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Abstract

Teamwork is becoming increasingly critical in multi-agent environments ranging from
virtual environments for training and education, to information integration on the internet, to
potential multi-robotic space missions. Teamwork in such complex, dynamic environments
is more than a simple union of simultaneous individual activity, even if supplemented with
preplanned coordination. Indeed in these dynamic environments, unanticipated events can
easily cause a breakdown in such preplanned coordination. The central hypothesis in this
article is that for effective teamwork, agents should be provided explicit representation of team
goals and plans, as well as an explicit representation of a model of teamwork to support the
execution of team plans. In our work, this model of teamwork takes the form of a set of
domain independent rules that clearly outline an agent’s commitments and responsibilities as a
participant in team activities, and thus guide the agent’s social activities while executing team
plans.

This article describes two implementations of agent teams based on the above principles,
one for a real-world helicopter combat simulation, and one for the RoboCup soccer simulation.
The article also provides a preliminary comparison of the two agent-teams to illustrate some
of the strengths and weaknesses of RoboCup as a common testbed for multi-agent systems.1

1This article is extends a previous conference paper appearing in [25].
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1 Introduction

Many AI researchers are today striving to build agents for complex, dynamic multi-agent domains,
such as, virtual theatre[7], realistic virtual training environments (e.g., for emergency drill[18] or
combat[28, 20]), virtual interactive fiction[1], and robotic collaboration by observation[14].

Most of this research has so far focused on enabling individual agents to cope with the com-
plexities of these dynamic domains. One promising approach that has emerged is the use of
hierarchical reactive plans. Reactive plans are qualified by preconditions, which help select plans
for execution based on the agent’s current high-level goals/tasks and beliefs about its environment.
Selecting high-level abstract plans for execution leads to subgoals and thus a hierarchical expansion
of reactive-plans ensues. Activated plans terminate via terminating conditions. Agents built in
architectures such as PRS[9], BB1[7], RAP[5] and Soar[17] for dynamic domains may be (at least
abstractly) characterized in this fashion.

Instead of individuals, this paper focuses on agent teams in dynamic domains. All around
in our daily lives, we participate, interact or observe dynamic team activities, such as, driving in
a convoy, participating in team sports (e.g., soccer), enjoying plays (theatre) and discussions, or
watching televised military exercises. These activities are being reflected in many of the multi-
agent domains discussed above. Such team activities are not merely a union of simultaneous,
coordinated individual activities[6, 3]. To re-iterate an illustrative example provided by Cohen and
Levesque[3]: ordinary automobile traffic is not considered teamwork, despite the simultaneous
activity, coordinated by traffic signs. Indeed, our common-sense notion of teamwork involves
more than simple coordination, e.g., the American Heritage Dictionary defines it as cooperative
effort by the members of a team to achieve a common goal.

Yet, to sustain such cooperation in complex, dynamic domains — whether it is driving in a
convoy or playing Soccer — agents must be flexible in their coordination and communication
actions, or else risk a breakdown in teamwork. To achieve such flexibility we apply one key lesson
from the arena of knowledge-based systems — an agent must be provided explicit “deep” or causal
models of its domains of operation [4]. The key here is to recognize that when an agent participates
in a team activity, teamwork is itself one of the domains, and hence the agent must be provided
an explicit model of teamwork. Indeed, the recent formal theories of collaborative have begun to
provide the required models for flexible reasoning about teamwork[3, 15, 12, 6]. Unfortunately,
few implemented multi-agent systems have exploited these models, i.e., in implemented multi-
agent systems, team activities and the underlying model of teamwork are usually not represented
explicitly[10, 11].2 Instead, individual agents are often provided individual plans to achieve
individual goals, with detailed precomputed plans for coordination and communication. However,
in real-world dynamic environments, unanticipated events — such as an unexpected interruption
in communication — often disrupt preplanned coordination, jeopardizing the team’s joint effort
(Section 2 provides detailed examples).

