual action. Thus, if L starts turning to point
at D’s aircraft, then thete is a match with modely 1,’s predictions. Given this match, D
now believes L is turning to point at its tatget, (i.e., D), to fire a missile, as indicated by
other highet-level operators in the hieratchy. D tracks L’s behaviots in this manner by
continuously executing the operatorpy 1, hierarchy, and matching it with L’s actions.
Thus, D’s architecture, in addition to generating its own behaviors via execution
of modelpy, gets reused to track other agents’ behaviors via execution of models such
as modely1,. This provides the tequisite functionality for flexible and teactive model
execution. In particulat, operatory and operatory, ate selected and terminated in the
same flexible manner. For instance, as statepy, changes, an opetatorpyy, tetminates
if its termination conditions are satisfied, and new operatorspyp, get selected. Thus,
execution of modelpy 1, can be sensitive to dynamic changes in the world situation.

4 Recursive Agent and Agent-Group Tracking

The apptoach presented in the ptevious section may be extended in a straightforward
manner for both recursive agent tracking and agent-group tracking. The key isto execute
apptoptiate agent models[25]. Recursive tracking requires the execution of a recutsive
model. Consider, for instance, D’s recursive tracking in Figure |. D can recursively
track its own actions from L’s perspective, by executing modelpyy 1y (D’s model of L’s
moedel of D). Modelpyp, 1y consists of a statery,y and an operatorpyy,py hierarchy. D
tracks modely, 3 by matching operatorpy,y predictions with its own actions. Thus,
if D were to engage in a beampy after a missile firing, it would be D’s recutsive tracking
of beampy 1, which would indicate a missile evasion maneuver to modelpyy,. Further
nesting of recursive models could lead to modelpy 1,31, modelpy 1, p 1> €t

Tracking a groups of agents requires the execution of the models of the different
agents in the group. Thus, to track a group of opponents in Figure |, D can execute
its models of different individual opponents. For instance, suppose a second opponent,
J, joins L in attacking D and E. D can track J’s actions just as it tracked L’s actions,
by executing new models, such as modelpy y and medely - [n addition, it may also
execute others such as modely y1,, modelpyy, 7, modely 1,71, and so on. These models
may be important to track Js interactions with L.

Unfortunately, this scheme points to an exponential growth in the number of models
that an agent needs to execute. In general, for N other agents, and # levels of nesting
the agent may need to execute: z:;ol NY models (which is r for N = 1, but ‘X:__ll
for N > 1). This is clearly problematic given the likely scale-up in N. In particular,
given its limited computational resources, the agent may be unable to execute relevant
operators from all its models in real-time, possibly jeopardizing its very survival.

action ducation, as well as in the preferences among possible actions can be addiessed[28].



Thus, optimizations involving some form of selective tracking appear necessary for
real-time execution of these models. Yet, such selectivity should not cause an agent tobe
completely ignorant of critical information that a model may provide (e.g., a pilot agent
should not be ignorant of an opponent’s missile firing). One optimization that enables
such selective tracking is medel sharing[25]. The overall motivation is that if there is a
modely that is near-identical to a modely, then modely’s states and operators can be
shared with those of modelx. Thus, medely is tracked via the execution of modelx,
teducing the tracking effort in half. Modely may be dynamically unshared from modelx
if it grows significantly dissimilar. Thus, a model is selectively executed hased on its
dissimilarity with other models.

For an illustration of this optimization, consider modelpy and modelpy, 1y (based on
the situation inFigute 1). The operatorpy hierarchy can be shared with the operatorpyr,
hierarchy since the two are often identical. Furthermore, information in statepy, such as
radlar input, is shared with statey 1 13- Thus, D essentially executes operators from only
one model, instead of two.*

There are basically two categories of models that may be shared in this fashion:

1. Models of distinct agents within a group: Agents that are part of a single group
may act in a coordinated fashion — executing similar behaviors — providing an
opportunity for model sharing. Thus, if a group of agents, say L and J, together
attack D in Figure I, modelpy, and modelyy may possibly be shared. In fact, if
models of all of the agents in a group ate shatred, an agent may execute only one
mode] for the entire group.

. Recursive models of a single agent at ¢ > 3: Models of a single agent across a
recursion hierarchy are likely to be near-identical to each other, and thus they form
the second category of models that may allow sharing. For instance, modelpy1,y
may be shared with medelpy. If all such moxlels are shared, an agent may need to
track no models at » 2> 2.

