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    1.    Abstract   

We have constructed a team of intelligent agents that
perform the tasks of an Army attack helicopter company
and a Marine transport/escort combined team for a
synthetic battlefield environment used for running large-
scale military exercises.  We have used the Soar
integrated architecture to develop:  (1) pilot agents for a
company of helicopters, (2) a command agent that makes
decisions and plans for the helicopter company, and (3) an
approach to teamwork that enables the pilot agents to
coordinate their activities in accomplishing the goals of
the company.  This case study describes the task domain
and architecture of our application, as well as the benefits
and lessons learned from applying AI technology to this
domain.

    2.   Task Description    

2.1  Background
Since 1983 the Defense Advanced Research Projects
Agency (DARPA) has exerted a significant effort to
develop a realistic, distributed, synthetic battlespace that
could be used for training, mission planning and
rehearsal, tactics and doctrine development, and weapon-
system concept evaluation.  The underlying Advanced
Distributed Simulation (ADS) technology builds large-
scale simulations from a set of independent simulators
linked together in a network (DIS Steering Committee
1994).  It is envisioned that a synthetic battlespace will
make it cheaper and safer to conduct large scale military
exercises than would be possible with live field units. One
of the goals of DARPA’s Synthetic Theater of War ‘97
(STOW-97) project was to field several thousand entities
(i.e., synthetic individual combatants and vehicles) during
one exercise, using a modified version of ModSAF
(Modular Semi-Automated Forces)(Calder et al., 1993).

Simulation in an ADS environment is high-fidelity:
actions are represented and resolved at the level of
entities. The synthetic environment includes terrain,
oceans, and environmental effects (e.g., weather), all of
which affect the perception and actions of the entities.

It is very expensive to field thousands of human
troops for a field exercise, but deploying thousands of
entities in a large-scale synthetic theater of war is also a
challenge.  One of the current weaknesses of the synthetic
forces in ModSAF is that they are only capable of a
limited amount of autonomy. Entities can be tasked to
perform low-level actions, e.g., move in formation along a
route, and attack an objective, but they are unable to
perform a complex mission without a human controller to
intervene and guide them from task to task.  Furthermore,
even with human controllers, the behavior of the
ModSAF entities often does not achieve the desired level.
Consequently, running a large-scale simulation could
potentially be very costly in terms of the number of
human controllers that would be required, and the quality
of the simulation may not reach the desired level of
quality.  Herein lies the motivation for applying artificial
intelligence techniques to the development of entities in
this domain.

This paper describes our efforts to address these
challenges.  This work is part of a multi-phase project by
a consortium of researchers from the University of
Southern California Information Sciences Institute (USC-
ISI), University of Michigan (UM)1, and Carnegie Mellon
University (CMU).  The first phase emphasized the
development of individual Soar/IFOR (Intelligent Forces)
agents for the fixed wing aircraft domain.  During this
phase we developed a system using the Soar agent
architecture (Tambe et. al, 1995; Laird et. al, 1995). This
has served as the foundation for the work described in this
paper.  The second phase of the project continued the
development of the Soar/IFOR agents,  with UM

                        
1 We wish to acknowledge the UM team for their role with
USC-ISI in developing the FWA agent architecture: Karen
Coulter, Randy Jones, Frank Koss, John Laird,  and Paul
Nielsen.



developing new missions and capabilities in the fixed
wing aircraft domain and CMU continuing their focus on
Natural Language Processing.  At USC-ISI we shifted our
focus to the helicopter domain, while also adding new
techniques to facilitate the perception of groups of entities
(Hill, 1998), teamwork (Tambe, 1996a, 1997) and
command-level planning and decision making (Gratch,
1996).  Here we describe how these new approaches help
address the challenge of constructing intelligent synthetic
forces.  We begin by giving an overview of two types of
missions we deployed at STOW-97: the Army deep attack
mission and the Marine escort/transport mission.

2.2  Overview of the Attack Helicopter Company
An army attack helicopter company (AHC) has eight
attack helicopters and pilots, and a company commander
who plans the company’s missions and makes high-level
decisions for the company.  There are three AHC’s in an
attack helicopter battalion, and we deployed all three
companies to perform the deep attack mission at STOW-
97.  The battalion also has a commander, but we do not
yet model this agent.  Instead, a human represents the
battalion commander: the battalion-level plans are
generated by a human and sent in an operations order,
which is the standard military message for
communicating mission plans to subordinates.

