
Agent Architectures for Flexible, Practical Teamwork

Milind Tambe
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

tambe@isi.edu
http://www.isi.edu/soar/tambe

Abstract

Teamwork in complex, dynamic, multi-agent domains man-
dates highly flexible coordination and communication. Sim-
ply fitting individual agents with precomputed coordination
plans will not do, for their inflexibility can cause severe
failures in teamwork, and their domain-specificity hinders
reusability. Our central hypothesis is that the key to such
flexibility and reusability is agent architectures with inte-
grated teamwork capabilities. This fundamental shift in
agent architectures is illustrated via an implemented can-
didate: STEAM. While STEAM is founded on the joint
intentions theory, practical operationalization has required it
to integrate several key novel concepts: (i) team synchro-
nization to establish joint intentions; (ii) constructs for moni-
toring joint intentions and repair; and (iii) decision-theoretic
communication selectivity (to pragmatically extend the joint
intentions theory). Applications in three different complex
domains, with empirical results, are presented.1

1 Introduction
...the capabilities needed for collaboration cannot be patched
on but must be designed in from the start. —(Grosz 1996)

Teamwork is becoming increasingly critical in many
multi-agent environments, such as, virtual training(Tambe
et al. 1995; Rao et al. 1993), interactive entertain-
ment(Hayes-Roth, Brownston, & Gen 1995), internet-
based information integration, RoboCup soccer(Kitano et
al. 1995), and robotic space missions. Teamwork in such
complex domains mandates highly flexible coordination and
communication to surmount the uncertainties, e.g., dynamic
changes in team’s goals and team members’ unexpected in-
ability to fulfill responsibilities (consider Soccer).

Unfortunately, implemented multi-agent systems often
rely on preplanned, domain-specific coordination that fails
to provide such flexibility(Jennings 1995). First, it is dif-
ficult to anticipate and preplan for all possible coordina-
tion failures; particularly in scaling up to complex do-
mains. Second, given domain specificity, reusability suf-
fers — coordination has to be redesigned for each new
domain. A fundamental reason for these teamwork lim-
itations is the current agent architectures. Architectures

1Copyright c
1997, American Association of Artificial Intel-
ligence (www.aaai.org). All rights reserved.

such as Soar(Newell 1990), RAP(Firby 1987), PRS(Rao
et al. 1993), BB1(Hayes-Roth, Brownston, & Gen 1995),
and IRMA(Pollack 1992) facilitate an individual agent’s
flexible behaviors via mechanisms such as commitments
and reactive plans. However, flexible individual behav-
iors, even if simultaneous and coordinated, do not sum
up to teamwork. A common example provided is ordi-
nary traffic, which although simultaneous and coordinated,
is not teamwork(Levesque, Cohen, & Nunes 1990). In-
deed, theories of collaboration point to fundamentally novel
mental constructs as underlying teamwork, such as team
goals, mutual beliefs and joint commitments(Grosz 1996;
Levesque, Cohen, & Nunes 1990), absent in current agent
architectures. Thus, agents cannot explicitly represent and
reason about their team goals and plans, or communica-
tion/coordination responsibilities in teamwork; instead they
rely on the (problematic) preplanned coordination.

Yet, given the ubiquity of teamwork, architectural con-
structs for flexible, reusable teamwork capabilities are crit-
ical. This paper therefore proposes a fundamental shift
in agent architectures to integrate teamwork capabilities.
It presents one implemented candidate: STEAM (a Shell
for TEAMwork).2 Founded on the joint intentions the-
ory(Levesque, Cohen, & Nunes 1990), STEAM enables
explicit representation of team goals and plans, and team’s
joint commitments. In practice, to enable multiple team
members to maintain a coherent view of their team’s
goals/plans, STEAM incorporates (i) team synchroniza-
tion to establish joint intentions; and (ii) monitoring and
repair capabilities. Unfortunately, communication in ser-
vice of coherent teamwork can itself be a significant over-
head or risk (in hostile environments). Therefore, STEAM
integrates decision theoretic communication selectivity —
agents deliberate upon communication necessities vis-a-vis
incoherency in teamwork.

2 Illustrative Domains and Motivations
We motivate STEAM by describing key teamwork problems
in real-world domains. Two of the domains are based on a
real-world battlefield simulator commercially developed for

2STEAM code (with documentation/traces) is available at
http://www.isi.edu/soar/tambe/steam/steam.html.

military training(Tambe et al. 1995). The first domain, At-
tack (Figure 1), involves pilot agents for a company of (up to
eight) attack helicopters. The company typically processes
orders and then flies from home-base to a holding point
(often in subteams). One or two scout helicopters then fly
forward and scout the battle position (adjacent to a ridge).
Then, other company members fly forward to the battle po-
sition. Here, individual pilots repeatedly mask(hide) their
helicopters and unmask to shoot missiles at enemy targets.
In the second domain, Transport (Figure 2), transports pro-
tected by escort helicopters fly troops to land. Our third
domain is RoboCup synthetic soccer(Kitano et al. 1995).

