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Abstract

AT researchers are striving to build complex multi-agent worlds with intended ap-
plications ranging from the RoboCup robotic soccer tournaments, to interactive virtual
theatre, to large-scale real-world battlefield simulations. Agent tracking — monitoring
other agent’s actions and inferring their higher-level goals and intentions — is a cen-
tral requirement in such worlds. While previous work has mostly focused on tracking
individual agents, this paper goes beyond by focusing on agent teams. Team tracking
poses the challenge of tracking a team’s joint goals and plans. Dynamic, real-time
environments add to the challenge, as ambiguities have to be resolved in real-time.

The central hypothesis underlying the present work is that an explicit team-oriented
perspective enables effective team tracking. This hypothesis is instantiated using the
model tracing technology employed in tracking individual agents. Thus, to track team
activities, team models are put to service. Team models are a concrete application
of the joint intentions framework and enable an agent to track team activities, re-
gardless of the agent’s being a collaborative participant or a non-participant in the
team. To facilitate real-time ambiguity resolution with team models: (i) aspects of
tracking are cast as constraint satisfaction problems to exploit constraint propagation
techniques; and (ii) a cost minimality criterion is applied to constrain tracking search.
Empirical results from two separate tasks in real-world, dynamic environments — one
collaborative and one competitive — are provided.

A shortened version of this report is to appear in the National Conference on
Artificial Intelligence, AAAT96
Content areas: Multi-agent systems, real-time systems, agent tracking, plan recognition



1 Introduction

In multi-agent domains, intelligent agents interact with each other, either collaboratively or
non-collaboratively, to achieve their goals. Many of these multi-agent domains require the
interaction to be dynamic and real-time. For instance, in education, intelligent tutoring sys-
tems interact with students to provide real-time feedback[12, 37]. In entertainment, projects
such as interactive fiction[3], virtual immersive environments[21], and virtual theatre[l1]
all involve real-time and dynamic multi-agent interaction (collaborative and competitive).
Similarly, in training, a recent thrust on dynamic, real-time simulations — e.g., realistic
traffic[7], air-traffic control[25] and combat[27, 34] simulations — involves such collaborative
and non-collaborative interaction among tens or hundreds of agents (and humans). Such
interaction is also seen in robotic domains, e.g., collaboration by observation[19], RoboCup
robotic soccer tournaments(beginning [JCAIT-97)[17].

In all these environments, agent tracking — monitoring other agents’ observable actions
and inferring their high-level goals, plans and behaviors — is a central capability required
for intelligent interaction[l, 26, 35, 37]. While this capability is obviously essential in non-
collaborative settings, it is also important in collaborative settings, where communication
may be restricted due to cost, risk, lack of a common protocol etc.[13]. The key to this
capability is tracking an agent’s flexible mix of goal-driven and reactive behaviors, as seen
in dynamic, interactive, multi-agent domains. This contrasts with previous work in the
related area of plan recognition[15, 2], which mostly focuses on recognizing plans in static,
single-agent domains.

This paper takes a step beyond tracking individual agents — the current state of the art
in agent tracking and plan-recognition — by focusing on team tracking. We (humans) see
team activity all around, e.g., teamwork in games (soccer, hockey or bridge), an orchestra,
a ballet, a discussion, a play, etc. Naturally, this teamwork is being reflected in virtual and
robotic agent worlds, e.g., RoboCup. The key in tracking such teamwork is to recognize
that it is not merely a union of individual simultaneous activity, even if coordinated[10, 6,
16, 14]. For instance, ordinary automobile traffic is not considered teamwork, despite the
simultaneous activity, coordinated by traffic signs[6]. Teamwork involves team members’
joint goals and joint intentions, i.e., joint commitments to joint activities[6]. Consequently,
tracking teamwork as independent activities of individual members is difficult. Consider
the example of two children collaboratively building a tower of blocks[10] — they cannot
be tracked as building two individual towers of blocks with gaps in just the right places.
Similarly, in soccer, the collaborative pass play of two attackers cannot be tracked by focusing
on their independent activities — a (robotic) defender should track their dynamic teamwork.
Success in robotic collaboration by observation[19] would also require tracking such joint
activities.

Thus, team tracking raises the novel challenge of tracking a team’s joint goals and inten-
tions. Dynamic, real-time domains, the focus of the current work, add to this challenge in
two important ways. The first is tracking a team’s reactive behaviors, where team members
or subteams may dynamically undertake different aspects of the team’s joint task; but in so
doing may be unable to fully synchronize their activities. The second is tracking a team’s
behaviors in real-time. The main difficulty here is the ambiguity in team members’ actions



— disambiguation requires time. Yet, for timeliness in interaction, a tracker (tracking agent)
must frequently resolve such ambiguity in real-time. While real-time disambiguation is more
of a challenge in team tracking — actions of multiple agents have to be disambiguated —
the jointness of teamwork is itself key in addressing this challenge. In particular, given
this jointness, recognizing one team-member’s actions helps to disambiguate other members’
actions.

