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Abstract

Teamwork in complex, dynamic, multi-agent domains man-
dates highly flexible coordination and communication. Sim-
ply fitting individual agentswith precomputed coordination
plans will not do, for their inflexibility can cause severe
failures in teamwork, and their domain-specificity hinders
reusability. Our central hypothesis is that the key to such
flexibility and reusability is agent architectures with inte-
grated teamwork capabilities. This fundamental shift in
agent architectures is illustrated via an implemented can-
didate: STEAM. While STEAM is founded on the joint
intentions theory, practical operationalization hasrequired it
to integrate several key novel concepts: (i) team synchro-
nization to establishjoint intentions; (ii) constructsfor moni-
toring joint intentions and repair; and (iii) decision-theoretic
communication selectivity (to pragmatically extend thejoint
intentions theory). Applications in three different complex
domains, with empirical results, are presented.

1 Introduction

...the capabilities needed for collaboration cannot be patched
on but must be designed in from the start. —(Grosz 1996)

Teamwork is becoming increasingly critica in many
multi-agent environments, such as, virtua training(Tambe
et al. 1995; Rao et al. 1993), interactive entertain-
ment(Hayes-Roth, Brownston, & Gen 1995), internet-
based information integration, RoboCup soccer(Kitano et
al. 1995), and robotic space missions. Teamwork in such
complex domai ns mandates highly flexible coordination and
communi cation to surmount the uncertainties, e.g., dynamic
changes in team’s goal s and team members’ unexpected in-
ability to fulfill responsibilities (consider Soccer).

Unfortunately, implemented multi-agent systems often
rely on preplanned, domain-specific coordination that fails
to provide such flexibility(Jennings 1995). Firgt, it is dif-
ficult to anticipate and preplan for al possible coordina
tion failures, particularly in scaling up to complex do-
mains. Second, given domain specificity, reusability suf-
fers — coordination has to be redesigned for each new
domain. A fundamental reason for these teamwork lim-
itations is the current agent architectures. Architectures

1Copyright ©1997, American Association of Artificial Intel-
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such as Soar(Newell 1990), RAP(Firby 1987), PRS(Rao
et al. 1993), BB1(Hayes-Roth, Brownston, & Gen 1995),
and IRMA(Pollack 1992) facilitate an individual agent’s
flexible behaviors via mechanisms such as commitments
and reactive plans. However, flexible individual behav-
iors, even if simultaneous and coordinated, do not sum
up to teamwork. A common example provided is ordi-
nary traffic, which although simultaneous and coordinated,
is not teamwork(Levesque, Cohen, & Nunes 1990). In-
deed, theoriesof collaboration point to fundamentally novel
mental constructs as underlying teamwork, such as team
goas, mutual beliefs and joint commitments(Grosz 1996;
Levesque, Cohen, & Nunes 1990), absent in current agent
architectures. Thus, agents cannot explicitly represent and
reason about their team goals and plans, or communica
tion/coordination responsibilitiesin teamwork; instead they
rely on the (problematic) preplanned coordination.

Yet, given the ubiquity of teamwork, architectural con-
structs for flexible, reusable teamwork capabilities are crit-
ical. This paper therefore proposes a fundamenta shift
in agent architectures to integrate teamwork capabilities.
It presents one implemented candidate: STEAM (a Shell
for TEAMwork).? Founded on the joint intentions the-
ory(Levesque, Cohen, & Nunes 1990), STEAM enables
explicit representation of team goals and plans, and team’s
joint commitments. In practice, to enable multiple team
members to maintain a coherent view of their team's
goag/plans, STEAM incorporates (i) team synchroniza-
tion to establish joint intentions; and (ii) monitoring and
repair capabilities. Unfortunately, communication in ser-
vice of coherent teamwork can itself be a significant over-
head or risk (in hostile environments). Therefore, STEAM
integrates decision theoretic communication selectivity —
agents deliberate upon communication necessities vis-a-vis
incoherency in teamwork.