In a typical mission the battalion commander sends
an operations order to each of the AHC commanders.
Each of the AHC commanders analyzes the operations
order and plans the mission for their respective
companies.  Once the planning is complete and the
company’s plan has been approved, the AHC commander
sends an operations order to the AHC pilot agents, who
execute the mission. The mission usually involves
following a route to a position deep in enemy territory,
avoiding enemy forces when possible and suppressing
them when contact is made, moving to a battle area,
destroying enemy targets in an engagement area, and
returning to home base once the mission’s objectives have
been achieved.

2.3  Overview of the Transport/Escort Mission
The Marine transport/escort mission is really a pair of
missions—one Combat Assault Transport mission and
one Armed Escort mission.  The purpose of the composite
transport/escort mission is to move dismounted infantry
from a staging area to a pre-specified landing zone, which
is often in enemy territory.  For STOW-97 the mission
was configured to lift a company-sized unit—company-
level lifts consisted of an 8-4-4 package: 8 CH-46E
transport helicopters, 4 CH-53E transport helicopters, and
4 AH-1W attack helicopters.  The Marine helicopters are
tasked via an exercise editor by a human operator.  Once
the synthetic pilots receive their tasking they behave
autonomously for the duration of the mission—many of
their behaviors require a high degree of coordination and
teamwork.

2.4  Objectives
Our overall goal is twofold.  First, we seek to develop
intelligent agents capable of acting autonomously on the
synthetic battlefield so as to reduce the amount of human
control needed to run large-scale military exercises.
Second, we want our agents to be as human-like in
behavior as possible so that the quality of the simulation
meets the high standards of the domain experts.

To meet these goals, we need to develop AHC pilot
agents that can fly their helicopters and execute their
missions in the context of a complex, dynamic, and
uncertain synthetic-battlefield environment, and they need
to be able to act autonomously for relatively long periods
of time—hours to days at a time.  In addition, the
individual pilot agents within the company must be able
to act as a team during the execution of a mission to
achieve the company’s goals.

 With respect to the company command agent, we
need to model decision-making from a broader
perspective and over longer time scales than what is done
by the individual pilot agents.  Whereas the pilot agents’
decision-making tends to be more reactive in nature, the
commander must deliberate about alternate courses of
action, project effects into the future, and detect harmful
(or beneficial) interactions between subordinate units and
enemy forces.

This paper is a case study on how we applied AI
technology to the development of the agents in the attack
helicopter company and the transport/escort groups.  We
begin by describing the application’s design and
implementation, giving an extended example of what
tasks the agents in the Army AHC and Marine
transport/escort mission perform.  Next we describe the
use of AI technology in our agents, starting with the basic
agent architecture and describing the extensions to
incorporate teamwork and planning.  Following this, we
describe how our synthetic pilots and commanders were
used in preparation for and participation in the STOW-97
advanced concept technology demonstration.  Finally, we
briefly describe our current research in the virtual
battlespace.

    3.   Application Description    

3.1  Design and implementation
The overall architecture of the Army helicopter company
is shown in Figure 1.  The distributed interactive
simulation environment is provided by ModSAF: each
ModSAF application program runs on a different machine
on the network.  Each ModSAF simulates multiple
entities (i.e., vehicles), which are multicast to the other
ModSAF’s on the network.  While ModSAF provides the
simulation of the vehicles, in our case the AH-64 Apache
helicopter, we implemented the pilot agents who fly the



helicopters  and the company command agent in Soar (we
describe Soar in the section on AI Technology).

The Soar helicopter pilot agents perceive and take
actions in the synthetic environment via the Soar-
ModSAF interface (SMI), which is a collection of ‘C’
programs that provide the agents access to the dynamics
and state of their vehicles as well as providing simulated
sensors for detecting other entities in the environment via
vision.  The agents control their aircraft, manipulate
simulated lasers and weapons, sense the terrain, and
communicate by radio via the SMI.
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Figure 1: Architecture of the Attack Helicopter Company

Besides using simulated radios to communicate, the
Soar helicopter pilot agents and the company commander
agent also communicate via the Command and Control
Communications System Interface Language (CCSIL),
(Hartzog and Salisbury, 1996), a structured language that
enables the agents to send standard military messages
(e.g., operations orders or situation reports) to one
another.  CCSIL messages are delivered using the
Command Forces (CFOR) Infrastructure software
(Salisbury, 1995), which uses remote procedure calls to
enable agents outside of  ModSAF to communicate with
agents in ModSAF vehicles.  This is important since the
Company Commander agent (see Figure 1) does not run
in ModSAF but needs to be able to communicate with the
Soar helicopter pilot agents that do.  In addition, CCSIL
provides a convenient way for humans to compose, send,
and receive messages from ModSAF and CFOR agents.

