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Abstract

In multi-agent environments, the task of agent track-
ing (i.e., tracking other agents’ mental states) in-
creases in difficulty when a tracker (tracking agent)
only has an imperfect model of the trackee (tracked
agent). Such model imperfections arise in many real-
world situations, where a tracker faces resource con-
straints and imperfect information, and the trackees
themselves modify their behaviors dynamically. While
such model imperfections are unavoidable, a tracker
must nonetheless attempt to be adaptive in its agent
tracking. In this paper, we analyze some key issues
in adaptive agent tracking, and describe an initial ap-
proach based on discrimination-based learning. The
main idea is to identify the deficiency of a model based
on prediction failures, and revise the model by using
features that are critical in discriminating successful
and failed episodes. Our preliminary experiments in
simulated air-to-air combat environments have shown
some promising results but many problems remain
open for future research.

Introduction

In multi-agent environments, intelligent agents must
interact — collaborate or compete — to achieve their
goals. Many of these multi-agent domains are dynamic
and real-time, requiring the interaction to be flexible
and reactive. For instance, in the arena of training,
there is a recent thrust on dynamic, real-time interac-
tive simulations — e.g., realistic traffic environments
(Cremer et al. 1994), or realistic combat environ-
ments(Tambe et al. 1995) — where intelligent agents
may interact with tens or hundreds of collaborative and
non-collaborative participants (agents and humans).
In the arena of education, intelligent tutors, whether
in the form of “standard” intelligent tutoring sys-
tems(Anderson et al. 1990) or as participants in virtual
environments (e.g., a virtual guide in a historical simu-
lation(Pimentel & Teixeira 1994)), must interact with
students in real-time. Similarly, in the arena of en-
tertainment, recent work has focused on real-time, dy-
namic interactivity among multiple agents within vir-
tual reality environments (Bates, Loyall, & Reilly 1992;
Hayes-Roth, Brownston, & Gen 1995). Such real-time
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interaction is also seen in robotic environments (Ku-
niyoshi et al. 1994).

In all these environments, agent tracking is a key ca-
pability required for intelligent interaction (Tambe &
Rosenbloom 1995; Ward 1991; Rao 1994; Anderson et
al. 1990). It involves monitoring other agents’ observ-
able actions and inferring their unobserved actions or
high-level goals, plans and behaviors. This capability
is closely related to plan recognition (Kautz & Allen
1986; Song & Cohen 1991), which involves recognizing
agents’ plans based on observations of their actions.
One key difference is that plan-recognition efforts gen-
erally assume that agents are executing plans that
rigidly prescribe the actions to be performed. Agent
tracking, in contrast, involves recognizing a broader
mix of goal-driven and reactive behaviors. It is appro-
priate in domains where agents exhibit dynamic be-
haviors in response to the changing environment and
the actions of other agents.

This paper focuses on adaptive agent tracking, an im-
portant requirement to scale up tracking to real-world
domains. In particular, agent tracking is typically
based on model tracing (Anderson et al. 1990), where
a tracker (tracking agent) executes a runnable model
of the trackee (tracked agent), matching the model’s
predictions with actual observations. However, in real-
world domains, a tracker’s model of the trackee’s be-
haviors is often imperfect, i.e., incomplete or incorrect.
The trackee further contributes to this imperfections,
since its behaviors are not static, but alter over time.
Of course, eradicating all such model imperfections is
difficult (if not impossible) — and thus tracking must
proceed despite such imperfections. Nonetheless, the
tracker must engage in some adaptive tracking, i.e., it
must adapt its model of the trackee to remdey at least
some of these imperfections.

In this preliminary report, we analyze some of the
key challenges in adaptive agent tracking, and present
an approach (based on discrimination-based learning)
to address them. Our analysis is based on a real-world
multi-agent domain, of combat simulations. An initial
implementation of our approach in this domain has
shown some promising results; although many issues



remain open for future research.

Agent Tracking in Real-world Domains

The domain of our work on agent tracking is one of
virtual battlefields based on Distributed Interactive
Simulation Environments (DIS). These are synthetic,
yet real-world environments, and they have already
been used in large-scale operational military exercises.
These environments promise to provide cost-effective
and realistic environments for training and rehearsal,
as well as for testing new doctrine, tactics and weapon
system concepts. The realization of this promise is crit-
ically dependent on intelligent automated agents that
can act as effective human surrogates — interacting in-
telligently with humans as well as other agents. Agent
tracking is of course one key aspect of such an intel-
ligent interaction (Tambe & Rosenbloom 1995). Cer-
tainly, an adversary will not communicate information
regarding its goals and plans to an agent voluntarily —
such information must be inferred via tracking. Fur-
thermore, even in collaborative situations, tracking of-
ten assumes importance due to communication diffi-
culties.