Previous approaches to tracking individual agents fail to meet these team-tracking chal-
lenges. To concretely illustrate the problems faced by these approaches, we describe a typical
simulated air-combat scenario (Figure 1), from a real-world combat simulation environment|[5].
We focus on this scenario since it demonstrates the above team tracking challenges in the
context of real-world teamwork. Here, a pilot agent D confronts a team of four enemy fight-
ers J, K, L and M. In Figure 1-a, D detects the four opponents turning towards its aircraft,
and infers that they are approaching it with hostile intent. In Figure 1-b, the four opponents
split up into two subteams, and begin a pincer maneuver[31]. That is, one subteam (J and
K) starts turning left, while the other subteam (L and M) starts turning right. Their goal
is to trap D in the center, and attack it from two sides. However, D correctly tracks the
pincer, and counteracts it by turning away from the center. Although this puts the second
subteam (L and M) outside of D’s radar sight, correctly tracking the pincer enables D to
anticipate the subteam’s possible actions.
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Figure 1: Simulated 1vs4 air-combat: an arc on an aircraft’s nose shows its turn direction.

In Figure 1-c, upon reaching its missile firing range, D turns and fires a missile at J. In
Figure 1-d, D executes an Fpole turn, to provide radar guidance to its missile, without flying
right behind the missile. Although D’s missile is invisible to their radars, J and K track
D’s maneuvers and infer a missile firing. Therefore, in Figure 1-d, they attempt to evade
the missile (actually its radar-guidance) via a 90° beam turn. While beaming defeats D’s
missile, it also, unfortunately, disrupts the team’s pincer. Basically, unaware that J and K
have reneged on their part of the pincer, the second subteam (L and M) continues with its
part. Anticipating this second subteam’s possible turn behind its (D’s) back (Figure 1-e),
D plans an appropriate response.

One key point of this scenario is a concrete illustration of the need to track a team’s
joint goals and intentions. In Figure 1-b, for instance, the four opponents are not executing
independent left and right turns! They are together executing a pincer. Indeed, it is only
an accurate interpretation of the joint pincer that enables D to effectively counteract it.
Recognizing this jointness also enables D to track a subteam’s (L and M) behaviors when



it is not visible.!

Previous approaches[l, 26, 37, 12, 35], that focus on tracking individual agents, fail to
track such joint team activities. In particular, these approaches are based on model tracing,
which involves executing an agent’s runnable model, and matching the model’s predictions
with actual observations. However, an individual’s model does not express a team’s joint
goal and activities. One dramatic illustration of this problem is in D’s inability to track its
opponents’ joint pincer in Figure 1. D may possibly execute an individual model to track an
individual, such as J, as executing a pincer. However, J’s singlehanded pincer is meaningless,
since a pincer mandates the participation of two or more agents. This expressive madequacy
persists even if all agents are tracked as simultaneously executing individual pincers, e.g.,
this one pincer with all four agents involved (Figure 1-b) or two separate pincers with two
agents each?

Some recent work has attempted to go beyond individuals and track multiple agents.
Tambe[33] tracks a group of agents engaged in identical activity. Yet, a group (e.g., cars
driving in ordinary traffic) differs from a team (e.g., driving in a convoy) precisely due
to the lack of any jointness of purpose. Thus, Tambe’s approach, for instance, fails to
interpret that the two subteams in Figure 1-b are engaged in a joint pincer. An alternative
approach|[28], although focused on individuals, attempts to indirectly track a team — it
tracks one individual within the team, whose model includes a teammate’s coordinated
actions. However, this is still inadequate to express a team’s activity, e.g., in Figure 1, D
must track the whole team as attacking it, not just one opponent. Furthermore, tracking
could fail if a teammate engages in uncoordinated actions.

In addition to their inexpressivity, the above approaches also have difficulties in real-time
ambiguity resolution, as they fail to exploit a team’s jointness. In Figure 1-b, for instance,
a pincer is only one of many possible team tactics. The team could be beginning a post-hole
tactic, where one subteam turns in a circle, to confuse D by disappearing and reappearing on
its radar, while the second subteam attempts to attack D. Or, each subteam may possibly
be attacking D independently. Jointness is the key to resolving such ambiguity in real-time
(waiting is of course too hazardous for D). Thus, if one subteam is recognized as executing
one half of the pincer, the other subteam must be executing the other half, and cannot be
engaged in some unrelated activity. Unfortunately, unable to exploit such jointness, the above
agent-oriented approaches engage in unconstrained search. A further problem hindering their
real-time tracking is the inefficiency of tracking individuals, particularly given a large team
(although group tracking[33] alleviates this aspect of inefficiency).

Finally, the above approaches also fail to address the dynamism in a team’s jointness,
particularly, dynamic formation and dissolution of subteams, and their sometimes unsy-
chronized activities. In the above scenario, for instance, team members begin with almost
identical activities(Figure 1-a), then dynamically split into subteams to begin a joint pincer
(Figure 1-b), and finally, one subteam dynamically deviates from its role (Figure 1-d).