Our central hypothesis is that for effective teamwork in complex, dynamic domains, individual
team members should be provided (reactive) team plans, that explicitly express a team’s joint

2One notable exception is [11], discussed in Section 7.
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activities. Such reactive team plans may hierarchically expand out into reactive plans for an
individual’s role in the team. To execute such team plans, team members must be provided an
explicit model of teamwork — their commitments and responsibilities as team members — so they
can flexibly reason about coordination and communication. In our work, this model is based on
the formal joint intentions framework[3], which we have modified in key ways to accommodate
the constraints that appear typical in (some) real-world dynamic domains.

Based on the above hypothesis, we have implemented agent-teams for two dynamic multi-agent
domains: a pilot-agent teams for real-world combat simulation[28, 23], and a player-agent team for
the RoboCup soccer simulation (proposed as a common testbed for multi-agent systems)[13]. The
pilot-agent team will be the primary focus of this article, since (i) it is the more mature among the
two systems; and (ii) it operates in a real-world domain, with characteristics such as dynamism and
realistic communication costs that are representative of other real-world domains. The player-agent
team for RoboCup tests the generality of the lessons learned while building the pilot-agent team.
In particular, we attempt to reuse the model of teamwork applied in building the pilot-agent team
for the player-agent team in RoboCup. Furthermore, this test also helps in evaluating some of the
strengths and weaknesses of RoboCup as a common testbed for multi-agent research.3

The rest of this article is organized as follows: Section 2 first concretely motivates the need
for effective teamwork by describing our initial experiences in designing agent teams for the
combat simulation domain. Section 3 describes the joint intentions framework, which provides the
underlying model for effective teamwork. Section 4 describes an implementation of this model in
the synthetic battlefield domain; while section 5 discusses its applications for RoboCup. Section 6
presents some experimental observations and Section 7 discusses related work. Finally, Section 8
concludes.

All agents described in this article are based on the Soar integrated architecture[17, 22]. We
assume some familiarity with Soar’s problem-solving model, which involves applying an operator
hierarchy to states to reach a desired state. The teamwork issues in this article are not specific to
Soar however; they are common to the entire family of agent architectures mentioned above.

2 Initial Experiences in a Real-World Domain

As mentioned earlier, we are building intelligent pilot agents for synthetic aircraft in a battlefield
simulator, commercially developed for the military for training[2]. These pilot agents have partic-
ipated in large scale combat exercises, some involving expert human pilots[28]. This paper will
focus on pilot agents for a company of (up to eight) attack helicopters, which execute missions in
a synthetic 3D terrain with hills, valleys and ridges (e.g., southern California) [30].4

As shown in Figure 1, in a typical attack mission, the company may fly 25-50 kilometers at
varying altitudes, to halt at a holding point. One or two scout helicopters in the company fly forward

3More recent work[27], completed after this article was submitted for publication, provides more details on this
inter-domain reuse capability.

4This basic simulation technology, once proven promising in training for military applications, is leading to other
possible applications ranging from training for disaster relief to interactive entertainment.
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to check the battle position, i.e., the location from where the company will attack enemy forces.
Once the battle position is scouted, other members of the company move forward, each hovering
in its own designated subarea of the battle position. Here, an individual pilot agent hides/masks its
helicopter. To attack, the pilot has his helicopter “popup” (rise high), to shoot missiles at enemy
targets. The helicopter then quickly masks and moves as protection against return fire, before
popping up again. When the mission completes, the helicopters regroup and return to base.

HOME BASE

HOLDING
POINT

RIDGE
LINE

BATTLE
POSITION

ENEMY GROUND
VEHICLE
MOVEMENT

Figure 1: A company of helicopters in simulated combat. The ridge line is ideal for masking.

In our first implementation of the helicopter company, each pilot agent was provided an operator
(reactive plan) hierarchy to execute its mission[30]. Figure 2 illustrates a portion of this operator
hierarchy (at any one time, only one path in this hierarchy from the root to a leaf node is active).
Each operator consists of (i) precondition rules, to help select the operator; (ii) application rules
to apply the operator once selected (a high-level, non-leaf operator may subgoal); (ii) termination
rules, to terminate the operator.