HOLDING
POINT

BATTLE
POSITION

RIDGE

ENEMY
VEHICLES

HOME
BASE

Figure 1: Attack domain: company flying in subteams

LANDING ZONE

LAND SEA
ESCORT

TRANSPORTS

ESCORT

Figure 2: Transport domain.

The Attack domain is illustrative of the teamwork chal-
lenges. In our initial implementation, based on Soar, a
standard operator hierarchy was defined for each individ-
ual pilot. Figure 3 shows a portion of this hierarchy (for
now, ignore the brackets [] shown around some operators).
Operators are very similar to reactive plans commonly used
in other agent architectures. Each operator consists of (i)
precondition rules for selection; (ii) rules for application (a
complex operator subgoals); and (iii) rules for termination.
For teamwork among individuals, domain-specific coordi-
nation plans were added (as commonly done in other such
efforts). For instance, after scouting the battle position, the
scout executes a plan to inform those waiting behind that
the battle position is scouted (not shown in Figure 3).

High
level

Low
level

Contour NOE

Mask

Select−
Mask

Unmask

Dip

Engage

Employ
weapons

Fly−flight−plan

EXECUTE−MISSION

............Travelling

Fly−control
route

[]

[]

][[
[]

][

Initialize
hover

Maintain
position

Goto−new
mask−location

Prepare−to
return−to−base

............

]

Return−to
control−point

............

Figure 3: Attack domain: Portion of operator hierarchy.

Unfortunately, despite carefully preplanned coordination,
a variety of teamwork failures were encountered. First, pi-
lot agents violated important synchronization points. For
instance, once one pilot unexpectedly processed its initial

orders before others. It then flew towards the holding point,
while its teammates were left behind at the home base.
Second, agents sometimes failed to communicate important
information to others. For instance, upon abnormally termi-
nating the mission, the commander returned to home base
alone without informing others and thus abandoning them at
the battle position. Third, agents failed to correctly monitor
team performance and “hung” indefinitely. For instance,
once only a scout made it to the holding area (all others
crashed or got shot down); but the scout scouted the battle
position anyhow, and waited indefinitely for its non-existant
company to move forward. Conversely, when a lone scout
was destroyed, the rest of the company waited indefinitely
for its scouting message!

One approach to address these failures is a further addi-
tion of domain-specific coordination plans. However, there
are several difficulties. First, there is no overarching frame-
work that would enable anticipation of teamwork failures.
Instead, coordination plans have to be added on a case-by-
case basis — a difficult process, since failures have to be
first encountered in actual runs. Furthermore, as the system
continues to scale up to increasingly complex teamwork
scenarios, such failures continually recur. Thus, a large
number of special case coordination plans are potentially
necessary. Finally, it is difficult to reuse such plans in other
domains.

Given these difficulties, we propose an alternative ap-
proach — provide agents with a general model of teamwork.
The agents can then themselves reason about their coordi-
nation/communication responsibilities and avoid teamwork
failures. Such an approach requires that the underlying ar-
chitecture facilitate agents’ explicit representation and rea-
soning with team goals/plans, which it at present does not.
In particular, in the current architecture (Soar), an agent’s
operator hierarchy represents only its current activities, and
the agent is often ignorant as to which operators involve
teamwork (and the teammates involved in them). For in-
stance, execute-mission and engage are in reality team activ-
ities involving the entire company; while mask and unmask
involve no teamwork. Indeed, some team tasks — e.g.,
scouts scouting the battle position while the non-scouts wait
— can not be represented in the operator hierarchy. Fur-
thermore, the architecture does not incorporate a model of
the commitments or coordination responsibilities involved
in team activities. Thus, agents are forced to rely on the
problematic domain-specific coordination plans. This issue
is not specific to the Soar architecture, but the entire family
of architectures mentioned in Section 1.

3 STEAM Foundations: Joint Intentions
STEAM is founded on the joint intentions theory(Levesque,
Cohen, & Nunes 1990). A joint intention of a team Θ is
based on its joint commitment, which is defined as a joint
persistent goal (JPG). A JPG to achieve a team action p,
denoted JPG(Θ, p) requires all teammembers to mutually
believe that p is currently false and want p to be eventually
true.