The CFOR Infrastructure software also provides an
interface to the sensors on ModSAF vehicles as well as
providing a set of terrain reasoning functions that can be
used by the commander agent in planning routes for
tactical movements.

The helicopters used for the Marine transport/escort
mission have the same architecture as the Army AHC,
except that they do not use CCSIL nor does a synthetic
commander plan their missions.  Instead, we developed an
exercise editor for specifying the key elements of the
transport/escort mission, which were encoded into the

mission representation used by the synthetic Marine
pilots.

Subsequently, a similar tool—the Operations Order
generation tool—was created to generate operations
orders for the Army AHC deep attack mission.  All that
was required of the user was to create a graphical
operations overlay in ModSAF, save it as a CCSIL
overlay (i.e., the overlay was converted into the CCSIL
overlay format), and then specify to the exercise editor the
names of some key control measures.  This greatly
enhanced our ability to quickly task the Army AHC—
none of the pre-planned Operations Orders were used
since the enemy units were not located in the predicted
positions.

3.2  Examples of how system is used
In developing the behaviors of the synthetic Army
helicopter pilots, we focused on the primary mission of an
attack helicopter company, the attack mission.1  In a
typical attack mission, the battalion commander—who in
this case is a human—issues a plan, called an operations
order, to each of the company commanders in the
battalion.  The operations order contains the battalion’s
mission, what is known about the current friendly and
enemy situations, and specific orders for each of the
companies concerning what they are supposed to do  as
well as when and where they are supposed to do it.  For
example, the section of the operations order for Company
A may state:

On order, ingress on route RED to Holding Area BRAVO,
then move to Battle Position CAIRO and attack by fire to
destroy enemy forces in Engagement Area HORNET2.

Besides telling the companies their missions, the
operations order also contains information about the
locations of routes, objectives, phase lines, battle
positions, engagement areas, and other control measures.

The company commander agent receives and
analyzes the operations order, then plans a course of
action to achieve the mission.  During its initial planning
the commander agent seeks to find a route to its assigned
battle position that maximizes cover and concealment
from the enemy force while minimizing the distance
traveled.  When the command agent has completed its
initial planning, it encodes the plan as an operations order
and backbriefs it to the battalion commander, who has the
option of approving or disapproving it.  Once the
operations order is approved, it is sent to the individual
pilot agents, who read it, identify their tasks and roles in
the plan, and begin to execute the mission.

In a typical attack mission, the company organizes
itself into two sections, a light team and a heavy team.

                                    
1 Other potential Army missions include reconnaissance and
security.
2 Although this fragment is in English, the system actually uses
a formal representation language called CCSIL.



The light team leads the company formation and performs
the role of scouting the route. The heavy team follows the
light team and overwatches their progress, providing
firepower support when the light team is attacked.  The
teams take off from the home base and follow a route to a
holding area, which is an intermediate point just prior to
the company’s battle position.  Once in the holding area,
the helicopters assigned the scout role move forward to
the battle position, flying nap-of-the-earth to remain
hidden from the enemy.  The scouts reconnoiter the battle
position to determine whether it is safe for the company to
move forward and whether there are enemy targets in the
engagement area.  If enemy forces are observed in the
engagement area, the scouts call the company forward to
the battle position.

The company occupies the battle position by first
moving to individually assigned firing positions that were
selected by the company commander on the basis of how
well they provide cover and concealment to the helicopter
while also providing an optimal range to fire missiles at
the enemy vehicles.  While occupying their firing
positions,  the helicopter pilots first mask (hide) behind
terrain features such as a hill or ridge to conceal
themselves from the enemy, whenever possible. In cases
where there is no cover and concealment, the helicopters
position themselves at the maximum stand-off range of
their Hellfire missile system.   To engage a target, the
helicopter unmasks, selects a target, fires several missiles,
and quickly re-masks.  In order to insure its own
survivability, the helicopter will shift its position laterally
while masked and unmask in another position.

Once the termination criteria for engaging targets has
been met, the company re-groups and flies back to the
home base.  If they should encounter an unexpected
enemy force en route to/from their objective, it is
necessary to take “actions on contact,” which involves
immediately reacting to the situation in order to insure
survival and modifying their current plans to bypass or
destroy the enemy.  In some cases it is desirable for the
company to evade the enemy force and avoid contact
altogether.  In this instance the commander must re-plan
the route to keep the company out of the enemy’s weapon
range, and, if possible, out of visual contact with the
enemy.  In other cases it is desirable to engage the enemy
force to suppress or destroy it.  In this instance, if the
company can see the enemy and is out of the enemy’s
weapons range, the commander needs to re-plan the route
so that the company can approach and engage the enemy
unit from a position that provides cover and concealment.