The key hypothesis in this paper is that adopting a team perspective enables effective
and efficient tracking of a team’s activities, thus alleviating the difficulties dogging the agent-
oriented approaches. In model tracing terms, this implies executing a team’s runnable model,
which predicts the actions of the team and its subteams (rather than separate models of

LOf course, it is also important to track individual agents, e.g., for J and K to detect D’s missile firing.



individual team members). A team model treats a team as a unit, and thus explicitly
encodes joint goals and intentions required to address the challenge of tracking a team’s
joint mental state. Indeed, team tracking based on team models is among the first practical
applications of the joint intentions theory developed in formalizing teamwork[6]. The paper
shows that team models are uniformly applicable in tracking even if an agent is a participant
in a team, rather than a non-participant. Furthermore, it shows that the team models are
efficient: (i) they explicitly exploit a team’s jointness to constrain tracking effort; and (ii) by
abstracting away from individuals, they avoid the execution of a large number of individual
agent models. This abstraction in team models also provides robustness, e.g., changes in
number of team members may not disturb tracking. To track with such team models in
real-time dynamic environments, we build on RESC[35], an approach for tracking individual
agents in such environments. The new approach, RESCyy, is aimed at real-time, dynamic
team tracking. RESCy.,,, incorporates several additions geared towards efficiency; key ideas
introduced are not specific to RESCycqn.

The remainder of this paper is organized as follows: Section 2 provides an overview
of RESC. Section 3 describes tracking with team models. Section 4 focuses on enhancing
tracking efficiency. Section 5 discusses mental simulations of unseen subteams. After a
presentation of experimental results (Section 6), Section 7 concludes. The description below
assumes as a concrete basis, pilot agents based on the Soar architecture[34]. We assume
some familiarity with Soar’s problem solving, specifically, applying operators to states to
reach a desired state[24, 29].

2 RESC: Tracking Individual Agents

The RESC (REal-time Situated Commitments) approach to agent tracking[35] builds on
model tracing[l, 37]. Here, a tracker executes a model of the trackee (the agent being
tracked), matching the model’s predictions with observations of the trackee’s actions. One
key innovation in RESC is the use of commitments. In particular, due to ambiguity in
trackee’s actions, there are often multiple matching execution paths through the model.
Given real-time constraints and resource-bounds, it is difficult to execute all paths, or wait
so trackee may disambiguate its actions. Therefore, RESC commits to one, heuristically
selected, execution path through the model, which provides a constraining context for its
continued interpretations. Should this commitment lead to a tracking error, a real-time repair
mechanism is invoked. RESC is thus a repair-based approach to tracking (like repair-based
approaches to constraint satisfaction[22] and natural language understanding[20]).

A second key technique in RESC leads to its situatedness, i.e., responsiveness to the
present. To track the trackee’s dynamic behaviors, it is necessary to execute the trackee’s
model so it is responsive to the changing world situation. A key assumption here is that the
tracker (e.g., D in Figure 1) is itself capable of the flexible and reactive behaviors required in
this environment. That is, the tracker’s architecture can execute such behaviors. Therefore,
this architecture is reused to execute the trackee’s model to allow dynamic model execution.
There is thus uniformity in the tracker’s generation of its own behaviors, and its tracking of
the trackee’s behaviors.

To present a concrete example of RESC, we turn to Figure 1, and describe D’s tracking



of J in Figure 1-d, assuming J is the only opponent present (and assuming D is implemented
in Soar). To illustrate the uniformity in acting and tracking, we first describe D’s generation
of its own behaviors. Figure 2-a illustrates D’s operator hierarchy during its Fpole (Figure 1-
d). The top operator, execute-mission indicates that D is executing its mission (e.g., defend
against intruders). Since the mission is not complete, a subgoal is generated. Different
operators are available in this subgoal, such as fly-flight-plan and intercept. D selects the
intercept operator to combat its opponents. In service of intercept, D applies employ-missile
in the next subgoal. Since a missile has been fired, D selects the fpole operator in the next
subgoal to guide the missile with radar. In the final subgoal, maintain-heading causes D
to maintain its heading. All these operators used for generating D’s own actions will be
denoted with the subscript D, e.g., fpolep. Operatorp will denote an arbitrary operator in
D’s operator hierarchy. Statep will denote D’s state. Together, statep and the operatorp
hierarchy constitute D’s model of its present dynamic self, referred to as modelp.
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Figure 2: (a) Modelp; (b) Modelpy. Dashed lines are unselected alternative operators.
Modelp and Modelpy need not be identical.

Modelp supports D’s dynamic behaviors, given Soar’s architectural support for flexible
operator selection and reactive termination[29]. D reuses this architecture in tracking. Thus,
D uses a hierarchy such as the one in Figure 2-b to track J’s actions. Here, the hierarchy
represents D’s model of J’s current operators in the situation in Figure 1-d. These operators
are denoted with the subscript DJ. This operatorpy hierarchy, and the statepy that goes
with it, constitute D’s model of J or modelpy, used to track J’s behavior. For instance, in
the final subgoal, D applies the start-&-maintain-turnpy operator, which predicts J’s action
and matches the prediction with J’s actual action. Thus, if J starts turning right towards
beam, then there is a match with modelpy — D believes that J is turning right to beam
and evade its missile, as indicated by the higher-level operators in the operatorpy hierarchy.