JPG provides a basic change in plan expressiveness, since

it focuses on a team task. Furthermore, a JPG guarantees
that team members cannot decommit until p is mutually
known to be achieved, unachievable or irrelevant. Basi-
cally, JPG(Θ, p) requires team members to each hold p as
a weak achievement goal (WAG).3 WAG(�, p, Θ), where �
is a team member in Θ, requires � to achieve p if it is false.
However, if � privately believes that p is either achieved,
unachievable or irrelevant, JPG(Θ,p) is dissolved, but � is
left with a commitment to have this belief become Θ’s mu-
tual belief. Such a commitment avoids key communication
failures presented in Section 2 — to establish mutual belief,
an agent must typically communicate with its teammates.

Members of Θ must synchronize to establish JPG(Θ,p).
To achieve such team synchronization we adapt the request-
confirm protocol(Smith & Cohen 1996), described be-
low. The key here is a persistent weak achievement goal
(PWAG(�i, p, Θ)), which commits a team member �i to its
team task p prior to a JPG. � initiates the protocol while its
teammates in Θ, �1,.,�i..�n, respond:

1. � executes a Request(�, Θ, p), cast as an Attempt(�, �,).
That is, �’s ultimate goal � is to both achieve p, and have all �i
adopt PWAG(�i, p, Θ). However,� is minimally committed to
 , i.e., just to achieve mutual belief in Θ that � has the PWAG
to achieve �. With this Request, � adopts the PWAG.

2. Each �i responds via confirm or refuse. Confirm, also an
Attempt, informs others that �i has the PWAG to achieve p.

3. If 8 i, �i confirm, JPG(Θ, p) is formed.

Besides synchronization, this protocol enforces important
behavioral constraints. In step 1, the adoption of a PWAG
implies that if after requesting, � privately believes that
p is achieved, unachievable or irrelevant, it must inform
its teammates. Furthermore, if � believes that the minimal
commitment is not achieved (e.g., the message did not get
through) it must retransmit the message. Step 2 similarly
constrains team members �i to inform others about p, and
to rebroadcast. If everyone confirms, a JPG is established.

4 The STEAM Architecture: Basics
STEAM’s basis is in executing hierarchical reactive plans,
in common with architectures mentioned in Section 1. One
key architectural novelty in STEAM is team operators (re-
active team plans), which instantiate a team’s joint inten-
tions, and thus facilitate reasoning about teamwork. Team
operators explicitly express a team’s joint activities, unlike
the regular “individual operators” which express an agent’s
own activities. In the hierarchy in Figure 3, operators shown
in [] such as [Engage] are team operators (others are indi-
vidual operators). As with individual operators, team oper-
ators also consists of: (i) precondition rules; (ii) application
rules; and (iii) termination rules. STEAM maintains a pri-
vate state for an agent to apply its individual operators; and
a “team state” to apply team operators. A team state is an
agent’s (abstract) model of the team’s mutual beliefs about

3WAG was originally called WG in (Levesque, Cohen, &
Nunes 1990), but later termed WAG in (Smith & Cohen 1996).

the world, e.g., in the Transport domain, the team state in-
cludes the coordinates of the landing zone. STEAM can
also maintain subteam states for subteam participation.

Given an arbitrary team operator OP, all team members
must simultaneously select OP to establish a joint inten-
tion (joint intention for OP will be denoted as [OP]Θ). To
this end, agents execute the following team synchronization
procedure based on the request-confirm protocol:

1. Team leader broadcasts a message to the team Θ to establish
PWAG to operator OP. Leader now establishes PWAG. If [OP]Θ
not established within time limit, repeat broadcast.

2. Subordinates �i in the team wait until they receive leader’s
message. Then, turn by turn, broadcast to Θ establishment of
PWAG for OP; and establish PWAG.

3. Wait until 8 �i, �i establish PWAG for OP; establish [OP]Θ.

With this protocol, agents avoid synchronization prob-
lems of the type where just one member flies off to the
holding area. During execution, PWAGs address several
contingencies — if OP is believed achieved, unachievable or
irrelevant prior to [OP]Θ, agents inform teammates. Other
contingencies are also addressed, e.g., even if a subordinate
initially disagrees with the leader, it will conform to the
leader’s broadcasted choice of operator in synchronization.