In the case of the Marine transport/escort mission, the
transport helicopters typically begin on a troop transport
ship or in an assembly area, where the dismounted
infantry embark the aircraft.  The transport helicopters
take off and rendezvous at a link-up point with the escort
helicopters, which begin the mission on a separate ship.
Once together, the escorts provide protective cover to the
transports during the entire flight to and from the landing
zone.  While en route, two of the escorts fly ahead of the

transports, while the other two follow the formation,
orienting their flight on the center of mass of the transport
helicopters.  At the landing zone the escorts take up
covering positions to protect the transports while they
briefly land and debark the dismounted infantry.  The
escorts engage enemy units in the area of the landing zone
or which otherwise threaten the mission.  Once the
debarkation is complete, the transports get back into
formation and the escorts again assume their positions in
the front and back of the transports and return to a pre-
designated home base.

    4.  Use of AI Technology    

4.1   Soar-based agent architecture
The pilot agents and the commander agent are built within
Soar, a software architecture that is being developed as a
basis for both an integrated intelligent system and a
unified theory of human cognition (Rosenbloom, Laird &
Newell, 1993; Newell, 1990).  Soar provides the agents
with support for knowledge representation, problem
solving, reactivity, external interaction, and learning,
(though our agents do not currently take advantage of
Soar’s learning capabilities), and it allows for the smooth
integration of planning and reaction in decision-making
(Pearson et al., 1993; Laird & Rosenbloom, 1990).

Tasks and goals are represented in Soar as operators.
Operators perform the deliberate acts of the system.  They
can perform simple, primitive actions that modify the
internal state and/or generate primitive external actions, or
they can perform arbitrarily complex actions, such as
executing a mission.  The basic processing cycle is to
repeatedly propose, select, and apply operators to a state.
Operator selection, application, and termination are all
dynamically determined by the system's knowledge and
preferences, stored in the form of productions.  Any
changes in goals, states, and perceptions can cause these
productions to fire.
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Figure 2:  Part of the operator hierarchy for a pilot agent

In our application, agents interact with the Advanced
Distributed Simulation (ADS) environment in real-time.
This ability is facilitated by Soar’s incorporation of
perception within its decision loop.  Decisions are
informed by the current state of the world, as well as by



rules that fire to interpret it.  The perception system
clusters visual entities based on proximity and
summarizes this data in the agent’s visual input, making it
easier for the agent to reason about groups of individuals.

Figure 2 shows a portion of the operator hierarchy of
the army helicopter agent.  The Execute-mission operator
decomposes into operators associated with different
aspects of the attack mission.  For example, the Fly-flight-
plan operator decomposes into operators that enable the
agent to fly a route from one location to another.  Once
the attack helicopter company has occupied the battle
position, the Engage operator hierarchy is used for
performing the tactics to destroy an enemy target while
minimizing the danger to oneself.  These operators serve
to illustrate the kind of knowledge used and how it is
organized for the attack helicopter domain.

4.2   Perception of Groups
In the course of developing the helicopter pilots a critical
problem arose where the pilots would crash their aircraft
when they perceived forty or more entities on the
synthetic battlefield—the pilot could not cope with an
excessive amount of perceptual input while
simultaneously flying and performing other tasks.  The
problem of perceptual overload is not unique to the rotary
wing aircraft (RWA) domain—it is a potential problem
for every synthetic entity—but it is exacerbated in the
RWA pilot by the fact that they fly low to the ground,
making them susceptible to crashing, and yet their altitude
makes it possible to perceive many entities at any given
time.

Besides the problem of perceptual overload, it
became apparent that the pilots needed to reason about
large groups of other entities,  which were being
perceived as individuals.  Seemingly simple tasks, such as
following a group of other helicopters or flying around a
group of enemy tanks, depended on reasoning about the
locations and geometric relations to multiple entities.
Such tasks are much simpler when a group of entities is
treated as a group object rather than as individuals.