Such architectural reuse provides situatedness in RESC, e.g., operatorpy may now be
reactively terminated, and flexibly selected, to respond to the dynamic world situation.
(Such architectural reuse is also possible with other architectures[11, 9].) As for RESC’s
commitments, notice that from D’s perspective, there is some ambiguity in J’s right turn in
Figure 1-d — it could be part of a 90° beam turn or a 150° turn to run away. Yet, D commits



to just one operatorpy hierarchy. This commitment may be inaccurate, resulting in a match
failure, i.e., a difference between the modelpy’s prediction and the actual observed action.
For example, if J were to actually turn 150°, there would be a match failure. RESC’s primary
repair mechanism to recover from such failures is “current-state backtracking”, which involves
backtracking over the operatorpy hierarchy, within the context of the current continuously
updated state. Thus, RESC attempts to generate a matching new operatorpy hierarchy
without re-examining past states.

3 Tracking with Team Models

To step beyond tracking individuals, and track a team’s goals and intentions, team models
are put to service. A tracker’s model of a team consists of a team state and team operators.
A team state is used to track a team’s joint state, and it is the union of a shared part
and a divergent part. The shared part is one assumed common to all team members (e.g.,
overarching team mission, team’s participants). The divergent part refers to aspects where
members’ states differ (e.g., 3-D positions). One approach to define this divergent part is
to compute a region or boundary encompassing all individual members. However, given the
cost of computing such regions in real-time, the approach preferred in this work is to equate
the divergent part to the state of a single paradigmatic agent within the team, e.g., the
team’s orientation is the paradigmatic agent’s orientation (as in [33]). Such a paradigmatic
agent is selected by a separate module (which currently selects one agent in a prominent
location). Thus, a generic team © is represented as {m,,{mj...m,...}}, where m; are some
arbitrary number of team members, and m, is the paradigmatic agent. © may have N sub-
teams, 0...0y, each also possessing its own members, state and paradigmatic agents. Unless
subteams are known in advance, they are detected dynamically based on individual agent
movements. Similarly, merging of subteams into a larger team is also detected. (Section
6 discusses details of detecting (sub)teams.) A dynamically detected subteam inherits the
joint part, but not the divergent part. Thus, 7, the team of opponents in Figure 1-b consists
of {J{J.K.LM}}, with two subteams S;={J {J,K}} and S;={L.{L,M}}. For the sake
of consistency, a single agent is considered a singleton team, which is its own paradigmatic
agent: {my,{my}}.

A team operator in a team model represents the team’s joint commitment to a joint
activity. A key aspect of a team operator is the notion of a role, which defines an activity that
a subteam undertakes in service of the team operator. For instance, in the game of bridge,
opponents’ bidding team operator has two roles, e.g., NORTH and SOUTH. The pincer
team operator in Figure 1-b has two roles LEFT and RIGHT. These roles are exhaustive
and specify subteams’ activities in service of the team operator. Roles also embody a role
coherency constraint, i.e., there must be one subteam per role for the performance of the
team operator. However, roles for a single operator need not all be distinct. Furthermore, a
single operator may be defined in multiple ways via multiple role combinations. For the team
0, a team operator with R roles is denoted as operatorg< 71, ..., 7yr >. The children of this
operator in the operator hierarchy must then define the activities for subteams in these roles.
Thus, for instance, the opponents’ pincer in Figure 1-b is denoted pincerr <LEFT . RIGHT >
(and D’s model of it is denoted pincerpr<LEFT ,RIGHT>). If a team operator has only a



single role, that will not be explicitly denoted.
The RESCyeum approach to track team activity is now specified as follows:

1. Execute the team model on own (tracker’s) architecture. That is, commit to a team operator
hierarchy and apply it to a team state to generate predictions of a team’s action. In doing
so, if alternative applicable operators available (ambiguity):

(a) Prefer ones where number of subteams equals number of roles.

(b) If multiple operators still applicable, heuristically select one.
2. Check any tracking failures, specifically, match or role failures; if none, goto step 1.

3. If failure, determine if failure in tracking the entire team or just one subteam. If team failure,
repair the team operator hierarchy. If one subteam’s failure, remove subteam assignment to
role in team operator, repair only subteam hierarchy. Goto step 1.

Step 1 reuses tracker’s architecture for flexible team model execution, to track dynamic
team activity. Step 1(a) selects among multiple operators based on the number of subteams,
while 1(b) relies on domain-independent and dependent heuristics for such selection, e.g., one
heuristic is assuming the worst about an opponent in an adversarial setting. The commitment
in step 1 creates a single team operator hierarchy. With this commitment is RESC,;.,,, always
has a current best working hypothesis about the team activity, which provides it an anytime
quality[4], important in real-time environments.