After team synchronization, a team operator can only
be terminated by updating the team state (mutual beliefs).
This restriction on team operator termination avoids critical
communication failures of the type where the commander
returned to home-base alone — instead, agents must now
inform teammates when terminating team operators. That
is, if an agent’s private state contains a belief that terminates
a team operator — makes it achieved, unachievable, or irrel-
evant — and such a belief is absent in its team state, then it
creates a communicative goal, i.e., a communication opera-
tor. This operator broadcasts the belief to the team, updating
the team state, and then terminating the team operator. This
broadcast also communicates the cause of termination so
team members can decide their next action. For instance, if
company member �4 sees some tanks on the route, it recog-
nizes that this fact causes the team’s current joint intention
[fly-flight-plan]Θ to be unachievable. If this fact is absent in
the team state, then a communication operator is executed,
resulting in a message broadcast, e.g., �4 terminate-JPG
fly-flight-plan evade tank 61000 41000. This informs team
members to terminate [fly-flight-plan]Θ and provides a rea-
son (evade tank at x,y location). Thus, �4 informs others;
it does not evade tanks on its own.

5 Monitoring and Repair
One major source of teamwork failures, as outlined in Sec-
tion 2, is agents’ inability to monitor team performance.
STEAM facilitates such monitoring by exploiting its explicit
representation of team operators. In particular, STEAM al-
lows an explicit specification of monitoring conditions to
determine achievement, unachievability or irrelevancy of
team operators. Furthermore, STEAM facilitates explicit
specification of the relationship between a team operator

and individuals’ roles in it. A role constrains a team mem-
ber �i to some suboperator op�i of the team operator [OP]Θ.
Currently the following key relationships — called role-
monitoring constraints — can be specified in STEAM:

1. AND-combination: [OP]Θ ()
V

n
i=1 op� i

2. OR-combination: [OP]Θ ()
W

n
i=1 op� i

3. Role dependency: op� i =) op�j (op� i dependent on op�j)

STEAM uses these specifications to infer the achievement
or unachievability of a team operator based on individual’s
role performance. Combinations of the above relationships
can also be specified. For example, for two agents �i and
�j, with roles op�i and op�j , both an OR-combination plus
role-dependency may be specified as ((op�i

W
op�j)

V

(op�i =) op�j)). STEAM can now infer that the role non-
performance of �j (:op�j) makes [OP]Θ unachievable; but
role non-performance of �i is not critical to [OP]Θ.

When a team operator [OP]Θ becomes unachievable,
STEAM invokes [repair]Θ for repair. By casting repair
as a team operator, agents automatically synchronize the
execution of [repair]Θ and inform teammates about repair
results. The actions taken in service of [repair]Θ depend
on the context. If [repair]Θ was invoked due to [OP]Θ’s
unachievability conditions, domain-specific repair is trig-
gered. In contrast, role-monitoringconstraint failure causes
STEAM to first analyze the failure. The analysis may re-
veal a critical role failure — a single role failure causing
the unachievability of [OP]Θ — which may occur in an
AND-combination if any agent fails in its role; or an OR-
combination when all team members are role-dependent on
a single individual. For instance, when agents are flying
in formation via [travelling]Θ (OR-combination), everyone
is role-dependent on the lead helicopter. Thus, should the
lead crash, a critical role failure occurs. The action taken in
such cases is team reconfiguration, where an agent capable
of performing the critical role takes over that role. Since
[repair]Θ is a team operator, this repair is announced to Θ.
In contrast, a pure role dependency failure disables only a
single dependent agent �i from role-performance (because
op�i =) op�j). Here, �i must locate another agent �k such
that op�i =) op�k. If failure type is all roles failure, no
agent performs its role; which is irreparable. ([repair]Ω may
be invoked for a subteam Ω of Θ — repair communication
is then automatically restricted within Ω).

If [repair]Θ is itself unachievable — no repairs achieved
within time limit — [complete-failure]Θ is invoked, to act
given complete failure of [OP]Θ. For instance, in the Attack
domain, complete failure implies returning to home base.

6 Selective Communication
STEAM agents communicate for team operator synchro-
nization and termination. Given the large number of team
operators in a dynamic environment, this communication is
a very significant overhead (as Section 7 shows empirically),
or risk (e.g., in hostile environments).

Therefore, STEAM integrates decision theoretic commu-
nication selectivity, pragmatically extending the joint in-
tentions framework — agents may not guarantee mutual

beliefs when terminating joint intentions. The key is not
only communication costs and benefits, but the likelihood
that relevant information is already common knowledge and
hence unnecessary to communicate. Figure 4 presents the
decision tree for the decision to communicate a fact F, in-
dicating the termination of [OP]Θ. Rewards and costs are
measured to the team, not an individual. The two possible
actions are NC (not communicate, cost 0) or C (commu-
nicate, cost Cc). If the action is NC, two outcomes are
possible. With probability (1-�), F was commonly known
anyway, and the team is rewarded B for terminating [OP]Θ.
With probability � , however, F was not known, and thus
there is miscoordination in terminating [OP]Θ (e.g., some
agents come to know of F only later). Given a penalty Cmt

for miscoordination, the reward reduces to B-Cmt. If the
action is C, assuming reliable communication, F is known.