We addressed these problems by making a number of
modifications to our pilot’s perceptual system (Hill,
1998).  To deal with perceptual overload,  the perceptual
system filters out unwanted visual objects (i.e., other
entities).  The pilot creates a visual filter by setting values
for attributes such as slant-range, vehicle type, force-id,
and group membership;  the filter identifies entities the
pilot wishes to perceive, and blocks everything that does
not match the criteria.  Using a visual filter saves the
perceptual system from a lot of unneeded computation by
limiting the pilot’s visual attention to task-relevant
entities.

To enable the pilot to understand the behavior of
groups of others, the proximally located visual objects are
clustered into group objects so that they are perceived as a
group.  The group objects provide an abstract
representation both for reasoning and as a locus for visual
attention—a visual filter can be set for a particular group.

Furthermore, for most tasks, perceiving battlefield entities
as groups is sufficient—it is not necessary to track every
visual object all the time.  Perceiving groups has greatly
enhanced the ability of the agent to perform tasks such as
escorting (Marine behavior) and avoiding enemy forces
by flying around the group.

4.3   Teamwork
Teamwork in complex, dynamic domains, such as
synthetic battlefields mandates highly flexible
coordination and communication to surmount the
uncertainties; e.g., dynamic changes in a team's goals,
team members' unexpected inabilities to fulfill
responsibilities (because they may crash, get shot down,
run out of ammunition, or drop off the simulation
network),  and communication diff icult ies.
Unfortunately, implemented multi-agent systems often
rely on pre-planned, domain-specific coordination that
fails to provide such flexibility (Jennings, 1995). First, it
is difficult to anticipate and pre-plan for all possible
coordination failures, given the complexity of the domain.
Second, given domain specificity, reusability suffers—
coordination has to be redesigned for each new domain.

To illustrate the need for teamwork, consider the
following list of examples taken from our early work in
developing the Army AHC.

• Upon reaching the holding area, the company waited,
while a single scout started flying forward.
Unfortunately, the scout unexpectedly crashed into a
hillside; now, the rest of the company just waited
indefinitely for the scout's scouting message.

• One pilot agent unexpectedly processed its initial
orders before the others. It then flew towards the
battle position, while its teammates were left behind
at the assembly area.

• Only a scout made it to the holding area (all other
helicopters crashed or got shot down); but the scout
scouted the battle position anyway, and waited
indefinitely for its non-existent company to move
forward.

• When the initial orders unexpectedly failed to
allocate the scouting role to team members, the
company members waited indefinitely when they
reached the holding point.

• Instructions sent by a pilot agent to some company
members were lost, because they were sent while the
members were busy with other tasks. Hence, these
members were unable to select appropriate actions.

• While evading an enemy vehicle encountered en
route, one helicopter pilot agent unexpectedly
destroyed the vehicle via gunfire.  However, this pilot
agent did not inform the others; and thus an
unnecessary, circuitous bypass route was planned.

• When all company members ran out of ammunition,
the company failed to infer that their mission could
not continue.



• Two separate companies of helicopters were
accidentally allowed to use the same radio channels,
leading to interference and loss of an initial message
from one of the company commanders—its company
hung indefinitely.

Each of these situations actually occurred in
scenarios we ran to test the behaviors of the company
during a deep attack mission.  We initially attempted to
remedy each of these problems by writing a specific
coordination plan that would enable the pilots to cope
with the particular situation, should it arise again.  We
soon discovered that once we had fixed one coordination
problem, another one would arise, requiring another
situation-specific coordination plan—there was no end in
sight.  Furthermore, the test scenarios were becoming
increasingly more complex, making it more difficult to
understand, replicate, and debug failures.  There was no
overarching framework that would anticipate and address
teamwork failures.

A fundamental reason for these teamwork limitations
is the current agent architectures. Architectures such as
Soar (Tambe et. al, 1995), RAP (Firby, 1987), IRMA
(Pollack, 1992),  BB1 (Hayes-Roth et. al, 1995), and PRS
(Rao et. al, 1993) facilitate an individual agent's flexible
behaviors via mechanisms such as commitments and
reactive plans.  However, flexible individual behaviors,
even if simultaneous and coordinated, do not sum up to
teamwork. A common example provided is ordinary
traffic, which although simultaneous and coordinated by
traffic signs, is not teamwork.  Indeed, theories of
collaboration point to novel mental constructs as
underlying teamwork, such as team goals, mutual beliefs
and joint commitments (Grosz, 1996; Cohen and
Levesque, 1991), absent in current agent architectures.
Thus, agents cannot explicitly represent their team goals
and plans, or flexibly reason about their
communication/coordination responsibilities in
teamwork; instead they rely on (problematic) pre-planned
coordination.