In step 2, tracking failure is redefined in RESC;.,,,. Match failure — where a team’s
actions (e.g., orientation) does not match RESCi...,’s current predictions — is certainly a
tracking failure. However, in addition, inaccurate commitments in RESCy.,,, can also cause
role failure, a new tracking failure, which may occur in one of three ways due to violation of
the role coherency constraint. First, role overload failure occurs if the number of subteams
exceeds the number of roles in a team operator. Second, role undersubseribe failure occurs if
the number of subteams falls short of the required number of roles — particularly, if subteams
merge together. Third, role assignment failure occurs if the number of subteams equals the
number of roles, but they do not match the roles (see Section 4.1). Both match and role
failures cause the same repair mechanism to be invoked — current-state backtracking —
although in case of role failures, operators with higher (or lower) number of roles may be
attempted next. (Abstract higher level operators are not susceptible to role overload failures,
since they may not restrict the formation of subteams.) One novel issue in team tracking,
outlined in step 3, is whether the match failure of one subteam is one of just that subteam
or the whole team (discussed in Section 4.2). Thus, RESC.,,, assumes that subteams begin
a joint operator together, although over time, a subteam may deviate.

The result of RESCy.,., in tracking the situation from Figure 1-a is shown in Figure 3-a.
At the top-most level, execute-missionps denotes the operator that D uses to track 7’s
joint mission execution. Since 7’s mission is not yet complete, D applies the interceptpr
operator in the subgoal to track 7’s joint intercept. In the next subgoal, employ-weaponspr
is applied. Following that, get-firing-positionps tracks D’s belief that 7 is attempting to get
to a missile firing position, and so on. Each operator in this operatorps hierarchy indicates
D’s model of 7’s joint commitment to that activity.
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Figure 3: Team tracking: tracker a non-participant or a participant in the tracked team.

When the team in Figure 1-a splits into two subteams, role overload failure causes employ-
weaponspr to fail. After current state backtracking, operatorps hierarchy in Figure 3-b
results, which correctly tracks the on-going pincer. Here, pincerpsr <LEFT, RIGHT> has
two roles. The children of this operator specify activities — starting left and right arms of
the pincer — for the two subteams formed.

Team models and RESCy.,,, provide improved expressiveness, efficient ambiguity resolu-
tion and robustness required for team tracking. Team operators are expressive, since they
explicitly encode a team’s joint activity, with roles expressing different activities for sub-
teams. For instance, the team operator hiearchy in Figure 3-b clearly expresses the team’s
joint pincer, the subteams involved and their roles in it. Team operators also facilitate
real-time ambiguity resolution by enforcing jointness. Furthermore, role coherency in team
operators adds further constraints, since subteams may only fill unassigned roles. For in-
stance, in Figure 3-b, if one subteam is assigned to the LEFT role of a pincer, the other
must also be part of the pincer, and in fact, must fulfill the RIGHT role. Additionally,
team models also execute fewer operator hierarchies, e.g., instead of executing four separate
operator hierarchies corresponding to four individual opponents, D executes only one team
operator hierarchy. Even if subteam hierarchies are generated, they are still fewer than the
number of agent hierarchies. Finally, team models provide robustness due to abstraction
from individual agents to teams and subteams. Thus, tracking is not disturbed if agents
switch allegiance from one subteam to another, or heretofore unseen agents emerge in a
team, etc., unless this forms new subteams.

Team models and RESC,.,,, are applicable for tracking even if an agent is a collabora-
tive participant in the team. Consider the scenario in Figure 3-c, which shows a team of
simulated helicopters executing its mission[36], again in the real-world combat simulation
environment[5]. Helicopter radio communications are often restricted to avoid detection by
enemy. It is thus essential for a helicopter pilot agent to infer relevant information from
the actions of its teammates, e.g., the team has reached a pre-specified holding area since



teammates have begun hovering. To track team activities, a team member executes a team
model, using RESCyyy,. In Figure 3-c, the tracker happens to be a subordinate in the team,
and the result of its tracking is the operator hierarchy shown. That is, the tracker believes
its own team as jointly engaged in execute-mission. In service of mission execution, the team
is flying a flight plan via a technique called travelling. Travelling involves a LEAD role, and
two other FOLLOWER roles, causing the operator hierarchy to branch out.

The key point in Figure 3-c are the two types of uniformities shown. First, team models
and RESC,.,,, are shown to be uniformly applicable in a collaborative situation. Second,
the process of an agent’s generation of its own actions and its tracking of its teammates’
actions are also shown to be uniform. The tracker executes the follow-leader operator branch
to generate its own behaviors, while executing the fly-contour branch to track the leader’s
flying along the terrain contour. (The third dashed branch is used to track the other follower).