2 |llustrative Domainsand M otivations

Wemotivate STEAM by describing key teamwork problems
in real-world domains. Two of the domains are based on a
real-world battl efiel d simulator commercially devel oped for

2STEAM code (with documentation/traces) is available at
http://www.isi.edu/soar/tambe/steam/steam.html.



military training(Tambeet al. 1995). The first domain, At-
tack (Figurel), involvespilot agentsfor acompany of (upto
eight) attack helicopters. The company typically processes
orders and then flies from home-base to a holding point
(often in subteams). One or two scout helicopters then fly
forward and scout the battle position (adjacent to a ridge).
Then, other company members fly forward to the battle po-
sition. Here, individual pilots repeatedly mask(hide) their
helicopters and unmask to shoot missiles at enemy targets.
In the second domain, Transport (Figure 2), transports pro-
tected by escort helicopters fly troops to land. Our third
domain is RoboCup synthetic soccer(Kitano et al. 1995).
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Figure 1: Attack domain: company flying in subteams
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Figure 2: Transport domain.
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The Attack domain isillustrative of the teamwork chal-
lenges. In our initial implementation, based on Soar, a
standard operator hierarchy was defined for each individ-
ual pilot. Figure 3 shows a portion of this hierarchy (for
now, ignore the brackets [] shown around some operators).
Operatorsare very similar to reactive plans commonly used
in other agent architectures. Each operator consists of (i)
precondition rules for selection; (ii) rulesfor application (a
complex operator subgoals); and (iii) rules for termination.
For teamwork among individuals, domain-specific coordi-
nation plans were added (as commonly done in other such
efforts). For instance, after scouting the battle position, the
scout executes a plan to inform those waiting behind that
the battle position is scouted (not shown in Figure 3).
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Figure 3: Attack domain: Portion of operator hierarchy.

Unfortunately, despite carefully preplanned coordination,
avariety of teamwork failures were encountered. First, pi-
lot agents violated important synchronization points. For
instance, once one pilot unexpectedly processed itsinitia

ordersbefore others. It then flew towardsthe holding point,
while its teammates were left behind at the home base.
Second, agents someti mes failed to communi cate important
informationto others. For instance, upon abnormally termi-
nating the mission, the commander returned to home base
alonewithoutinforming othersand thus abandoning them at
the battle position. Third, agentsfailed to correctly monitor
team performance and “hung” indefinitely. For instance,
once only a scout made it to the holding area (al others
crashed or got shot down); but the scout scouted the battle
position anyhow, and waited i ndefinitely for its non-existant
company to move forward. Conversaly, when a lone scout
was destroyed, the rest of the company waited indefinitely
for its scouting message!

One approach to address these failures is a further addi-
tion of domain-specific coordination plans. However, there
are severd difficulties. First, thereisno overarching frame-
work that would enable anticipation of teamwork failures.
Instead, coordination plans have to be added on a case-by-
case basis — a difficult process, since failures have to be
first encountered in actua runs. Furthermore, as the system
continues to scale up to increasingly complex teamwork
scenarios, such failures continually recur. Thus, a large
number of specia case coordination plans are potentially
necessary. Finaly, itisdifficult to reuse such plansin other
domains.

Given these difficulties, we propose an dternative ap-
proach — provideagentswith ageneral model of teamwork.
The agents can then themsel ves reason about their coordi-
nati on/communi cation responsibilitiesand avoid teamwork
failures. Such an approach requires that the underlying ar-
chitecture facilitate agents' explicit representation and rea-
soning with team goals/plans, which it at present does not.
In particular, in the current architecture (Soar), an agent’s
operator hierarchy represents only its current activities, and
the agent is often ignorant as to which operators involve
teamwork (and the teammates involved in them). For in-
stance, execute-mission and engageareinred ity team activ-
itiesinvolving the entire company; while mask and unmask
involve no teamwork. Indeed, some team tasks — e.g.,
scouts scouting the battle positionwhilethe non-scoutswait
— can not be represented in the operator hierarchy. Fur-
thermore, the architecture does not incorporate a model of
the commitments or coordination responsibilitiesinvolved
in team activities. Thus, agents are forced to rely on the
problematic domain-specific coordination plans. Thisissue
is not specific to the Soar architecture, but the entire family
of architectures mentioned in Section 1.

3 STEAM Foundations; Joint Intentions

STEAM isfounded onthejoint intentionstheory(Levesque,
Cohen, & Nunes 1990). A joint intention of ateam © is
based on its joint commitment, which is defined as a joint
persistent goal (JPG). A JPG to achieve a team action p,
denoted JPG(©, p) requires al teammembers to mutually
believe that p is currently false and want p to be eventually
true.