In our work, we have integrated a set of teamwork
capabilities within Soar; the combined system is called
STEAM (Tambe, 1996a).  STEAM is founded on the
joint intentions theory (Cohen and Levesque, 1991). It
enables explicit representation of team goals that expand
out into goals and plans for individuals' roles in the team
goal. In practice, to enable multiple team members to
maintain a coherent view of their team's goals and plans,
STEAM additionally incorporates (1) team
synchronization to establish joint intentions; and (2)
monitoring and repair capabilities.  Unfortunately,
communication in service of coherent teamwork can itself
be a significant overhead or risk (e.g., radio silence in
synthetic battlefields). Therefore, STEAM also integrates
decision theoretic communication selectivity -- in the best
interest of the team, agents may selectively avoid
communication.

4.4   Planning
The demands of command-level decision making require
a greater focus on deliberation than required by pilot
agents. The commander must be proactive rather than
reactive, anticipating the possible outcomes of future
actions as well as potential interactions that might arise
between actions.  The greater focus on deliberation has
led us to draw substantially from the classical planning
literature in the course of command entity development.
The command entity incorporates a hybrid of planning
styles, incorporating hierarchical task-decomposition
techniques (as in Tate, 1990) as well as partial-order
planning approaches (as in Penberthy and Weld, 1992;
Gratch, 1996).  In this respect it closely resembles the
IPEM planning architecture of Ambros-Ingerson and
Steel (1988), with some significant enhancements. Task-
decomposition planners plan by decomposing abstract
tasks into a set of more concrete subtasks.  Partial-order
planners utilize the causal relationships between tasks to
recognize various plan flaws such as missing tasks or
ordering conflicts.

In the command agent, plans are represented by a
graph structure known as a hierarchical task network
(HTN).  Nodes in the network correspond to tasks, and
are represented as STRIPS-style action descriptions
(Fikes, 1971).  Tasks may be abstract or primitive.
Abstract tasks may be decomposed into a partially
ordered set of more specific tasks.  Primitive tasks are
those that may be directly executed without further
decomposition.

Tasks in the network are connected by a variety of
relations between them.  Subtask relations define the
basic hierarchical structure of the network.  Ordering
relations define the order in which tasks should be
executed.  Causal links and protection intervals are
relations which represent the causal structure of the plan.
(As in standard partial-order planners such as UCPOP,
this causal structure facilitates reasoning about
interactions across tasks.)  Finally, dependency relations
record information about how the plan was generated, for
use in replanning.  (Dependency relations are similar to
the dependency graphs of Hayes (1975) and the
verification structure of Kambhampati (1992).)

The three key activities performed by the command
agent are plan generation, plan execution, and replanning.
For plan generation, initially the planner is given an
abstract plan (a battalion order).  Typically the initial plan
cannot be executed. It may contain non-primitive tasks or
tasks may have unsatisfied preconditions.  The flaws in
the initial plan are addressed by non-deterministically
selecting planning operations to resolve these flaws:
fleshing out an abstract task (decomposition), finding
existing tasks that satisfy preconditions (simple
establishment), adding tasks (step addition), etc. These
planning operations result in modification to the HTN and
a complete plan is constructed through backtracking
search.



Plan execution is facilitated through the use of a
current world description.  This is a variable-free set of
literals that represents the sensed state of the world at the
current time step.  Execution operators allow tasks to be
initiated or terminated.  Only one task may be initiated or
terminated on a give time step, but multiple tasks may be
executing simultaneously.  A task may be initiated if no
unexecuted tasks precedes it and its preconditions unify
with the current world description.  A task may be
terminated if its effects unify with the current world
description.  Currently, we do not have a general method
for handling execution failure and rely on domain-specific
procedures.

The current world description also facilitates the
recognition of unexpected events.  If there is a literal in
the current world description that does not unify with any
effect of any executed action, it is assumed to be the
effect of some external event and is inserted into the task
network.

Replanning may be triggered in response to
unexpected events.  If the  effect of an unexpected event
creates a flaw in the existing plan, the planner must
modify the plan to address this new factor.  The plan can
be repaired in one of two ways: extending the plan (by
adding new constraints or tasks), or retracting some
portion of the plan and replanning.  The former is the
easiest approach, however it is not always possible to
retain the original plan structure.  If the unexpected event
is incompatible with existing plan structure, this structure
must be retracted.  This process is facilitated through the
use of the decision graph.  This graph records the
dependencies between planning decisions.  In a method
similar to Hayes' robot planner (1971), the command
entity attempts to retract just those planning decisions
directly affected by the new state of the world, retaining
as much of the old plan as possible.