To coordinate among multiple pilot agents we used techniques quite comparable to previous
such efforts, including our own, in the synthetic battlefield domain[28, 19, 31]. In particular, each
individual was provided specific plans to coordinate with others. For instance, when at the holding
point, the scout first executed an operator to fly to the battle position, and then another operator
to inform those waiting at the holding point that the battle position is scouted. Similarly, to fly
in formation, each agent was assigned a “partner” agent to follow in formation (unless the agent
was leading the formation). Eventually, all coordination within a group was accomplished by each
agent coordinating with its partner.

The resulting pilot agents each contained about 1000 rules, and the company was tested in
October 1995 in a three-day exercise (with upto 400 agents in the synthetic battlefield). While
the helicopter company executed helicopter tactics adequately, the exercise revealed some key
problems in teamwork — see Figure 3 for some illustrative examples.5

While a programmer could add specialized coordination actions to address the above failures
once discovered, anticipating such failures is extremely difficult, particularly as we scale-up to
increasingly complex team missions. Instead, the approach pursued in this work is to focus on the
root of such teamwork failures — that as with other multi-agent systems, individual team members
have been provided fixed coordination plans, which break down when unanticipated events occur.
In particular, the team goals and/or team plans are not represented explicitly. Furthermore, an

5This demonstration was done jointly with Paul Rosenbloom and Karl Schwamb.
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Figure 2: A portion of the operator hierarchy for an individual helicopter pilot agent.

underlying model of teamwork, spelling out team members’ commitments and responsibilities
towards others when executing a team activity, is absent. That is why, for instance, an agent
ends up abandoning its team members in a risky situation (Item 2, Figure 3). That is also why
the company cannot recover when the scout crashes (Item 1, Figure 3) — there is no explicit
representation of the company’s team goal at the holding point and the scout’s part in it.

3 Explicit Model of Teamwork

To provide agents with an explicit model of teamwork, we rely on the joint intentions framework[3,
15], since currently it is perhaps the most well-understood framework. In this framework, a team
Θ jointly intends a team action if team members are jointly committed to completing that team
action, while mutually believing that they were doing it. A joint commitment in turn is defined as
a joint persistent goal (JPG). A JPG to achieve p, where p stands for completion of a team action,
is denoted JPG(Θ, p). JPG(Θ, p) holds iff three conditions are satisfied6:

1. All teammembers mutually believe that p is currently false.

2. All teammembers mutually know that they want p to be eventually true.

3. All teammembers mutually believe that until p is mutually known to be achieved, unachievable or
irrelevant, they mutually believe that they each hold p as a weak goal (WG). WG(�, p, Θ), where � is
a team member in Θ, implies that � either (i) Believes p is currently false and wants it be eventually
true (i.e., p is a normal achievement goal); or (ii) Having privately discovered p to be achieved,
unachievable or irrelevant, � has committed to having this private belief become Θ’s mutual belief.

Two important issues should be noted. First, there is a change in expressiveness of plans/goals
— in this framework, an entire team can be treated as jointly committing to an explicit team goal p.
For example, when a company of helicopters flies to a waypoint, it is a team jointly committing to a
team activity — each individual is not flying on its own to that waypoint, while merely coordinating

6JPG(Θ, p) also includes a common escape clause q, omitted here for the sake of brevity.
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1. Upon reaching the holding area, the company waited, while the scout started flying forward. Unfor-
tunately, the scout unexpectedly crashed into a hillside. Hence, the rest of the company just waited
indefinitely at the holding area, waiting to receive a message from the (crashed) scout that the battle
position was scouted.

2. Upon recognizing that the mission was completed, one company member (the commander) returned
to home base, abandoning others at the battle position. The commander’s “partner” agent was
unexpectedly shot down, and hence it failed to coordinated with others in its company.

3. While attacking the targets from the battle position, only one member of the company could see the
targets. Thus, only one member engaged the targets; the others returned without firing a single shot.

4. Some company members failed to recognize that they had reached a waypoint — the agent leading
the formation had reached the waypoint, but those trailing in formation concluded they had not
individually done so (despite tolerance ranges in measuring distances).

Figure 3: Some illustrative examples of breakdown in teamwork.

with others. Thus, it is sufficient if the team reaches the waypoint, each individual need not do so
individually7. Such a change in plan expressiveness alleviates concerns such as the fourth item in
Figure 3.