JPG providesabasic changein plan expressiveness, since



it focuses on ateam task. Furthermore, a JPG guarantees
that team members cannot decommit until p is mutually
known to be achieved, unachievable or irrelevant. Basi-
caly, JPG(©, p) requires team members to each hold p as
aweak achievement goal (WAG).3 WAG(y, p, ©), where u
isateam member in ©, requires p to achievep if itisfalse
However, if 1 privately believes that p is either achieved,
unachievable or irrelevant, JPG(©,p) is dissolved, but p is
left with a commitment to have this belief become ©'smu-
tual belief. Such acommitment avoidskey communication
failures presented in Section 2 — to establish mutual belief,
an agent must typically communicate with its teammates.

Members of ©® must synchronize to establish JIPG(©,p).
To achieve such team synchroni zation we adapt the request-
confirm protocol (Smith & Cohen 1996), described be-
low. The key here is a persistent weak achievement goa
(PWAG(vi, p, ©)), which commits ateam member vi to its
team task p prior to aJPG. p initiatesthe protocol whileits
teammatesin ©, v1,.,vi..vn, respond:

1. ;o executes a Request(u, ©, p), cast as an Attempt (i, ¢, ¥).
That is, p’s ultimate goal ¢ isto both achievep, and haveall vi
adopt PWAG(vi, p, ©). However, ¢ isminimally committed to
1, i.e., just to achieve mutual belief in © that 1 has the PWAG
to achieve ¢. With this Request, ¢ adoptsthe PWAG.

2. Each vi responds via confirm or refuse. Confirm, also an
Attempt, informs othersthat i hasthe PWAG to achievep.

3. If Vi, vi confirm, JPG(©, p) is formed.

Besides synchronization, this protocol enforcesimportant
behavioral congtraints. In step 1, the adoption of a PWAG
implies that if after requesting, u privately believes that
p is achieved, unachievable or irrdlevant, it must inform
its teammates. Furthermore, if 1 believes that the minimal
commitment v isnot achieved (e.g., the message did not get
through) it must retransmit the message. Step 2 similarly
constrains team members vi to inform others about p, and
to rebroadcast. If everyone confirms, a JPG is established.

4 The STEAM Architecture: Basics

STEAM'’s basisisin executing hierarchical reactive plans,
in common with architectures mentioned in Section 1. One
key architectural novelty in STEAM isteam operators (re-
active team plans), which instantiate a team's joint inten-
tions, and thus facilitate reasoning about teamwork. Team
operators explicitly express ateam’sjoint activities, unlike
theregular “individual operators’ which express an agent’s
own activities. Inthehierarchy in Figure3, operatorsshown
in [] such as [Engage] are team operators (others are indi-
vidual operators). Aswith individual operators, team oper-
atorsalso consistsof: (i) preconditionrules; (ii) application
rules; and (iii) termination rules. STEAM maintains a pri-
vate state for an agent to apply itsindividual operators; and
a “team state” to apply team operators. A team stateis an
agent’s (abstract) model of the team’s mutual beliefs about

SWAG was originally called WG in (Levesque, Cohen, &
Nunes 1990), but later termed WAG in (Smith & Cohen 1996).

the world, e.g., in the Transport domain, the team state in-
cludes the coordinates of the landing zone. STEAM can
also maintain subteam states for subteam parti cipation.
Given an arbitrary team operator OP, all team members
must simultaneously select OP to establish a joint inten-
tion (joint intention for OP will be denoted as [OP]g). To
thisend, agents execute the foll owing team synchronization
procedure based on the request-confirm protocol:

1. Team leader broadcasts a message to the team © to establish
PWAG to operator OP. L eader now establishesPWAG. If [OP]e
not established within time limit, repeat broadcast.

2. Subordinates vi in the team wait until they receive leader’'s
message. Then, turn by turn, broadcast to © establishment of
PWAG for OP; and establish PWAG.

3. Wait until ¥V »i, vi establish PWAG for OP; establish [OP]e.

With this protocol, agents avoid synchronization prob-
lems of the type where just one member flies off to the
holding area. During execution, PWAGs address several
contingencies— if OPisbelieved achieved, unachievableor
irrelevant prior to [OP]e, agents inform teammeates. Other
contingencies are also addressed, e.g., even if asubordinate
initially disagrees with the leader, it will conform to the
leader’s broadcasted choice of operator in synchronization.