    5.   Application Use and Payoff   

5.1   Operational Usage
The attack helicopter company and the Marine
transport/escort mission has been deployed in numerous
exercises and tests as a part of the STOW-97 program.
They were first deployed in the Fall of 1995 for two
events, first for a subsystem integration test in September
and then for a major combined engineering demonstration
called ED-1 in October.  They have been deployed
numerous times since then: Combined Test 1, in July,
1996; Combined Test 3, in October, 1996; and Combined
Test 4, in December 1996, where we successfully ran
three companies simultaneously for the Army deep attack
mission.  In the past year the Soar helicopter pilots were
deployed in three functional system tests during the
Summer and Fall, 1997, culminating in the STOW-97
Advanced Concept Technology Demonstration (ACTD)
in October, 1997.

5.2   STOW-97 ACTD Results
A total of eight company-level missions were successfully
run during the ACTD—three Army Attack missions and
five Marine "Big Lifts" (i.e., combined Transport/Escort
missions)—utilizing a total of 95 individual helicopter
missions. Each of the three company-level Army attack
missions were run with five AH-64 attack helicopters plus
an automated company commander.  Each helicopter had
a set of ~1600 rules which defined its behavior, while
each company commander had a set of ~900 rules to
define its behavior.

The three Army deep attack missions were planned at
the last minute, via the Exercise Editor and Operations
Order generation tool that we provided, because the three
pre-planned missions turned out to be operationally
inappropriate (the opposing forces (OPFOR) were not in
the locations and configurations anticipated).  All three
missions included engagements of significant bodies of
OPFOR ground vehicles (and some air vehicles), and at
least one included suppression of OPFOR en route.  In all,
82 OPFOR entities were officially listed as killed, while
three helicopters were officially lost.  (The term
"officially" is used here because the counts were officially
adjusted from what actually occurred to offset
inaccuracies in the simulation.  In particular: (a) we shot
down a MiG-21, but that was ruled to be too unlikely to
have actually happened in the real world; (b) we engaged
a group of OPFOR that proved to be invulnerable, so this
group was reinstantiated and attritted to a level
corresponding to the level of damage that might have
been done by the helicopters should the OPFOR not have
been invulnerable; (c) one company of helicopters was
overrun and killed off by the invulnerable OPFOR, so
they were reinstantiated with just one helicopter being
listed as officially killed; and (d) three helicopters were
killed at the Forward Assembly Area by a division of
MiG-23s, but they were reinstantiated when the MiG
attack was ruled to be bogus.)

During the ACTD we used two CPU’s per attack
helicopter company and thus two to three helicopters per
machine.  In exercises leading up to the ACTD we had
been able to run a whole company on a single CPU, but
during the dress rehearsal for the ACTD we found that a
company-sized unit overloaded the machine.  Thus we
used six machines to run the aviation battalion plus two
additional machines for the company commanders and a
front-end GUI.

The five company-level Marine transport/escort
missions—each of which in reality is composed of a pair
of missions (one Combat Assault Transport mission and
one Armed Escort mission)—comprised a battalion-level
lift and two individual company-level lifts.  Each
company-level lift consisted of an 8-4-4 package; i.e., 8
CH-46E transport helicopters, 4 CH-53E transport
helicopters, and 4 AH-1W attack helicopters.  Four
machines were used for each 8-4-4 package (and thus four
helicopters per machine).  Each helicopter in each mission



had a set of ~1300 rules defining its behavior. The Marine
missions were created via the previously described
Marine RWA Exercise Editor.  All missions required last
minute modifications, which were also made through the
Exercise Editor, due to changes in the situation.

The Marine missions ran successfully to completion,
and resulted in successful deployment of Dismounted
Infantry.  During one of the missions the helicopters came
under fire from a pair of OPFOR MiGs.  The MiGs
succeeded in destroying four of the helicopters (one AH-
1W, two CH-46Es and one CH-53E) before the
helicopters succeeded in shooting down the two MiGs.

Still, the remaining helicopters were able to
reorganize and complete the remainder of the mission.
During one other mission the helicopters came under fire
from ground OPFOR in the Landing Zone (LZ).  In this
situation the helicopters suppressed the OPFOR both
coming in and going out of the LZ.

5.3   Technology Evaluation
During the STOW ACTD we were able to test Soar plus
the following multi-agent capabilities: (a) multi-agent
perception; (b) teamwork reasoning; and (c) multi-agent
planning.  Soar worked without any known problems
during the ACTD.