C
Cost: Cc

NC
Cost: 0

(1−)
Rewards

B

B(F known)

(F unknown)

Decision node

Chance node (F unknown)

(F known)

B − Cmt

1

0 B − Cmt

Figure 4: Decision tree for communication.

EU(C), the expected utility of option C, is B-Cc . EU(NC)
of option NC is B-�*Cmt. To maximize expected utility, an
agent communicates iff EU(C) > EU(NC), i.e., iff �*Cmt

> Cc. Thus, for instance, in the Attack domain, when
flying with high visibility, pilot agents do not inform others
of achievement of waypoints on their route, since � is low
(high likelihood of common knowledge), and Cmt is low
(low penalty). However, they inform others about enemy
tanks on the route, since although � is low, Cmt is high.

Expected utility maximization is also used for selectivity
in team synchronization messages. If
 is the probability
of lack of team synchronization and Cme the penalty for
executing [OP]Θ without synchronization, then an agent
communicates iff EU(C) > EU(NC), i.e.,
* Cme > Cc.

6.1 Further Communication Generalization
Further generalization in communication is required to han-
dle uncertainty in the termination criteria for joint intentions.
For instance, a team member �4 may be uncertain that an
enemy tank seen enroute causes [fly-flight-plan]Θ to be un-
achievable — the tank’s threat may not be clearcut. Yet
not communicating could be highly risky. The decision tree
for communication is therefore extended to include �, the
uncertainty of an event’s threat to the joint intention (Figure
5). Since agents may now erroneously inform teammates to
terminate team operators, a nuisance cost -Cn is introduced.

Again, an agent communicates iff EU(C) > EU(NC),
i.e., iff �*�*Cmt > (Cc + (1-�)Cn). If � is 1, i.e., a team
operator has terminated, this equation reduces to — �*Cmt

> Cc — seen previously. If � << 1, i.e., high uncertainty
about termination, no communication results if Cn is high.
Therefore, the decision tree is further extended to include a
new message type — threat to joint intention — where Cn

C
Cost: Cc

NC
Cost: 0

(1−)

Rewards

(1 −)

(1 −)

B

−Cn

B

(1 −)

0

0

(Terminates)

(Not Terminate)

(Terminates)

(Not Terminate)

(Terminates)

(Not Terminate)

B−Cmt

1

0 [Irrelevant]

Figure 5: Extended decision tree with �.

is zero, but benefits accrued are lower (B - C�). This threat
message maximizes expected utility when � << 1, i.e., if
Cn is high for communicating termination, a team member
communicates a threat. For instance, a threat message is
used if an agent fails in its own role, which is a threat to the
joint intention. However, as before, termination messages
are used when � = 1, where they maximize expected utility.

6.2 Estimating Parameters (
, � , �)
As a first step, STEAM only uses qualitative (low, high,
medium) parameter values. STEAM estimates likelihood
of lack of team synchronization,
, via team tracking(Tambe
1996b) — dynamically inferring a team’s mental state from
observations of team members’ actions. Fortunately, rather
than tracking each teammate separately, an agent �i can rely
on its own team operator execution for team tracking. In
particular, suppose �i has selected a team operator OP for
execution, and it needs to estimate
 for synchronization
with team Θ. Now, if �i selected OP at random from a
choice of equally preferable candidates, then its teammates
may differ in this selection. Thus, there is clearly a low
likelihood of team synchronization — �i estimates
 to be
high. However, if OP is the only choice available, then

 depends on the preceding [OP2]Ω that �i executed with
the team Ω. There are three cases to consider. First, if
Θ � Ω (Θ is subteam of Ω) or Θ = Ω, all members of Θ
were synchronously executing [OP2]Ω. Thus, Θ is likely
synchronized in executing the only next choice OP —
 is
estimated low. Second, if Ω�Θ, some members in Θ were
not synchronized earlier; hence
 is estimated high. Third,
if no operator precedes OP (e.g., OP is first in a subgoal)
then
 is estimated low.