After team synchronization, a team operator can only
be terminated by updating the team state (mutua beliefs).
This restriction on team operator termination avoidscritica
communication failures of the type where the commander
returned to home-base aone — instead, agents must now
inform teammates when terminating team operators. That
is, if an agent’sprivate state containsabelief that terminates
ateam operator — makesit achieved, unachievable, orirrel-
evant — and such abelief isabsent in itsteam state, then it
Cregtes acommunicative goal, i.e., acommunication opera
tor. Thisoperator broadcaststhe belief to theteam, updating
theteam state, and then terminating the team operator. This
broadcast also communicates the cause of termination so
team members can decide their next action. For instance, if
company member 4 sees some tanks on theroute, it recog-
nizes that this fact causes the team'’s current joint intention
[fly-flight-plan] o to be unachievable. If thisfactisabsentin
the team state, then a communi cation operator is executed,
resulting in a message broadcast, eg., »4 terminate-JPG
fly-flight-plan evade tank 61000 41000. Thisinforms team
members to terminate [fly-flight-plan]e and providesarea
son (evade tank at x,y location). Thus, »4 informs others;
it does not evade tanks on its own.

5 Monitoring and Repair

One major source of teamwork failures, as outlined in Sec-
tion 2, is agents' inability to monitor team performance.
STEAM facilitatessuch monitoring by exploiting itsexplicit
representation of team operators. In particular, STEAM al-
lows an explicit specification of monitoring conditions to
determine achievement, unachievability or irrelevancy of
team operators. Furthermore, STEAM facilitates explicit
specification of the relationship between a team operator



and individuals rolesinit. A role constrains ateam mem-
ber vi to some suboperator op,,; of theteam operator [OF]e.
Currently the following key relationships — called role-
monitoring constraints— can be specified in STEAM:

1. AND-combination: [OP]e <= A/~ Op.;
2. OR-combination: [OPle <= \//~1 0P
3. Role dependency: op,.; = op..; (0op.: dependenton op. ;)

STEAM usesthese specificationstoinfer theachi evement
or unachievability of ateam operator based on individua’s
role performance. Combinations of the above relationships
can also be specified. For example, for two agents vi and
vj, withrolesop,; and op, ;, both an OR-combination plus
role-dependency may be specified as ((op,; V op.;) A
(op,; = 0p,,;)). STEAM can now infer that the role non-
performance of vj (—op, ;) makes [OP]e unachievable; but
role non-performance of vi isnot critical to [OP]e.

When a team operator [OP]e becomes unachievable,
STEAM invokes [repair]o for repair. By casting repair
as a team operator, agents automatically synchronize the
execution of [repair]e and inform teammates about repair
results. The actions taken in service of [repair]e depend
on the context. If [repair]o was invoked due to [OP]e’s
unachievability conditions, domain-specific repair is trig-
gered. In contrast, role-monitoring constraint failure causes
STEAM to first analyze the failure. The analysis may re-
veal acritical role failure — a single role failure causing
the unachievability of [OP]g — which may occur in an
AND-combination if any agent failsin itsrole; or an OR-
combination when all team members are role-dependent on
a single individual. For instance, when agents are flying
in formation via [travelling]o (OR-combination), everyone
is role-dependent on the lead helicopter. Thus, should the
lead crash, acritical rolefailure occurs. The actiontakenin
such cases isteam reconfiguration, where an agent capable
of performing the critical role takes over that role. Since
[repair]o isateam operator, thisrepair isannounced to ©.
In contrast, a pure role dependency failure disables only a
single dependent agent vi from role-performance (because
op,; = 0p, ;). Here, vi must locate another agent vk such
that op,; = op, . If faluretypeisall roles failure, no
agent performsitsrole; whichisirreparable. ([repair]q may
be invoked for a subteam Q of ® — repair communication
is then automatically restricted within Q).

If [repair]e isitself unachievable — no repairs achieved
within time limit — [complete-failure]g isinvoked, to act
given completefailureof [OP]e. For instance, inthe Attack
domain, complete failure implies returning to home base.

6 Sedlective Communication

STEAM agents communicate for team operator synchro-
nization and termination. Given the large number of team
operatorsin adynamic environment, thiscommunicationis
avery significant overhead (as Section 7 showsempirically),
or risk (e.g., in hostile environments).

Therefore, STEAM integrates decision theoretic commu-
nication selectivity, pragmatically extending the joint in-
tentions framework — agents may not guarantee mutual

beliefs when terminating joint intentions. The key is not
only communication costs and benefits, but the likelihood
that relevant informationisal ready common knowl edge and
hence unnecessary to communicate. Figure 4 presents the
decision tree for the decision to communicate a fact F, in-
dicating the termination of [OP]e. Rewards and costs are
measured to the team, not an individual. The two possible
actions are NC (not communicate, cost 0) or C (commu-
nicate, cost Cc). If the action is NC, two outcomes are
possible. With probability (1-7), F was commonly known
anyway, and the team isrewarded B for terminating [OF] .
With probability 7, however, F was not known, and thus
there is miscoordination in terminating [OP]o (e.9., Some
agents come to know of F only later). Given apenalty C,,;
for miscoordination, the reward reduces to B-C,,;. If the
action is C, assuming reliable communication, F is known.