There is yet a third point of uniformity in Figure 3-c: self tracking. In particular, while
tracking others, an agent often monitors the progress of their low-level actions closely, to
quickly detect any deviation from predicted action. However, such detailed monitoring of
progress of its own actions is often absent (they are assumed to progress satisfactorily). Team
models provide a uniform framework to view such monitoring. Indeed, upon experimentally
enabling such detailed self-monitoring (self-tracking), a pilot agent was able to track situa-
tions where its commands were not controlling its simulated helicopter as expected. The key
issue in self tracking is that when it fails, an agent may modify its behaviors, rather than its
self model — an issue for future work.

3.1 The Joint Intentions Framework

While team tracking has received little attention in the literature, researchers are investigat-
ing teamwork both theoretically[10, 6, 16], and practically[14, 27]. Perhaps the most well
understood among the theories is the joint intentions framework[6]. Very briefly, this theory
states that a team jointly intends an activity if it is jointly committed to completing that
activity (commitments have a common escape clause ¢). Joint commitment implies that (at
least initially) team members have a mutual belief that they are each committed to that
activity. Furthermore, a team jointly intending an activity, leads subteams to intend to do
their share in that activity, subject to the joint intention remaining valid.

In a team model, a team operator selected in an operator hierarchy (as in Figure 3) is or
tracks a joint intention in the above sense. Thus, team models are among the first practical
applications of the joint intention theory ([14] describes another); and their application
here is certainly novel — tracking team activities. This application raises one issue: joint
intentions pack with them the responsibility of a team member when it privately comes to
believe that the team’s jointly intended activity is unachievable (or achieved) — this team
member is left with the commitment to communicate this private belief to its teammates|6].
However, if communication itself is very costly — breaking radio silence may be risky for a
helicopter pilot agent — such a commitment may be inappropriate. Thus, when tracking,
RESC;csm does not assume that all subteams are aware of a subteam’s deviation from its
role(more in Section 4.2).
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3.2 Team Mind?

Team models appear to track a “team mind”. However, the notion of a team mind is
controversial, given that the external world consists only of individual minds[30]. Team
models are neutral in this controversy, and can also be reconciled with the view of individual
minds. In particular, a dynamic team model may be considered a result of combining
(partial) team models attributed to team members. For instance, in tracking a pincer, each
subteam may be considered as executing at least the relevant half of the team model — where,
as shown by the dashed lines, a subteam may or may not track its sibling subteam(Figure

1),
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Figure 4: A Team model may be considered a combintion of models attributed to subteams.

4 Further Enhancements in Team Tracking

4.1 Efficient Role Assignments

While team operators already constrain tracking effort by enforcing jointness and role co-
herency, role assignment in team operators can potentially be inefficient. Given a team
operator with R roles, a tracker may need to test all R! permutations of subteam to role
assignments; generating R children operators in each test. Furthermore, such a team oper-
ator could itself be defined in multiple ways, based on multiple possible role combinations.
For example, half-pincer<STRAIGHT RIGHT> and half-pincer<STRAIGHT,LEFT> are
two separate definitions of half-pincer — in one role combination, one subteam flies straight
to attack, while a second subteam attacks from the left; while the second combination in-
volves an attack from the right. If there are C such role combinations, the total operators
executed are RxR!xC. Furthermore, observations of match failure are often not instantly
available, so that testing each role assignment may take time. Thus testing role assignments
in real-time can potentially be difficult.

To alleviate this inefficiency, multiple definitions of a team operator (if any), correspond-
ing to its multiple role combinations, are unified together, with explicit constraints to define
allowable role combinations. The role assignment problem for this unified operator is now
cast as a single constraint satisfaction problem (CSP)[18]. In this CSP, subteams are vari-
ables and possible roles are the domains of those variables. Constraints are the explicit
constraints among roles, i.e., their allowable combinations. Figure 5 shows the role assign-
ment for the half-pincer cast as a CSP. Subteams §; and S, are variables, with the roles of
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half-pincer as their domains. The static constraints specify that in a half-pincer, one sub-
team must take on the role STRAIGHT, the other must take on either RIGHT or LEFT.
The dynamic observations of subteam actions provide unary constraints, as they rule out
non-matching values from the domains.

Static Constraints =
Dynamic {(LEFT,STRAIGHT) Dynamic
observation RIGHT,STRAIGHT)} s observations
- { S0
Domain = {LEFT,RIGHT,STRAIGHT} Domain = {LEFT,RIGHT,STRAIGHT} E

@ (b)

Figure 5: (a) Detailed illustrative CSP; (b) other constraint graphs tested.

Unifying role combinations and casting the problem as a CSP provides several benefits.
First, while detecting match failures is the simplest consistency check (node consistency),
other constraint propagation techniques such as arc consistency or path-consistency[18, 8]
can acclerate the process of role assignment (or detecting failures). For instance, in Figure
5, if node-consistency rules out the role STRAIGHT for subteam &3, then arc-consistency
will automatically rule out roles LEFT and RIGHT for &7. This is important, given complex
constraint graphs tested (Figure 5-b), and the absence of immediate observations. Addition-
ally, testing the node consistency of variables independently converts the multiplicative effect
of generating combinations of role assignments into an additive effect. In general, given this
mapping, more of tracking could be cast as a CSP — an issue for future work.