-2

Thus, sharing could provide substantial benefits in tracking. In the best case, an
agent may recursively track a group of N agents with just one or two models instead of
O(N™) models. An agent’s architecture should thus provide support for model sharing.
In addition, the architecture should allow for unsharing of models when they grow
dissimilat. For instance, modelpy, and modelpy 3 may be initially shated, but they may
need to be unshared should L and J separate out and attack from two sides.

5 Simultaneous Acting and Tracking

The need for simultaneous acting and tracking implies that an architecture should allow
patallel execution of an agent’s own model (its behaviors) and models of other agents.
If an architecture does not ditectly suppott such parallelism, it may simulate that by
intetleaving the execution of multiple models. One other important implication of this
simultaneity is that an architecture should facilitate high-bandwidth communication

*1f there are some unsharable seciet aspects of statep, e.g., if D’s missile tange is a seciet, then
it will be maintained on statep, but it will not be shared with statepLp.



among agent models. In particular, the simultaneity is often due to the very close
interaction among agents — their behaviors continuously influence each other. Thus,
changes in behaviors have to be continuously communicated among models. Indeed,
in Figure |, changes in aircraft maneuvers, and their effect on geometry, have to be
continuously communicated among agent models[27]. An agent architecture should
facilitate such high bandwidth inter-model communication.

6 TImplementation

Ptevious sections have outlined four key requirements for agent architectures tofacilitate
real-time, dynamic agent tracking. In patticular, an agent architecture should have the
following capabilities:

1. Execute multiple agent models (in addition to the agent’s own behaviors) — these
models may be the agent’s models of other agents, or recursive models.

. Dynamically share and unshate multiple models.

. Execute multiple models in a (pseudo-)simultaneous fashion.

. Suppott high-bandwidth inter-model communication.

I~
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We have implemented a variant of the Soar integrated architecture[ 18] that conforms
to these requirements. This variant is actually implemented in terms of Soar rules, so
that it forms an intetpretive layet on top of Soar. It simmulates parallelism in the execution
of multiple models (and the agent’s own behaviors) via interleaved model execution.
We have implemented pilot agents for fighter jets and helicoptets (see scenatios in
Section 2) based on this architecture.® In the following, these agents will be referred as
pilot™2¢ke” aoents. Bach pilot*”2°¥¢” agent contains about 1250 rules.

To attempt to evaluate the performance of these agents, we have run the pilots
agents in several fighter-jet combat simulation scenarios outlined by our human experts.
Figure 4 shows a pilot?™®**¢"*s dy namic behavior — the dynamic pattern of time spent
in various activities — as it intercepts a single opponent. The X-axis plots time in
simulation cycles. Each of these cycle is approximately 66 milliseconds, and the X-
axis shows about 3000 cycles. The Y-axis plots the division of architectural activities
into cycles for tracking other agent’s activities, cycles for the agent’s own actions, and
wait cycles (in which the pilot?*2°%¢" waits for the aircraft to complete a turn, or to
teach a specified distance from an opponent, without mental activity on its part). The
figure shows that much of the initial time is spent waiting. This is because the aircraft
are far apart and are flying straight towards each other, with little influence on each
other’s action. Furthermore, since low-level aircratt control is handled by the simulator,
the pilot?”2%%¢” agent is not mentally occupied. The amount of time spent acting and
tracking increases as time passes — basically, the aircraft get closer to each other, and
exert an increasing influence on each other’s activities.

The key point to note in Figute 4 is that the architecture needs to (and is able to)
continuously switch back and forth between acting and tracking activities. Figure 5

irocker

3 These agents are themselves vaviations of agents, based on Soat, that were developed for this
envitonment[20, 29].
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Fig. 4. Dynamic agent behavior in one-vs-one ait-combat simulation for a complete engagement.
lustrates simulation cycles devoted by the architecture to tracking, acting, and waiting. Note that
one simulation cycle is devoted to one activity.

zooms in on the segment between cycles 2300-2400 from the scenario in Figure 4. Tt
provides a clearer picture of the continuous interleaving between acting and tracking
cycles. Further evidence for such interleaving is seen in Figure 6. It shows 100 cycles
from another scenario, where a pilot?"®%*¢” agent is engaged in combat with two op-
ponents, not just one. In this scenario, the architecture devotes even more of its time
to tracking. The continuous interleaving in these two scenarios is not a coincidence —
each tracking cycle provides an agent information about its opponent, and it quickly
reacts given this new information.