Rewards
NC (1-T) — (Fknown) B
Cost: 0 C_C< (F unknown) B - Cmt
[[] Decision node 1 (Fknown) B

C
O chancenode  Zig ¢ 0 (F unknown) B - Cmt

Figure 4: Decision tree for communication.

EU(C), theexpected utility of optionC,isB-Cc. EU(NC)
of optionNC isB-7*C,,,;. To maximize expected utility, an
agent communicates iff EU(C) > EU(NC), i.e, iff 7*C,,;
> Cc. Thus, for instance, in the Attack domain, when
flying with high visibility, pilot agents do not inform others
of achievement of waypoints on their route, since = islow
(high likelihood of common knowledge), and C,,,; is low
(low penalty). However, they inform others about enemy
tanks on the route, since athough 7 islow, C,,,; ishigh.

Expected utility maximization is aso used for selectivity
in team synchronization messages. If v is the probability
of lack of team synchronization and C,,. the penalty for
executing [OP]e without synchronization, then an agent
communicatesiff EU(C) > EU(NC), i.e, v* C,,. > Cc.

6.1 Further Communication Generalization

Further generalization in communication isrequired to han-
dleuncertainty in thetermination criteriafor joint intentions.
For instance, ateam member 4 may be uncertain that an
enemy tank seen enroute causes [fly-flight-plan] e to be un-
achievable — the tank’s threat may not be clearcut. Yet
not communicating could be highly risky. The decisiontree
for communication is therefore extended to include é, the
uncertainty of an event’sthrest to thejoint intention (Figure
5). Since agents may now erroneoudly inform teammates to
terminate team operators, a nuisance cost -Cnisintroduced.

Again, an agent communicates iff EU(C) > EU(NC),
i.e, iff 6*7*C,,; > (Cc+ (1-6)Cn). If 6is1, i.e, ateam
operator has terminated, this equation reducesto — 7*C,,;
> Cc — seen previoudly. If & << 1, i.e, high uncertainty
about termination, no communication resultsif Cn is high.
Therefore, the decision treeis further extended to includea
new message type — threst to joint intention — where Cn



Rewards
J (Terminates) B

O— (1= d) (Not Terminate) 0

_d___— (Terminates) B-Cmt
) (Not Terminate) 0

d (Terminates) B

-d

0 [Irrelevant]

) (Not Terminate) -Cn

Figure 5. Extended decision tree with 5.

is zero, but benefits accrued are lower (B - C,). Thisthreat
message maximizes expected utility when § << 1, i.e, if
Cn ishigh for communicating termination, a team member
communicates a threat. For instance, a threat message is
used if an agent failsinitsown role, which isathreat to the
joint intention. However, as before, termination messages
are used when é = 1, where they maximize expected utility.

6.2 Estimating Parameters (v, 7, 6)

As a first step, STEAM only uses qualitative (low, high,
medium) parameter values. STEAM estimates likelihood
of lack of team synchronization, v, viateam tracking(Tambe
1996b) — dynamically inferring ateam’s menta state from
observations of team members' actions. Fortunately, rather
than tracking each teammate separately, an agent vi can rely
on its own team operator execution for team tracking. In
particular, suppose vi has selected a team operator OP for
execution, and it needs to estimate v for synchronization
with team ©. Now, if vi selected OP at random from a
choice of equaly preferable candidates, then itsteammates
may differ in this selection. Thus, there is clearly alow
likelihood of team synchronization — vi estimates v to be
high. However, if OP is the only choice available, then
v depends on the preceding [OP2]q that vi executed with
the team Q. There are three cases to consider. Firdt, if
O C Q (O is subteam of Q) or © = Q, dl members of ©
were synchronously executing [OP2]q. Thus, © islikely
synchronized in executing the only next choice OP — ~ is
estimated low. Second, if Q C ©, some membersin © were
not synchronized earlier; hence v is estimated high. Third,
if no operator precedes OP (e.g., OP is first in a subgoal)
then v is estimated low.