Given that agent tracking occurs here on a synthetic
battlefield, there are some key challenges that it poses:

o Imperfect models: A tracker’s model of the trackee is
often imperfect. Such imperfection could be divided
into two categories:

1. Dynamic model imperfections: The tracker pos-
sesses a perfect static model of the trackee — so
that the trackee’s set of possible goals, plans, and
beliefs is known. However, the tracker has to infer
the trackee’s currently active goals, plans and be-
liefs. This task is, of course, at the heart of agent
tracking.

2. Static model imperfections: The tracker’s static
model of the trackee is itself incomplete, i.e., the
trackee’s overall set of possible goals or plans or
beliefs is itself not known. This situation may
arise due to adeptiveness: an intelligent adversary
will very likely adapt its tactics to exploit possible
weaknesses in a tracker’s behaviors.

o Real-time and dynamism: The tracker and trackee
interact in real-time; for example, in simulated air-
to-air combat, speed is life (Shaw 1988) in the real-
world, and in the simulated combat environment.

o Complexity of environment: This is a realistic envi-
ronment, in which entities and objects have a rich
set of properties.

o Cost of trial: Trials are not straightforward to run.
Indeed, trials with same initial conditions may have
very different outcomes due the “chaotic” nature of
the environment.

While our analysis focuses on the combat-simulation
environment, given its real-world character, we expect
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that the lessons will generalize to some of the other
multi-agent environments mentioned above.

Issues in Adaptive Agent Tracking

As mentioned earlier, to track a trackee, tracker exe-
cutes a runnable model of the trackee, matching the
model’s predictions with actual observations. One key
reason that tracking in this fashion remains a chal-
lenging problem is dynamic model imperfections. Dy-
namic imperfections introduce ambiguity in tracking.
For instance, in air-combat simulations, a tracker can-
not directly observe a missile fired by its opponent
(the trackee). It needs to infer a missile firing from
the trackee’s observable maneuvers, even though those
are often ambiguous. Nonetheless, given a reasonably
accurate model of the trackee, the tracker agent can
hope to address such ambiguity in real-time (Tambe &
Rosenbloom 1995).

Given adaptiveness on part of the trackee (static
model imperfections), however, the situation becomes
much more complex. The tracker cannot necessarily
assume its model of the trackee is accurate, or that
it will stay accurate over time. Such a situation does
arise in the synthetic battlefield environment, given the
adaptive character of intelligent adversaries. In par-
ticular, human adversaries will very likely adapt and
evolve their tactics to exploit weaknesses in an intelli-
gent agent’s behaviors. For instance, in the simulated
theater of war exercise (STOW-E) held in November
of 1994, human pilots deliberately changed their mis-
sile firing tactic — instead of pointing their aircraft
nose straight at the target before firing a missile (0 -
5 degrees “nose-off” as shown in Figure 1), they be-
gan firing missiles while maintaining a 25-degree nose-
off from the target (as shown in Figure 2). This was
intended to confuse the participating intelligent pilot
agents, and indeed it did (Tambe et al. 1995). Unable
to track this changed missile firing tactic, intelligent
pilot agents got shot down. Of course, human pilots
are bound to come up with novel variations on known
maneuvers, and intelligent agents cannot be expected
to anticipate them. Yet, at the same time, intelligent
agents cannot remain in a state of permanent vulnera-
bility — for instance, getting shot down each time the
25-degree nose-off variation gets used — otherwise they
would be unable to continue to provide a challenging
and appropriate training environment for human pi-
lots.

To deal with such imperfections in the trackee’s
model, the tracker must:

o Recognize the deficiency of its model;

e Adapt the model by either revising its assumptions
regarding known agent actions or postulating the ex-
istence of heretofore unknown actions.

Unfortunately, characteristics of the combat simula-
tion environment outlined in the previous section con-
spire to make this difficult. Thus, given imperfect in-
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Figure 1: A simulated air-combat scenario illustrating
the “normal” missile firing maneuvers: (a) aircraft ap-
proach each other; (b) the trackee points straight at
the tracker to fire a missile; (¢) the trackee executes an
Fpole turn to continue supporting the missile without
flying right behind the missile. An arc on an aircraft’s
nose shows its turn direction.
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Figure 2: A simulated air-combat scenario illustrating
a change in the missile firing maneuver.

formation, it is difficult for the tracker to pinpoint the
deficiencies in its model of the trackee. For instance,
in the above STOW-E example, the tracker failed to
recognize that 25-degree “nose off” is also a legitimate
condition for missile firing (for its model is that missile
firing is possible only if the nose-off angle is within 0-5
degrees). Yet, since it cannot observe the missile, and
thus cannot know when it was fired, the tracker cannot
easily pinpoint this precise deficiency. All it does de-
tect 1s that it was unexpectedly shot down. (One sim-
plifying assumption here is that the tracker assumes
that it is the trackee’s missile that shot it down).