Second, to establish a joint intention, agents must hold a WG (weak goal) which ensures
that members cannot freely disengage from their joint commitment at will. In particular, while
a JPG(Θ,p) is dissolved when a team member � privately believes that p is either achieved,
unachievable or irrelevant, � is left with a commitment to have this belief become mutual belief.
To establish mutual belief, an agent must communicate with other team members. While this
communication is an overhead of team activity, it enables an individual to ensure that its teammates
will not waste their time or face risks unnecessarily. This alleviates difficulties such as the second
example in Figure 3, where an individual disengaged from the joint commitment without informing
other team members, and exposed them to unnecessary risks.

This framework provides an underlying model of teamwork, enabling flexible reasoning about
coordination activities. For instance, there is an explicit justification for communication, enabling
agents to reason about it. The following now presents some key modifications to accomodate (some)
real-world constraints. Even though we draw upon the experiences in the combat simulation
domain, we expect similar issues to arise in other dynamic environments, including RoboCup.
(Operationalization of these ideas described in Section 4).

7This may mean that the first or some pre-specified percentage of vehicles reach close to the waypoint.
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3.1 Modifying Commitments

Fulfilling the requirements in WG(�,p,Θ) requires a team member to unconditionally commit to
communicating with other team members, whenever it drops p as a normal achievement goal.
However, in many environments, such as synthetic battlefields or soccer fields, communication can
be costly, risky or otherwise problematic. For instance, in battlefield simulations, communication
may break radio silence, severely jeopardizing a team’s overall joint activities. Therefore, the
unconditional commitment to communication is modified to be conditional on communication
benefits to the team outweighing costs (to the team). Also included in this modification is an
agent’s commitment to search for alternative lower-cost methods of communication (e.g., the agent
may travel to personally deliver the message, if using the radio is risky). Nonetheless, in some
cases, benefits will be outweighed by costs, and hence no commitment to communication will
result. In other extreme cases, an agent may be simply disabled from communication even after
dropping its normal achievement goal (e.g., a pilot may be shot down).

Such communication difficulties require that other team members take up some of the respon-
sibility for attaining mutual belief. In particular, a team member must attempt to track the team’s
beliefs in the status of their joint goal. For instance, if a company of helicopters reaches a well
specified waypoint, the team can be tracked as recognizing its achievement, and thus unnecessary
message broadcasts can be avoided.

A second modification focuses on the dissolution of a joint commitment (JPG). In particular,
currently, if an individual � is known to drop the normal achievement goal, the joint commitment
is automatically dissolved. Yet, such an automatic dissolution is often inappropriate. For instance,
if one helicopter � in the company of eight is shot down during an engagement, the helicopter
company does not automatically dissolve its joint intention to execute its mission; that would waste
the team’s jointly invested efforts in the mission and render the company highly ineffective in
combat. Therefore, if a team member � is known to drop its normal achievement goal, the JPG’s
dissolution is modified to be conditional on: (i) �’s role being critical to the continuation of the
joint intention (as discussed in the next section); or (ii) pre-specified conventions. However, if �
communicates achievement, unachievability or irrelevance, then the JPG is dissolved as usual.

3.2 Complex Teams, Individual Roles and Failures

While not defined in terms of individual intentions, a joint intention leads individuals or subteams
in the team to intend to do their “share” (role) of a team activity (subject to the joint intention
remaining valid)[3]. In our work, a role constrains an individual or a subteam to undertake certain
activities in service of the joint intention, and the role may vary with the joint intention.

One key issue here is that in complex teams, that involve multiple subteams, the success
or failure of an individual’s role performance does not directly determine the achievement or
unachievability for the team’s joint venture. As a result, an individual may succeed or fail in
its role, yet communication may not necessarily result. Hence agents must communicate their
role success or failures to other participants (should others be banking on this role performance).
Furthermore, since agents may be unable to communicate (e.g., because costs exceed benefits),
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team members must track other agents’ role performance. Based on information about others’ role
non-performance, team members can determine the viability of the team’s joint intention or their
own role. Two heuristics may be used:

1. Critical expertise heuristic: If the success of the team’s joint intention is solely dependent
on the role of an individual agent, then the agent’s role non-performance (failure) implies
that the team’s joint intention is unachievable.