Whileagentsusually infer matching estimatesof v, some-
times, estimates do mismatch. Therefore, STEAM inte-
grates some error recovery routines. For instance, if an
agent vi estimates v to be low, when others estimate it
high, vi starts executing the team operator, and only later
receives a message for team synchronization. vi recovers
by stopping current activities and synchronizing. In con-
tragt, if vi mis-estimatesy to be high, it unnecessarily waits
for synchronization. STEAM infers such a mis-estimation
via reception of unexpected messages; it then conducts a
lookahed search to catch up with teammates.

To estimate 7, STEAM assumes identical sensory capa-
bilitiesfor team members, e.g., if somefact isvisibleto an
agent, then it isaso visibleto all colocated teammates. 6

isestimated 1 if afact matches specified termination condi-
tions. Otherwise role monitoring constraints are used, eg.,
in an OR-combination, é is inversely proportiona to the
number of team members. The cost parameters, C,..¢, Cpre,
and Cc are assumed to be domain knowledge.

7 Evaluation

STEAM is currently implemented within Soar via conven-
tions for encoding operators and states, plus a set of 251
rules. STEAM-based pilots in the Attack and Transport
domains have participated in several large-scale synthetic
military exercises with hundreds of agents. Here, experts
(human pilots) have set the tests for these pilot teams and
issued favorable performance eval uations.

STEAM'’s flexibility and reusability is approximately
measured in Teble 1. Column 1 liststhree different domains
of STEAM'’s application — Attack, Transport, RoboCup
— thus providing some evidence of STEAM'’s generality.
Column 2 lists the total humber of rules per domain, il-
lustrating domain complexity. Column 3 lists the number
of STEAM rules used in these domains; while column 4
mesasures percent reuse of STEAM rules across domains.
(No reuse is shown in STEAM'’s first domain, Attack).
There is 100% reuse in Trangport, i.e., no new coordina
tion/communication rules were written — a major saving
in encoding thisdomain. RoboCup, initsinitid stages, has
lower reuse. Here, dueto weaknessin spatial reasoning and
tracking, agentsfail to recognize other team’s play, or even
ownteammates’ failures(e.g., in executing apass), hamper-
ing the reuse of rulesfor role-monitoring constraints, repair
and threat detection. With improved spatia reasoning and
tracking, reuse may improve in the future.

Domain Total rules | STEAM rules | STEAM reuse | Team opers
Attack 1466 251 first-use 17

Transport 1303 251 100% 14

RoboCup 202 100 40% 5

Table 1: Reusability and flexibility data

Column 5 lists the total number of team operators spec-
ified per domain. For each team operator STEAM’s en-
tire teamwork capabilities are brought to bear. As are-
sult, in benchmark runs of Attack, almost all of the team-
work failures from our earlier implementation are avoided.
Thus, considerabl eflexibility isachieved without the cost of
adding many specia case coordination plans, e.g., hundreds
special case operatorswould be needed in our initial imple-
mentation just to reproduce STEAM'S decision-theoretic
communication selectivity. Additionally, STEAM appears
to more easily accommodate modifications suggested by
domain experts; at least, no new coordination plans are
required. For instance, in the Attack domain, domain ex-
perts earlier suggested a modification, that the helicopter
company should evade enemy vehicles seen enroute, rather
than flying over. Here, adding a new unachievability condi-
tion for the team operator [fly-flight-plan]o was sufficient;
STEAM then ensured that the pilot agents coordinated the



termination of [fly-flight-plan]e, even if just one arbitrary
team member detected the enemy vehicles. (Of course,
the evasion maneuvers, being domain-specific, had to be
added.)

Figure6 illustratesthe usefulness of STEAM's decision-
theoretic communication selectivity. It compares the total
number of messages in three teams — balanced, cautious
and reckless— withincreasing numbersof agentsper teams.
Balanced agents fully exploit the decision theory frame-
work. Cautious agents always communicate, ignoring the
decision theory framework. Reckless agents communicate
very little (only if high C,,;, C,,.). All three teams work
with identical cost models, Cc, C,,,;, and C,,.. Decision-
theoretic selectivity enables the balanced team to perform
well with few messages — this team is regularly fielded
in synthetic exercises. The cautious team exchanges 10
to 20-fold or more messages than the balanced team — a
substantial communication overhead. Indeed, beyond six
agents, the simulation with cautious team could not be run
inreal time. Reckless agents do exchange fewer messages,
but they miscoordinate, e.g., team members are stranded
throughout the battlefiel d.
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Figure 6: Attack domain: selective communication.
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Figure 7: Attack domain: pattern of communication