While agents usually infer matching estimates of
, some-
times, estimates do mismatch. Therefore, STEAM inte-
grates some error recovery routines. For instance, if an
agent �i estimates
 to be low, when others estimate it
high, �i starts executing the team operator, and only later
receives a message for team synchronization. �i recovers
by stopping current activities and synchronizing. In con-
trast, if �i mis-estimates
 to be high, it unnecessarily waits
for synchronization. STEAM infers such a mis-estimation
via reception of unexpected messages; it then conducts a
lookahed search to catch up with teammates.

To estimate � , STEAM assumes identical sensory capa-
bilities for team members, e.g., if some fact is visible to an
agent, then it is also visible to all colocated teammates. �

is estimated 1 if a fact matches specified termination condi-
tions. Otherwise role monitoring constraints are used, e.g.,
in an OR-combination, � is inversely proportional to the
number of team members. The cost parameters, Cmt, Cme,
and Cc are assumed to be domain knowledge.

7 Evaluation
STEAM is currently implemented within Soar via conven-
tions for encoding operators and states, plus a set of 251
rules. STEAM-based pilots in the Attack and Transport
domains have participated in several large-scale synthetic
military exercises with hundreds of agents. Here, experts
(human pilots) have set the tests for these pilot teams and
issued favorable performance evaluations.

STEAM’s flexibility and reusability is approximately
measured in Table 1. Column 1 lists three different domains
of STEAM’s application — Attack, Transport, RoboCup
— thus providing some evidence of STEAM’s generality.
Column 2 lists the total number of rules per domain, il-
lustrating domain complexity. Column 3 lists the number
of STEAM rules used in these domains; while column 4
measures percent reuse of STEAM rules across domains.
(No reuse is shown in STEAM’s first domain, Attack).
There is 100% reuse in Transport, i.e., no new coordina-
tion/communication rules were written — a major saving
in encoding this domain. RoboCup, in its initial stages, has
lower reuse. Here, due to weakness in spatial reasoning and
tracking, agents fail to recognize other team’s play, or even
own teammates’ failures (e.g., in executing a pass), hamper-
ing the reuse of rules for role-monitoring constraints, repair
and threat detection. With improved spatial reasoning and
tracking, reuse may improve in the future.

Domain Total rules STEAM rules STEAM reuse Team opers

Attack 1466 251 first-use 17

Transport 1303 251 100% 14

RoboCup 202 100 40% 5

Table 1: Reusability and flexibility data.

Column 5 lists the total number of team operators spec-
ified per domain. For each team operator STEAM’s en-
tire teamwork capabilities are brought to bear. As a re-
sult, in benchmark runs of Attack, almost all of the team-
work failures from our earlier implementation are avoided.
Thus, considerable flexibility is achieved without the cost of
adding many special case coordination plans, e.g., hundreds
special case operators would be needed in our initial imple-
mentation just to reproduce STEAM’s decision-theoretic
communication selectivity. Additionally, STEAM appears
to more easily accommodate modifications suggested by
domain experts; at least, no new coordination plans are
required. For instance, in the Attack domain, domain ex-
perts earlier suggested a modification, that the helicopter
company should evade enemy vehicles seen enroute, rather
than flying over. Here, adding a new unachievability condi-
tion for the team operator [fly-flight-plan]Θ was sufficient;
STEAM then ensured that the pilot agents coordinated the

termination of [fly-flight-plan]Θ, even if just one arbitrary
team member detected the enemy vehicles. (Of course,
the evasion maneuvers, being domain-specific, had to be
added.)

Figure 6 illustrates the usefulness of STEAM’s decision-
theoretic communication selectivity. It compares the total
number of messages in three teams — balanced, cautious
and reckless — with increasing numbers of agents per teams.
Balanced agents fully exploit the decision theory frame-
work. Cautious agents always communicate, ignoring the
decision theory framework. Reckless agents communicate
very little (only if high Cmt, Cme). All three teams work
with identical cost models, Cc, Cmt, and Cme. Decision-
theoretic selectivity enables the balanced team to perform
well with few messages — this team is regularly fielded
in synthetic exercises. The cautious team exchanges 10
to 20-fold or more messages than the balanced team — a
substantial communication overhead. Indeed, beyond six
agents, the simulation with cautious team could not be run
in real time. Reckless agents do exchange fewer messages,
but they miscoordinate, e.g., team members are stranded
throughout the battlefield.

0
50

100
150
200
250
300
350
400
450
500

2 3 4 5 6 7 8

N
um

be
r

of
 m

es
sa

ge
s

Number of agents in team

"balanced"
"cautious"
"reckless"

Figure 6: Attack domain: selective communication.