2. Dependency heuristic: If an agent’s own role performance is dependent on the role of the
non-performing agent, then the agent’s own role performance is unachievable.

4 Implementing the Modified Joint Intentions Framework

To implement the modified joint intentions framework the concept of team operators has been
defined. For the team Θ, a team operator OP will be denoted as OP Θ. The usual operators as seen
in Figure 2 will henceforth be referred to as individual operators. As with individual operators, team
operators also consist of: (i) precondition rules for selection; (ii) application rules (complex team
operators will lead to subgoals); and (iii) termination rules. However, unlike individual operators,
team operators encode the expressiveness of joint intentions (see subsection 4.1). Furthermore,
team operators also involve the commitments outlined in the modified joint intentions framework.
In our implementation, these commitments translate into rules that guide an agent’s behavior
while executing a team operator. In particular, these rules operationalize both a team member’s
communication responsibilities (see subsection 4.2) and techniques for detecting team operator
failure plus recovery (see subsection 4.3). This section will draw upon the pilot-agent team for
illustration of team operators; the next section will discuss the implications for RoboCup.

4.1 Team Operators: Expressiveness

Team operators express a team’s joint activity rather than an agent’s own activity. Thus, while
individual operators apply to an agent’s own state, a team operator applies to a “team state”. The
team state is an agent’s (abstract) model of the team’s mutual beliefs about the world, which
include identities of members in the team, information about their joint tasks etc. For instance, for
a helicopter company, the team state may include the routes to fly to the battle position. Figure
4 shows the new operator hierarchy of helicopter pilot agents where operators shown in boxes
such as Engage Θ are team operators (the non-boxed ones are individual operators). These team
operators are not tied to any specific number of agents within a team.

To establish a joint intention OP Θ, each team member individually selects that team operator.
Typically, this selection is automatically synchronized, since the selection is constrained by the
team state (the team operator’s preconditions must match the team state). Thus, since agents track
their team state, visually and also via communication for terminating the previous team operator,
it is often unnecessary to explicitly communicate prior to the selection of the next team operator.

8



High
level

Low
level

Contour
NOE

Mask

Select−
Mask

Unmask

Employ−missilePopup
Dip

Engage

Employ
weapons

Fly−flight−plan

Select
point

Select
route

initialize−hover
Goto
new−mask
location

Initialize
hover

EXECUTE−MISSION

Maintain
masked
position

Prepare−to
return−to−base

return
to
control
point

............

Wait−while
Battle−position−scouted

Wait−for
information Scout

battle−position

Fly−to−
battle−position

Mask−
and−observe

Travelling

Fly−control
route

Figure 4: A portion of the new operator hierarchy, executed by an individual pilot agent.

However, there are situations where team operator selection must be explicitly synchronized; and
managing it within the joint intentions framework remains an issue for future work.

In general, the subgoal of a team operator may lead to either a team operator or an individual
operator to be applied. Thus, a joint intention may lead to either another joint intention or to indi-
vidual intentions in a subgoal (subject to the parent joint intention remaining valid). For instance,
while the children of Engage Θ are all individual operators, the children of Fly-flight-plan Θ are
all team operators.

4.2 Team operator: Communication

Once selected, a team operator can only be terminated by updating the team state (mutual beliefs) to
satisfy the team operator’s termination rules. Updating the team state may lead to a communicative
goal. In particular, if an agent’s private state contains a belief that makes a team operator achieved
or unachievable, and such a belief is absent in its team state, then it automatically creates a
communicative goal, i.e., a communication operator. When executed, this operator leads the
agent to broadcast the information to the team. For instance, suppose the team is executing
Engage Θ, which is achieved if the team state contains the belief Completed(Engagement). Now,

if a (commander) pilot agent’s own state contains Completed(Engagement), and this is absent in its
team state, then a communication operator is proposed to inform team members (the commander
cannot just head back to home base alone).