Figures 7 illustrate the differing communication patterns
in the cautious and balanced teams. Figure 7-a plots the
varying degree of collaboration (y-axis) during different
phases (x-axis) in the Attack domain. Degree of collabo-
ration is measured as the percentage of team operatorsin a
pilot’s operator hierarchy (which consists of team and in-
dividua operators). A low percentage implies low degree
of collaboration and vice versa. The degree of collabo-
ration is lowest in phases 18-20 (20-40%), where agents

engage the enemy. Figure 7-b plotsthe percentage of total
communication per phase, for cautiousand ba anced teams.
Communication percentage is correlated to the degree of
collaboration per phase for the cautious team (coefficient
0.80), but not for the balanced team (coefficient -0.34).

8 Summary and Related Work

Motivated by the critical need for teamwork flexibility and
reusability, this paper presents anove architecture within-
tegrated teamwork capabilities. Key contribution include:
(i) an architecture, STEAM, founded on joint intentions; (ii)
applying decision theory for communication selectivity and
enhancements within the joint intentions framework; (iii)
monitoring and repair method based on explicit team opera-
tors; (iv) integration of team synchronization; (v) STEAM’s
implementation and application in three complex domains;
indeed, pilotsfor Attack and Transport have participated in
real-world synthetic exercises with hundreds of agents.

Severad major issues remain open for future work.
One key issue is investigating STEAM'’s interactions
with learning.  Initial experiments with chunking (a
form of explanation-based learning) in STEAM reved
that agents could automeatize routine teamwork activities,
rather than always reasoning about them. Specifically,
from STEAM'’s domain-independent reasoning about team-
work, agents learn situation-specific coordination rules.
For instance, when the formation leader crashes, another
agent learns situation-specific rules to take over as for-
mation lead and communicate. Additionaly, STEAM's
knowledge-intensive approach could complement current
inductive learning approaches for multi-agent coordina-
tion(Sen 1996).

Failure detection and recovery is also a key topic for
future work, particularly in environments with unreliable
communication. One novel approach exploits agent track-
ing(Tambe & Rosenbloom 1995; Tambe 1996b) to infer
teammates high-level goas and intentionsfor comparison
with own goals and intentions. Differencesin goalsand in-
tentionsmay i ndi catecoordination fail ures, sinceteammates
often carry out identical or related tasks. See (Kaminka &
Tambe 1997) for more details.

Among related work, STEAM s closely related to the
recent model-based collaborative systems(Jennings 1995;
Tambe 1996a). These systems provide agents with a model
of teamwork based onjointintentions. However, such mod-
elsrequirethearchitectural mooringsof explicit team goals,
team states, etc. This fact, plus the ubiquity of teamwork,
has led to STEAM’s architectural approach. Also novel in
STEAM is the illustrated reuse across domains. Further-
more, STEAM handles more complex team organizations,
including subteams. Finally, STEAM substantialy extends
the teamwork models. For instance, while (Jennings 1995)
supportsteam synchronization (al thoughwithout the benefit
of PWAGS) it does not address communication selectivity,
or role-monitoring constraints and integrated role repair.
(Tambe 1996a) does not consider team synchronization;
and furthermore, while raising the issue of communication
cost, suggests only a heuristic eval uation of communication



costs and benefits. In contrast, STEAM considers a vari-
ety of uncertainties within the decision theory framework.
Similarly (Tambe 1996a) can only monitor the loss of one
“specidist” in ateam, and repair that specific failure. In
contrast, STEAM can monitor a greater variety of failures,
and it integrates repair within the teamwork framework.

While STEAM is dso related to COLLAGEN(Rich &
Sidner 1997) — another recent system based on model-
based collaboration — the two systems emphasize comple-
mentary capabilities. In particular, COLLAGEN focuses
on discourse and interactions between a human user and an
intelligent agent, rather than multi-agent interaction. Thus,
discourse generation and interpretation isimportant in COL -
LAGEN, but capabilities critical in STEAM such as team-
work monitoringand repair, or decision-theoreticcommuni-
cation selectivity are at present excluded. An additional in-
teresting contrast isthat while COLLAGEN isbased on the
SharedPlan theory of collaboration(Grosz 1996), STEAM
isbased onthejoint intentionstheory. A comparative anal-
ysis of the two systems for possible cross-fertilization of
ideas/techniquesis an issue for future work.