Based on the above, RESCy.,,, was modified so that when executing a team operator
with more than one role, it does not assign subteams to roles and then test that assignment
(unless the role assignments are known). This enables roles to be assigned to subteams via
CSP. So far, only arc-consistency has been incorporated in RESC;y,,. RESCieurm, being a
repair-based approach, solves this CSP via a repair-based approach[22]. It commits to one
assignment of roles to subteams, while obeying static constraints. If dynamic observations
rule out a role for a particular subteam, arc-consistency rules out inconsistent roles for
other subteams. Roles are then reassigned to failed subteam assignments. (See Section 6
experimental results.)

4.2 Minimum Cost Repair in Tracking

Repairing role assignments to subteams is, however, more complex than indicated in the
previous section. In particular, team tracking raises a novel issue — ambiguity about a
subteam’s degree of adherence to its role. If a subteam is strongly adherent it is very likely
to fulfill its role in the joint activity; but if it is weakly adherent, it may deviate. Thus,
when a subteam is observed to not fulfill its role, there are two possible explanations: (i) the
subteam being strongly adherent is fulfilling its role, but there is an error in tracking the
entire team tactic; or (ii) this single subteam being weakly adherent is deviating from its
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role to respond to some event.? As a concrete example consider the situation in Figure 1-d,
where we assumed that a subteam being weakly adherent, responded to a missile firing by
abandoning the team’s on-going pincer. However, if this subteam were known to be strongly
adherent, then it would have never deviated from its role, and thus there is an error in
tracking the pincer — the whole team was not executing a pincer. A symmetrical issue
arises if a subteam is seen to fulfill its role despite a reason to deviate. This could be because
it is strongly adherent; but if it is weakly adherent, then there is an error in tracking.

This ambiguity greatly increases the search space of repairs in RESCy.,.,. To tame the
search, RESC,.,,, works with the heuristic of minimal cost repair — where cost measures
the amount of repair effort required to continue error-free tracking. Zero repair to the team
model is naturally considered lowest cost repair. Repairing a single subteam’s model (i.e.,
operators involving just a single subteam) within the team model is considered to have higher
cost (given a possible reason for the subteam deviation). Repairing and retracking operators
involving the entire team is considered to be even higher cost.

The tracker uses this minimal repair cost heuristic in attributing a degree of adherence
to subteams. Thus, if a subteam is fulfilling its role despite events that could cause devia-
tion from that roles — e.g., it a missile has been fired at the subteam, or if other subteams
have abandoned their roles — RESC,.,,,, attributes strong adherence to the subteam; this
attribution suggests lowest cost (zero) repair for continued error-free tracking. If, however,
a subteam does not fulfill its role during such an event, then RESC,.,,, attributes weak
adherence to the subteam — the event supports a cheap repair to explain this single sub-
team’s deviation. Thus, RESCy.,,, assumes that this single subteam has abandoned its role
in the joint activity. In terms of the CSP implementation, this abandonment implies dis-
abling outward constraint propagation from this subteam variable. Thus, this subteam’s
future actions are not tracked as part of their joint activity; however, the other subteam is
assumed to continue. In contrast, if a subteam deviates without an event that could explain
its deviation, RESCy.qp, assumes an error in tracking the whole team (applies normal CSP).

The rationale behind the above heuristic is two-fold. Pragmatically, in real-time envi-
ronments, it helps to reduce computational (repair) expense. Theoretically, it leans towards
parsimonious explanations (the heuristic was inspired by minimality of fault models[32]).
This heuristic is actually more general, and in fact, it is already incorporated in current-
state backtracking: repair the lowermost operators in an operator hierarchy before higher
level ones.

5 Mental Simulations of Invisible Subteams

One important benefit of recognizing the jointness of a team is anticipating/tracking an
unobservable subteam’s activity (see Section 1). RESCi.y,, assumes that an invisible subteam
will fulfill its role in its on-going joint activity; it thus mentally simulates the effects of those
actions. This simulation is carried out in an abstract visualization subcontext, and its results
are input to tracking, as though it is information received via observation. RESC;.,,, uses

2Such ambiguity in the level of adherence is present even in tracking individuals; the difficulty in team
tracking is that the whole team may be implicated.
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that to predict/track the next possible action for the subteam. Currently, visualizations are
attempted at fixed time intervals; a more sophisticated simulation is also left for future work.

6 Implementation Results and Evaluation

To evaluate RESCy.yn, we have implemented experimental variants of Soar-based pilot agents
for both simulated fighters[34] and helicopters[36]. The original pilot agents have participated
in various large-scale exercises, including one involving expert human pilots[34]. Our exper-
imental pilots (called pilot!®*¢") incorporate RESCjeqn (contain over 1000 rules). These
agents can track teams: opponents’ teams in the case of fighter pilots and their own team in
case of helicopter pilots. Promising results (see below) with these pilot™"****" agents has led
the techniques, including team models, to be ported to the original agents.