T T T T
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Self activity cycles - @ i E223 PR E=) -
Wait cycles $oew 000 00ge9g
L L L L
2300 2320 25340 2560 2350 2400

Time in simulation cycles --=

Fig. 5. Dynamic agent behaviov in one-vs-one ai-combat simulation for 100 cycles.

Inboth the scenarios above, the pilot™2°¥¢” agent can accurately track its opponents’

actions, in time. Thus, even if the pilott”ck” agent makes an initial incorrect inference,
it does make a timely correction — to react appropriately.
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Fig. 6. Dynamic agent behavior in one-vs-two air-combat sinmlation for 100 cycles.

7 Related Work

There are at least three main arcas of related work. The first one is agent architectures.
In this area, Rao’s work on reactive plan recognition[20] based on the PRS/AMARS
architecture[10] is closest in spirit to the work reported here. The undetlying concept is
to extend agent architectures, specifically the PRS architectute, to enable it to execute
models of other agents in service of reactive recognition. The resulting architecture
can execute an agent’s own behavior while simultaneously executing models of other
agents in its environment. The similarity goes beyond the proposed architecture —
in fact, simulated air-combat is one proposed area of application of this work[21].
While Rao has not focused on recursive agent- and agent-group tracking, it should be
possible to extend his work to address those, and apply optimizations such as model
sharing discussed in this article. While there are some important differences in the
detailed techniques employed — specifically for real-time ambiguity resolution —
this basic convergence of architectural extensions is indeed encouraging. In fact, there
ate at least two other architectures where similar changes have been implemented in
setvice of agent tracking. Hayes-Roth et al. report that their recent work on multi-
agent collaborative improvisation has led to similar extensions to their BBl agent
architecture[12]. Specifically, the architectural mechanisms used to plan, control and
monitor an agent’s own behaviors are reused to monitor, interpret, and predict its
partner’s behaviors. Ferguson’s work on the TouringMachine architecture — focused
on agents in dynamic, multi-agent environments — also invelves an explicit modeling
layer for tracking other agents[9].

A second area of related work is research specifically focused on agent modeling
and plan-recognition. Section | has discussed some of this work. In addition, some
formal approaches for agent modeling, and in patticulat for recutsive agent modeling,
ate also being investigated[l1]. Vidal and Durtee attack the problem of combinato-
rial explosion in such recursive modeling, and propose a formal approach to tame the
combinatorics[31]. Understanding the relationship of these formal approaches to ap-
proaches inspired by practical applications, as in the work presented in this article, isa
key arca for future research.



A third area of related work, also mentioned in Section 1, is research in develop-
mental and cognitive psychology focused on the human ability to ascribe mental states
to people: beliefs, desires, and intentions[4]. Baron-Cohen argues that specific neu-
rocognitive mechanisms have evelved to facilitate such mental state ascription, to aid in
social understanding, behavioral prediction, social interaction and communication[3].
Selective impairment of these capabilities leads to autism[4]. Such autistic individuals
are mindblind — their world is devoid of mental things. The implication of this research
for Al architectutes would appear to be that these architectures should — as is the case
with the human cognitive architecture — facilitate agents” ability to reason about the
mental states of other agents, ot risk agent mindblindess.

8 Conclusion

This article argues that if agents are to successfully inhabit complex, dynamic social
worlds, they must obtain architectural support for agent tracking — an important ca-
pability required for agent interactions. Key implications of agent tracking for agent
architectures include the ability to execute models of other agents, dynamic sharing and
unshating of multiple models, simultaneous {or intetleaved) execution of these models,
and high bandwidth inter-model communication. We have built an agent architecture, a
vatiant of the Soar integrated architecture, that conforis to these requirements. Agents
based on this architecture have been developed for the dynamic, real-time, multi-agent
environment of battlefield simulation. While synthetic, this is nonetheless a real-world
enviroment, already used in a large-scale operational military exercise[26]. With this
vatiant architecture at its base, agents are capable of successtully tracking others in this
challenging environment.

Among issues for future work, we are looking into generalizing the lessons learned
hete to other real-time comptrehension tasks, whete the input may not necessatily be
other agents” actions. One such task is natural language dialogue, where an agent may
need to infer other agent’s goals in real-time based on its speech, or language. This will
hopetully lead to an improved understanding of the architectural suppott required for
general comprehension capabilities.
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