The complexity of the environment and its real-time
nature further complicate matters. Basically, it is diffi-
cult for the tracker to obtain a perfectly accurate model
of the trackee, and access all of the relevant informa-
tion for accurate tracking. For instance, in some situ-
ations, to predict whether an opponent pilot (trackee)
will engage in an offensive or defensive maneuver, it is
useful to know whether or not the trackee is willing to
enter into risky situations in pursuit of its goals. How-
ever, it is difficult obtain such information in advance
or during a real-time air-combat simulation — in fact,
the tracker may end up jeopardizing its own survival
in such a test.

Therefore, we believe that attempting to learn an
exact model of the trackee will not be a very fruit-
ful enterprise for the tracker. Instead, it should focus
its learning effort on situations involving catastrophic
failures, such as the unexpected missile firing in the
STOW-E example. With respect to other less harmful
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imperfections, using a flexible tracking strategy — one
that can work with an imperfect model of the trackee
— would appear to be a more fruitful approach. Such
a strategy would need the capability to switch infer-
ences dynamically in real-time (Tambe & Rosenbloom
1995). For instance, if the tracker is not sure if the
trackee is performing an offensive maneuver or a de-
fensive maneuver, it may first assume that the maneu-
ver is offensive (worst-case scenario), and then flexibly
modify this assumption as soon as warranted by fur-
ther observations. Thus, the tracker need not depend
on acquiring information regarding risk.

Our Current Approach to Adaptive
Agent Tracking

We are currently investigating an approach to adap-
tive agent tracking that involves learning prediction
rules based on discrimination (Shen 1993; 1994). The
discrimination-based approach is used to locate defi-
ciencies in tracker’s model of the trackee. This ap-
proach is augmented using discovery learning tech-
niques for explaining successful and unsuccessful agent
tracking experiences (Johnson 1994), to further spe-
cialize the analysis of such deficiencies.

The main idea of discrimination-based learning is
the framework of predict-surprise-revise. The agent
always makes predictions that can be verified or falsi-
fied by the actual observations, and if a prediction fails
in the current situation, then the current episode will
be compared with an earlier episode where the predic-
tion was successful. The agent compares the features
of the two situations looking for differences in the fea-
tures, and incorporates those features into a revised
prediction rule. In the event that no known features
are effective in discriminating the situations, it may be
necessary to hypothesize that new unknown features
exist.

In order to apply discrimination-based learning to
the agent tracking problem, three issues must be re-
solved:

o The tracker must decide whether a given episode is
worth analyzing — this may be because the trackee
performed a particularly interesting action, or be-
cause the trackee’s action had particularly dire con-
sequences.

e The tracker must dectde which episodes to com-
pare, and which points of time to compare between
episodes. Each episode consists not of a single situ-
ation, but of a sequence of situations, each of which
may be different from the previous one. It is imprac-
tical to discriminate all of the situations that arise in
each episode; rather, the tracker must select specific
situations in each episode which are likely to yield
meaningful differences when compared. Then, once
a situation is selected within one episode, it is nec-
essary to determine which situation corresponds to



it in the other episode, so that an effective discrimi-
nation can be performed.

e The tracker must determine which features to dis-
criminate, and decide whether the existing features
are effective in discriminating the situations.

Our tracker agents record important events during
each episode, such as an air-combat engagement, in
their memory. They also keep track of changes in
the environmental context, or their own mental state,
as these events occur. This enables them to perform
an after-action review of the engagement, both to de-
termine whether the engagement contains significant
events that should be analyzed, and to analyze those
events and the situations in which they occur in order
to learn form them.

In the example under discussion (Figure 2), after-
action review reveals two reasons why the engage-
ment is worth analyzing. First, it had a catastrophic
outcome—the tracker was unexpectedly shot down.
Second, the tracker had serious difficulties tracking the
opponent’s actions at the end of the engagement. This
suggests that the opponent may have performed some
unexpected action which enabled it to win the fight.
If the tracker is able to improve its tracking ability, it
might be able to anticipate such actions in the future
and plan against them.

We are evaluating two ways of deciding which events
to focus on in the episode for analysis. One is to ap-
ply domain knowledge to reason backwards from the
undesired event (being hit by a missile) to its causal
antecedent (the opponent firing a missile). The other
is to examine the event trace, and scan backwards from
the point of catastrophe to the first point where a pre-
diction failed (the failure of the opponent to turn its
nose toward the agent). The tracker last predicts the
opponent to move to a nose-off of 0-5 degrees, to fire a
missile. This never occurs, and remains the last point
of prediction/tracking failure. In this example the ap-
proaches to selecting events for analysis can lead to
similar learning outcomes: either relaxing the condi-
tions under which the tracker determines that the op-
ponent is on target for a missile shot, or relaxing the
conditions under which the opponent actually takes the
shot.