We have run the pilots? ke
our human experts. Figure 6-a compares a fighter pilo
with team models versus when using individuals’ models. The scenario in Figure 1 is used

agents in several combat simulation scenarios outlined by

tiracker’s performance when tracking

as a basis for comparison, with four agents in the opponents’ team. Figure 6-a shows the
percent of its total time® that pilot?***" spends in acting and tracking. Thus, when using
team models in tracking, a pilot”**¢" spends only 18% of its time is tracking. In contrast, it
spends 71% of its time in tracking when using individual agents’ models. Basically, individual
agents’ models fail to correctly track the team’s pincer. This failure is not simply in terms
of inexpressivity, but also, unable to exploit the teams’ jointness, they engage in a large
unconstrained tracking effort. Thus, they run out of time, before they can each at least
individually detect the pincer. Similarly, with team models, pilot!2**" spends only 7% of
its time in deciding on its own actions(SELF), since it can quickly and accurately track
its opponents. In constrast, pilottrecker
individual models; hence spends 28% of time deciding on its own actions.

Thus, when using team models, a pilot!**¢" spends 25% (18% TRACKING + 7% SELF)
of time in mental activity, and the rest it waits. Waiting is essential because pilot!"a e’
maneuvers take time, e.g., to complete a turn, or reach missile range. When using individual

incorrectly readjusts its own maneuvers when using

agents’ models, most of the cycles are spent tracking.
Figure 6-b provides similar comparative numbers for a team consisting of three opponents.
The key point here is that team models are not wedded to a specific numbers of agents in a

tiracker assumes enemy fighters within three kilometers of each

team. In these scenarios, pilo
other as part of a single team (based on knowledge provided by human experts). When a
subgroup of fighters separates by more than three kilometers subteams are assumed to have
formed. In the helicopter domain, the team is known in advance.

Focusing only on role-assignment, Table 1 presents the reduction in tracking effort due
to team model and the CSP formalism. Column 1 names different tactics[31]. Column 2
indicates the number of agents assumed involved in the tactic. Column 3 estimates the
(worst-case) total number of operators searched assuming roles assigned to individual agents

rather than subteams. Column 4 shows the factor reduction in the operators searched when

3Time is measured in simulation cycles. Since inefficiency percolates to all levels of the simulation when
using individual models, they lead to fewer total cycles.
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Figure 6: Comparing the percent of total time in acting and tracking when using team
models versus when using individuals’ models.

role assingment is based on teams/subteams. The final column shows the actual results from
the RESCy.., implementation, with unification of operator roles, and CSP. The reduction
in tracking effort is substantial, and it will only grow with increasing numbers of agents.

Tactic. Number of | Total operators | Factor reduction Factor reduction
name agents agent models via team model | via team model+CSP
Pincer 4 56 14 14
Half-pincer 4 112 14 22
Posthole 4 112 14 22
Pincer-trail 4 144 8 24

Table 1: Reduction in role assignment effort due to operator role-unification, team models

and CSP.

7 Summary and Discussion

Animal and human (natural) world is full of collaborative and competitive team activities:
a mongoose team surrounding a Cobra, a pack of cheetahs hunting a prey, games of soccer
or cricket, an orchestra, a discussion, a coauthored paper, a play, etc. It is only natural
that this teamwork is (and will be) reflected in virtual and robotic agent worlds, e.g., robotic
collaboration by observation[19], RoboCup robotic (and virtual) soccer[17], social agents[23],
virtual theatre[3, 11], virtual battlefields[34, 27]. If agents are to successfully inhabit such
collaborative and competitive worlds, they must be proficient in understanding and tracking
team activity. This paper has taken a step towards this goal and advanced the state of the
art in agent tracking and plan recognition (which are currently focused on individual agent
activities). Key contributions/ideas in this paper include: (i) the use of explicit team models
for team tracking; (ii) uniform application of team models regardless of an agent’s being a
participant or non-participant in a team; (iii) demonstration of the key advantages of team
models, specifically, efficiency, robustness and expressivity gained via jointness, and team
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abstractions; (iv) Use of constraint satisfaction for improved tracking efficiency; (v) Use of a
cost minimality criterion to constrain tracking search. We also touched on self tracking and
mental simulations.

Team models are one of the first to practically instantiate the theoretical joint intentions
framework (and certainly the first in service of tracking). While team models and other
key ideas could be applied in different approaches to tracking, we presented one specific
approach: RESC;.y,,. Although based on RESC, RESCy.,,, includes several additions to ad-
dress subteam formation(merging), role assignments and subteam deviations. RESCic4, has
been applied to two different tasks in a simulated combat environment: (i) a collaborative
task involving simulated helicopters; and (ii) an adversarial task involving fighter combat.
These synthetic yet real-world teamwork tasks provide a solid foundation for further inves-
tigation of team tracking. Indeed, the field continues to investigate teamwork, and team
tracking will need to reflect the advances made.
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