0
10
20
30
40
50
60
70
80
90

0 5 10 15 20 25 30 35

D
eg

re
e

of
 C

ol
la

bo
ra

tio
n

Phase Number

"degree"
0

5

10

15

20

25

0 5 10 15 20 25 30 35

P
er

ce
nt

ag
e

of
 m

es
sa

ge
s

Phase Number

"cautious"
"balanced"

(a) Degree of collaboration (b) Percentage communication

Figure 7: Attack domain: pattern of communication

Figures 7 illustrate the differing communication patterns
in the cautious and balanced teams. Figure 7-a plots the
varying degree of collaboration (y-axis) during different
phases (x-axis) in the Attack domain. Degree of collabo-
ration is measured as the percentage of team operators in a
pilot’s operator hierarchy (which consists of team and in-
dividual operators). A low percentage implies low degree
of collaboration and vice versa. The degree of collabo-
ration is lowest in phases 18-20 (20-40%), where agents

engage the enemy. Figure 7-b plots the percentage of total
communication per phase, for cautious and balanced teams.
Communication percentage is correlated to the degree of
collaboration per phase for the cautious team (coefficient
0.80), but not for the balanced team (coefficient -0.34).

8 Summary and Related Work
Motivated by the critical need for teamwork flexibility and
reusability, this paper presents a novel architecture with in-
tegrated teamwork capabilities. Key contribution include:
(i) an architecture, STEAM, founded on joint intentions; (ii)
applying decision theory for communication selectivity and
enhancements within the joint intentions framework; (iii)
monitoring and repair method based on explicit team opera-
tors; (iv) integration of team synchronization; (v) STEAM’s
implementation and application in three complex domains;
indeed, pilots for Attack and Transport have participated in
real-world synthetic exercises with hundreds of agents.

Several major issues remain open for future work.
One key issue is investigating STEAM’s interactions
with learning. Initial experiments with chunking (a
form of explanation-based learning) in STEAM reveal
that agents could automatize routine teamwork activities,
rather than always reasoning about them. Specifically,
from STEAM’s domain-independent reasoning about team-
work, agents learn situation-specific coordination rules.
For instance, when the formation leader crashes, another
agent learns situation-specific rules to take over as for-
mation lead and communicate. Additionally, STEAM’s
knowledge-intensive approach could complement current
inductive learning approaches for multi-agent coordina-
tion(Sen 1996).

Failure detection and recovery is also a key topic for
future work, particularly in environments with unreliable
communication. One novel approach exploits agent track-
ing(Tambe & Rosenbloom 1995; Tambe 1996b) to infer
teammates’ high-level goals and intentions for comparison
with own goals and intentions. Differences in goals and in-
tentions may indicate coordination failures, since teammates
often carry out identical or related tasks. See (Kaminka &
Tambe 1997) for more details.

Among related work, STEAM is closely related to the
recent model-based collaborative systems(Jennings 1995;
Tambe 1996a). These systems provide agents with a model
of teamwork based on joint intentions. However, such mod-
els require the architectural moorings of explicit team goals,
team states, etc. This fact, plus the ubiquity of teamwork,
has led to STEAM’s architectural approach. Also novel in
STEAM is the illustrated reuse across domains. Further-
more, STEAM handles more complex team organizations,
including subteams. Finally, STEAM substantially extends
the teamwork models. For instance, while (Jennings 1995)
supports team synchronization (althoughwithout the benefit
of PWAGs) it does not address communication selectivity,
or role-monitoring constraints and integrated role repair.
(Tambe 1996a) does not consider team synchronization;
and furthermore, while raising the issue of communication
cost, suggests only a heuristic evaluation of communication

costs and benefits. In contrast, STEAM considers a vari-
ety of uncertainties within the decision theory framework.
Similarly (Tambe 1996a) can only monitor the loss of one
“specialist” in a team, and repair that specific failure. In
contrast, STEAM can monitor a greater variety of failures,
and it integrates repair within the teamwork framework.

While STEAM is also related to COLLAGEN(Rich &
Sidner 1997) — another recent system based on model-
based collaboration — the two systems emphasize comple-
mentary capabilities. In particular, COLLAGEN focuses
on discourse and interactions between a human user and an
intelligent agent, rather than multi-agent interaction. Thus,
discourse generation and interpretation is important in COL-
LAGEN, but capabilities critical in STEAM such as team-
work monitoringand repair, or decision-theoreticcommuni-
cation selectivity are at present excluded. An additional in-
teresting contrast is that while COLLAGEN is based on the
SharedPlan theory of collaboration(Grosz 1996), STEAM
is based on the joint intentions theory. A comparative anal-
ysis of the two systems for possible cross-fertilization of
ideas/techniques is an issue for future work.