The decision of what instances to compare between
engagements is carried out as follows. The tracker
compares the instances under study, where an oppo-
nent action was expected to occur and did not, with
previous engagements where the expected action did
occur. In the current implementation, the comparison
is indirect; the agent first analyzes events where the
expected action did occur, learns rules (chunks) that
identify key features in the situations in which those
events occurred, and tries to apply those rules to the
the situation in which the prediction failed. This anal-
ysis is performed by the Debrief explanation system.
As described in (Johnson 1994), when a user requests
Debrief to explain a decision, it analyzes the situational
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factors leading to the decision, and builds chunks that
recognize those factors in future decisions. Figure 3
shows a snapshot of the Debrief user interface listing
some of the conclusions drawn by the tracker, primarily
about the opponent’s actions, which may be selected
and explained.

Figure 3: Debrief’s user interface listing some of the
conclusions drawn by the tracker, primarily about the
opponent’s actions.

Unfortunately, in complex domains such as battle-
field simulations, discrimination-based learning can be
difficult to apply without knowledge and/or heuristics
for deciding which features to attend to. A feature
description of the environment can be quite complex:
our agent models typically have hundreds of features,
many of which change constantly. Thus, comparing
the feature set where the missile firing was successfully
tracked with one where the tracking failed may yield
differences in a large number of irrelevant features, e.g.,



the altitude or speed of the trackee.

Under these circumstances, techniques akin to ¢ncre-
mental enlargement (Shen 1993) or learning via exper-
imentation (Gil 1993) can be employed to determine
which features to discriminate.

Incremental enlargement is a heuristic applicable to
finding relevant features that are crucial in discrimi-
nating two environmental states that contain a large
number of differences. The idea is to first focus on
the features that are mentioned in the action or opera-
tor involved in the prediction failure. If difference can
be found in this core set of features, then the search
for difference stops. Otherwise, this core set will be
enlarged to include other features that are related to
some core features and the search for difference con-
tinues. This process of enlargement stops as soon as
differences are found among the two states. To illus-
trate the idea, consider the STOW-E example again.
The feature “nose-oft” is mentioned in the operator
“steering-circle-achieved” which is involved in the cur-
rent prediction failure. Since this feature has different
values in the two states, it is identified as the cricial
feature that can discriminate the two states, although
in these two particular environmental states there are
many other features that have different values as well.
The initial core set of relevant features is provided
by the prior analysis by Debrief of successful tracking
episodes.

Experimental Results

We are taking a two-pronged approach in implement-
ing the above approach. First, we have begun im-
plementing the approach in intelligent pilot agents for
the air-combat simulation environment (Tambe et al.
1995). To this end, two versions of the pilot agents
— one developed for tracking (Tambe & Rosenbloom
1995; Tambe 1995) and one that learns models of de-
cisions for explanation (Johnson 1994) — have been
integrated. (The user interface in Figure 3 is from
this integrated version.) We are experimenting with
this integrated agent to address the 25-degree nose-
off example discussed above. (These agents are based
on the Soar integrated architecture (Newell 1990), and
use chunking, a form of EBL, as the basis of all of their
learning (Laird, Rosenbloom, & Newell 1986)).

We are also in the process of implementing the above
approach in a simple test-bed, where agents mimic the
behavior of fighter aircraft, and are provided limited
information about other agents. The goal here is to
engage in controlled experiments, and gain some un-
derstanding of the tradeoffs involved. We have begun
with two sets of experiments: one is to give the tracker
a good model of the opponent and see how it can deal
with imperfect information and make flexible and safe
predictions, and the other to have the tracker learn the
model from scratch.
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Conclusions and Future Research

This paper analyzed the problem of adaptive agent
tracking, where the tracker possesses an imperfect
model of the trackee. This problem is especially im-
portant in real-world situations where a tracker faces
resource constraints and imperfect information, and a
trackee may itself modify its behavior dynamically. We
have proposed an approach — based on discrimination-
based learning — to address this problem; with some
initial promising results. Furthermore, this work has
revealed several important future research directions
for adaptive agent tracking. In particular, we plan to
investigate: (i) the criteria that an agent may use in
selecting “interesting” episodes for analysis; (ii) mech-
anisms for maintaining episodic memory, and compar-
ison across episodes; and (iii) feature discrimination,
particularly via incremental enlargement.
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