To alleviate communication costs, certain safeguards are already built into the proposal of a
communication operator. In particular, a communication operator is not generated if the private
belief does not contribute to the achievment or unachievability of any active team operator, or if
the team state is already updated,i.e., the team is already aware of the belief. Furthermore, based
on the modifications discussed in Section 3.1, even if a communication operator is proposed, it
is not implemented immediately. Instead, the agent first evaluates the cost and benefits of the
communicative operator. For instance, if radio is the current means of communication, and if
the mission requires radio silence, communication over the radio is prohibited. An agent instead
attempts to reduce communication costs via alternative communication methods, e.g., travelling
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to personally deliver the message. If the agent finally satisfies its communicative goal, the sender
and the receivers then update their team state (we assume that communicated information reaches
other agents securly). This then causes the team operator to be terminated (either because it is
achieved or unachievable). If a high-level team operator is achieved or unachievable, its children
are automatically assumed irrelevant.

4.3 Team Operators: Roles, Failures and Recovery

For team operators, roles are instantiated via suboperators in the operator hierarchy. If an OP Θ

has R roles, denoted OP Θ� �1� ���� �R �, then Θ’s R sub-teams, �1...�R, must undertake each of
these roles. Many team operators, however, can be defined via multiple role combinations. For
instance, Engage Θ may be performed by anywhere between two to eight agents, some of them

attack helicopters and some scouts. A separate representation of OP Θ� �1� ���� �R � for each role
combination would result in a large number team operators.

To alleviate this concern, constraints are specified to only implicitly define role combinations.
For instance, for Engage Θ, the constraints specify that the allowable role-performing subteams
are individual team members, i.e., the role performing subteam �i = I where I� Θ; without any
constraints on the number of participants. Each agent instantiates the constraint relevant to itself,
to know if it is expected to act alone or as part of a subteam. The actual role an agent undertakes
is based on this allowable subunit, and any static specification of the subunit’s role in the current
situation (e.g., an agent may be specified to be a scout). This role specification is in turn based on
the subunit’s or individual’s capability. For a company of helicopters, a specific individual may
be the commander (capability depends on the chain of command), a scout (capability depends on
training), or the leader of a formation (every team member possess this capability).

As mentioned in Section 3.2, it is useful for an agent to monitor other agents’ role performance.
This is accomplished in one of three ways. First, the other agent may itself communicate. Second,
it is possible to track the other agent’s role performance, via techniques such as RESC[29, 26], that
dynamically infer other agents’ higher-level goals and behaviors from observation of that agents
actions. Given its expense, however, such detailed tracking is performed selectively — instead, an
agent often only monitors the participation of other team members. Third, other heuristics can also
be applied, e.g., an agent cannot perform two conflicting roles simultaneously. Thus, if a scout is
scouting the battle position, it cannot participate in any other role at the holding area (e.g., to fly in
formation).

The following describes the overall recovery algorithm, should an agent determine that � � Θ
is simply unable to perform any role (e.g., �’s helicopter crashes):

1. Let R = fr1,...rN g be the set of currently known roles of �.

2. For each OP Θ in currently active hierarchy and for each ri � R apply critical expertise heuristic to
determine if OP Θ unachievable.

3. If some OP Θ unachievable, due to critical role rc

10



(a) Terminate OP Θ and its active children.

(b) If self capable of performing rc, Communicate takeover of rc to Θ; Re-establish OP Θ.

(c) If self incapable of performing rc, Wait for another agent to takeover rc; Re-establish OP Θ. If
wait too long, OP Θ unrepairable.

4. For each ri � R apply dependency heuristic to determine if unachievable; apply domain-specific
recovery strategies.

5. For all rj � R, rj �� rc, If self capable of performing rj , Communicate takeover of rj to Θ.

6. While � disabled from performing any roles, check every future OP Θ via critical expertise heuristic.

One key reason this recovery procedure works is the explicit representation of team operators.
In particular, step 2 applies the critical expertise heuristic. To operationalize this heuristic, the
agent compares the achievement condition of an OP Θ with the achievement condition of �’s
role. If identical, � was solely responsible for achievement of OP Θ, and hence OP Θ is now
unachievable. Thus, if � is a scout, this test indicates that it is critical to the scouting of the battle
position. In Step 3-a, the agent terminates OP Θ only if � plays a critical role in OP Θ. In step
3-b, the agent attempts to substitute itself for �’s critical role if capability exists, or else it waits for
someone else to fill in the role (step 3-c). Otherwise the implicated OP Θ is irreparable.