In team tracking(Tambe 1996b), i.e., inferring team’s
joint intentions, the expressiveness of team operators has
been exploited. However, issues of synchronization, com-
munication, monitoring and repair are not addressed. The
formal approach to teamwork in (Sonenberg et al. 1994)
transforms team plans into separate role-plans for execu-
tion by individuals,with rigidlyembedded communications.
STEAM purposely avoids such transformations, so agents
can flexibly reason with (i) explicit team goals/plans; and
(ii) selective communication (very important in practice).
In (Gmytrasiewicz, Durfee, & Wehe 1991), decision theory
is applied for message prioritization in coordination (rather
than teamwork). STEAM applies decision theory in a very
different context — joint intentions — for communication
selectivity and enhancements. Also, STEAM integrates
other key facilities for teamwork, and implements this the-
ory in real-world domains.

Acknowledgements
Comments from Paul Rosenbloom, Ramesh Patil, John
Laird, Yolanda Gil, Kevin Knight and Jeff Rickel helped
in significantly improving the quality of this paper. Team-
work with Jon Gratch, Randy Hill and Johnny Chen was
key in development of pilot agent teams. This research
was supported as part of contract N66001-95-C-6013 from
ARPA/ISO.

References
Firby, J. 1987. An investigation into reactive planning in
complex domains. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI).

Gmytrasiewicz, P. J.; Durfee, E. H.; and Wehe, D. K. 1991.
A decision theoretic approach to co-ordinatingmulti-agent
interactions. In Proceedings of International Joint Con-
ference on Artificial Intelligence.

Grosz, B. 1996. Collaborating systems. AI magazine
17(2).
Hayes-Roth, B.; Brownston, L.; and Gen, R. V. 1995.
Multiagent collaobration in directed improvisation. In Pro-
ceedings of the International Conference on Multi-Agent
Systems (ICMAS-95).
Jennings, N. 1995. Controlling cooperative problem solv-
ing in industrial multi-agent systems using joint intentions.
Artificial Intelligence 75.
Kaminka, G., and Tambe, M. 1997. Social comparison for
failure monitoring and recovery in multi-agent settings.
In Proceedings of the National Conference on Artificial
Intelligence, (Student abstract).
Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; and Os-
awa, E. 1995. Robocup: The robot world cup initiative. In
Proceedings of IJCAI-95 Workshop on Entertainment and
AI/Alife.
Levesque, H. J.; Cohen, P. R.; and Nunes, J. 1990. On
acting together. In Proceedings of the National Conference
on Artificial Intelligence. Menlo Park, Calif.: AAAI press.
Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, Mass.: Harvard Univ. Press.
Pollack, M. 1992. The uses of plans. Artificial Intelligence
57:43–68.
Rao, A. S.; Lucas, A.; Morley, D.; Selvestrel, M.; and
Murray, G. 1993. Agent-oriented architecture for air-
combat simulation. Technical Report Technical Note 42,
The Australian Artificial Intelligence Institute.
Rich, C., and Sidner, C. 1997. COLLAGEN: When agents
collaborate with people. In Proceedings of the Interna-
tional Conference on Autonomous Agents (Agents’97).
Sen, S. 1996. Proceedings of the Spring Symposium on
Adaptation, Coevolution and Learning. Menlo Park, CA:
American Association for Artificial Intelligence.
Smith, I., and Cohen, P. 1996. Towards semantics for
an agent communication language based on speech acts.
In Proceedings of the National Conference on Artificial
Intelligence (AAAI).
Sonenberg, E.; Tidhard, G.; Werner, E.; Kinny, D.; Ljung-
berg, M.; and Rao, A. 1994. Planned team activity. Tech-
nical Report 26, Australian AI Institute.
Tambe, M., and Rosenbloom, P. S. 1995. RESC: An
approach for real-time, dynamic agent tracking. In Pro-
ceedings of the InternationalJoint Conference on Artificial
Intelligence (IJCAI).
Tambe, M.; Johnson, W. L.; Jones, R.; Koss, F.; Laird,
J. E.; Rosenbloom, P. S.; and Schwamb, K. 1995. Intel-
ligent agents for interactive simulation environments. AI
Magazine 16(1).
Tambe, M. 1996a. Teamwork in real-world, dynamic envi-
ronments. In Proceedings of the International Conference
on Multi-agent Systems (ICMAS).
Tambe, M. 1996b. Tracking dynamic team activity. In
Proceedings of the National Conference on Artificial In-
telligence (AAAI).