In team tracking(Tambe 1996b), i.e, inferring team’s
joint intentions, the expressiveness of team operators has
been exploited. However, issues of synchronization, com-
munication, monitoring and repair are not addressed. The
formal approach to teamwork in (Sonenberg et al. 1994)
transforms team plans into separate role-plans for execu-
tion by individual s, with rigidly embedded communications.
STEAM purposely avoids such transformations, so agents
can flexibly reason with (i) explicit team goa s/plans; and
(ii) selective communication (very important in practice).
In (Gmytrasiewicz, Durfee, & Wehe 1991), decision theory
isapplied for message prioritizationin coordination (rather
than teamwork). STEAM applies decision theory in avery
different context — joint intentions— for communication
selectivity and enhancements. Also, STEAM integrates
other key facilitiesfor teamwork, and implements this the-
ory in real-world domains.

Acknowledgements

Comments from Paul Rosenbloom, Ramesh Petil, John
Laird, Yolanda Gil, Kevin Knight and Jeff Rickel helped
in significantly improving the quality of this paper. Team-
work with Jon Gratch, Randy Hill and Johnny Chen was
key in development of pilot agent teams. This research
was supported as part of contract N66001-95-C-6013 from
ARPA/ISO.

References

Firby, J. 1987. An investigation into reactive planning in
complex domains. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI).

Gmytrasiewicz, P. J.; Durfee, E. H.; and Wehe, D. K. 1991.
A decision theoretic approach to co-ordinating multi-agent
interactions. In Proceedings of International Joint Con-
ference on Artificial Intelligence.

Grosz, B. 1996. Collaborating systems. Al magazine
17(2).

Hayes-Roth, B.; Brownston, L.; and Gen, R. V. 1995.
Multiagent collaobration in directed improvisation. In Pro-
ceedings of the International Conference on Multi-Agent
Systems (ICMAS-95).

Jennings, N. 1995. Controlling cooperative problem solv-
inginindustrial multi-agent systemsusing joint intentions.
Artificial Intelligence 75.

Kaminka, G., and Tambe, M. 1997. Social comparison for
failure monitoring and recovery in multi-agent settings.
In Proceedings of the National Conference on Artificial
Intelligence, (Student abstract).

Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, |.; and Os-
awa, E. 1995. Robocup: Therobot world cup initiative. In
Proceedings of IJCAI-95 Workshop on Entertainment and
Al/Alife.

Levesque, H. J.; Cohen, P. R.; and Nunes, J. 1990. On
acting together. In Proceedings of the National Conference
on Artificial Intelligence. Menlo Park, Calif.: AAAI press.

Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, Mass.: Harvard Univ. Press.

Pollack, M. 1992. The usesof plans. Artificial Intelligence
57:43-68.

Rao, A. S,; Lucas, A.; Morley, D.; Selvestrel, M.; and
Murray, G. 1993. Agent-oriented architecture for air-
combat simulation. Technical Report Technical Note 42,
The Austraian Artificial Intelligence Institute.

Rich, C., and Sidner, C. 1997. COLLAGEN: When agents
collaborate with people. In Proceedings of the Interna-
tional Conference on Autonomous Agents (Agents 97).

Sen, S. 1996. Proceedings of the Spring Symposium on
Adaptation, Coevolution and Learning. Menlo Park, CA:
American Association for Artificia Intelligence.

Smith, 1., and Cohen, P 1996. Towards semantics for
an agent communication language based on speech acts.
In Proceedings of the National Conference on Artificial
Intelligence (AAAI).

Sonenberg, E.; Tidhard, G.; Werner, E.; Kinny, D.; Ljung-
berg, M.; and Rao, A. 1994. Planned team activity. Tech-
nical Report 26, Austraian Al Institute.

Tambe, M., and Rosenbloom, P S. 1995. RESC: An
approach for real-time, dynamic agent tracking. In Pro-
ceedingsof thelnternational Joint Conferenceon Artificial
Intelligence (1JCAI).

Tambe, M.; Johnson, W. L.; Jones, R.; Koss, F; Laird,
J. E.; Rosenbloom, P. S; and Schwamb, K. 1995. Intdl-
ligent agents for interactive simulation environments. Al
Magazine 16(1).

Tambe, M. 1996a. Teamwork in real-world, dynamic envi-
ronments. In Proceedings of the International Conference
on Multi-agent Systems (ICMAS).

Tambe, M. 1996b. Tracking dynamic team activity. In
Proceedings of the National Conference on Artificial In-
telligence (AAAI).