Multi-agent planning was used in the Army company
commander.  It made no known errors in fleshing out the
company plans that were generated from overlays via the
OpOrder generation tool.  Multi-agent perception was
used in both army and marine helicopters to group
perceived entities and to filter out larger numbers of
entities.  It was critical in keeping the helicopters from
being overwhelmed by the large numbers of entities that
they perceived (and in allowing helicopters to perceive
groups of entities).  The army and marine helicopters used
multi-agent perception to help them keep track of the
other helicopters in their teams, which in turn helped
support teamwork behavior. Teamwork reasoning enabled
the helicopters to behave in a coordinated fashion even in
the presence of unexpected changes, such as the loss of
team members.

    6.   Current Research    

Despite how well these capabilities all worked in the
ACTD, limitations and problems do still exist.  Some
limitations showed up in the dress rehearsal but not in the
ACTD, and others were worked around for the ACTD.
We worked around the fact that the planner could not
replan missions once a mission had started (by
reinitializing entities and planning anew).  We worked
around that the perceptual system can still occasionally
get overwhelmed (by reducing the number of helicopters
per machine so that each pilot had more cycles to work
with) and sometimes cannot see entities that are critical
(by making the marine helicopters invulnerable to small
arms fire from dismounted infantry, which they couldn't

see). Situations in which companies could get stuck
because one member would no longer cooperate in
teamwork interactions, even though the team member was
still alive, could have arisen during the ACTD, but did
not.  Our current research addresses these and other issues
and limitations.

One of the insights we gained through our
participation in STOW-97 was the importance of being
able to understand groups of other agents.  Our current
research is focusing on how to extend the current pilot
architecture to deal more effectively with interactions
with groups of other entities.

6.1 Group Perception
At the perceptual level this means being able to handle the
potential load induced by very large groups i.e., hundreds
or thousands of entities.  To this end we are investigating
the use of more effective focus-of-attention strategies, a
reduced (and more realistic) visual sensor field, and the
imposition of hard limits in the perceptual system on how
much processing can be done any given cycle.  With
respect to the perception of groups, we plan to extend the
capabilities  of the pilot to recognize formations and
limited low-level aspects of behavior, based on shape and
motion.  In addition, we plan to experiment with
representing groups at different resolutions.  Currently
groups are a fixed size—clusters have a 1 km radius—and
the new approach would enable representing and
reasoning about aggregates of groups of different sizes.

6.2 Group Understanding
  At the pilot’s reasoning level, we are investigating how
to understand groups of dissimilar others by enabling the
pilot to “think like them.”  Our previous research focused
on how to model individual entities (Tambe, 1995), but it
assumed that the entity being modeled had the same task
hierarchy (i.e., knowledge and reasoning capabilities) as
the pilot.  This worked in a limited number of situations in
the fixed wing aircraft (FWA) domain where pilots model
other pilots during tactical maneuvers against one another.
Our current research extends this approach: the pilot will
model the thought processes of ground units;  this means
the pilot will incorporate models of dissimilar others and
also scale-up to cover multiple entities.

6.3   Group Planning
We are currently focusing our planning research on the
collaborative nature of the planning process.  In STOW-
97, we only automated the planning process at the
company level.  Each company planning agent
independently developed its own plan (within the
constraints of the battalion order) and this plan was either
approved or disapproved by the (human) battalion
commander.  There was none of the give and take (e.g.,
negotiating over resources) that arises in real-life group
planning situations.  To address this issue we have
introduced a battalion-level planning agent and are



exploring ways of modeling methods of collaboration. As
a first approximation we are considering an iterative
approach to  group planning.  Initially the battalion
commander generates high-level plans for each of its
companies, and instructs them to plan out the details.
These company plans are backbriefed to the battalion
planning agent, who attempts to integrate them into a
composite plan.  This integration may fail, or suggest new
opportunities, in which case the battalion agent
communicates new constraints that the company plans
must satisfy.  This causes the company agents to modify
their plans, and the process continues until a consensus is
achieved.

6.4 Learning and Emotions
We are beginning research in two other interesting areas:
learning and emotions.  With respect to learning, the goal
is to enable the pilots to improve their understanding of
groups from experience.  This will involve investigating
ways to capture classes of changes and situations in a
domain-independent manner.  With respect to emotions,
we are investigating how to model the effects of fatigue
and stress on the pilot’s decision making.  This research
will go beyond writing rules that say how an emotion
would affect a decision in a specific situation.  Instead, we
are considering what it means to represent emotion in the
Soar architecture itself.
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