In step 4, the agent attempts to recover from any individual operator dependencies (step 4).
Here, to operationalize the dependency heuristic, the agent checks the achievement condition of its
own role for �’s role. For instance, if an agent is to trail � in formation, its achievement depends on
�. Non-critical roles are examined later, as they may be critical in the future (step 5). It is possible
that one agent does not possess all of �’s capabilities, and hence may takeover only one of �’s
roles, while other agents takeover �’s other roles. Not all of �’s roles may be known immediately;
and hence any new operator is also checked for critical dependency on � (step 6).

To see the above procedure in action, consider a company of five helicopters, Cheetah421
through Cheetah425, with the role and capabilities as shown:

Current roles:
Cheetah421 <— Commander, Scout
Cheetah422, Cheetah423,Cheetah424, Cheetah425 <— Attack
Current capabilities:
Cheetah421,Cheetah423 <— Scout
Cheetah422, Cheetah423,Cheetah424, Cheetah425 <— Attack
Chain of command: Cheetah421->Cheetah422->Cheetah423->Cheetah424->Cheetah425

Suppose, the team is currently executing wait-while-bp-scouted Θ. In service of this team
operator, the scout (Cheetah421) is moving forward to scout the battle position, while the rest of
the company is waiting at the holding area. Now if the scout crashes (as in Item 1 in Figure 3),
wait-while-bp-scouted Θ is deemed unachievable (critical expertise heuristic). Two changes will

then take place. First, Cheetah423 will take over the critical role of the scout — it has the capability
of becoming a scout. This enables the wait-while-bp-scouted Θ operator to be re-established for
execution. Next, Cheetah422, the next in command, will replace Cheetah421 as the commander.
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5 Applying Team Operators in RoboCup

Synthetic RoboCup is proposed as a standard problem and a common testbed for multi-agent
research[13]. It provides a dynamic, real-time multi-agent simulation of Soccer, a game that is
both entertaining and popular worldwide.8 The application of team operators in building a player-
agent team for the RoboCup soccer simulation is aimed at testing their (team operator) generality.
Three aspects of team operators are tested: (i) expressiveness; (ii) communication responsibilities;
plus (iii) failure detection and recovery. This test in turn also provides a preliminary illustration of
some of the strengths and weaknesses of RoboCup as a common testbed for multi-agent research.

5.1 Team Operators in RoboCup

We begin with the issue of the adequacy of team-operator expressiveness for RoboCup. Soccer is
a quintessential team sport[21], and provides the challenge of execution of complex team tactics
in a dynamic environment. For instance, up to five of the eleven team members may be involved
in a flank-attack tactic[21], where two of the five may act as decoys to attract defenders away from
the goal, while three players are actually attack. Team operators are well-suited to capture such
team behaviors.9 The hierarchy in Figure 5 illustrates a portion of the team operator hierarchy for
player-agents in RoboCup. As mentioned earlier, our RoboCup player-agent team is less mature as
a research system, particularly when compared to the pilot-agent team. It is thus a smaller system,
and many team operators are yet to be implemented. In the figure, the currently implemented
operators are shown by solid lines. The dashed lines are indicative of the types of team operators
yet to be included. The flank-attack operator does not fully implement the flank-attack tactic[21].

5.2 Team Operator Communication in RoboCup

A second issue is one of communication within a team. In the framework in Section 4, if an agent’s
private state contains a belief that terminates a team operator (because it is achieved, unachievable
or irrelevant), and such a belief is absent in its team state, then it creates a communicative goal,
i.e., a communication operator. Such communication is regulated based on its costs and benefits.
However, key features of RoboCup impact communication among player agents, changing the
nature of communication. In particular, there are at least two features of RoboCup that likely
reduce the amount of communication. First, one novel feature of RoboCup is the presence of
a referee. Such a central figure is often absent in multi-agent domains, including the synthetic
helicopter-combat domain. The referee often broadcasts crucial information, to be made common
knowledge (part of the team state). For instance, information about winning or losing a game,
the success or failure of a team’s defensive or offensive tactic, throw-ins, penalties is all common

8We will assume some familiarity on the part of the readers with soccer.
9Interestingly, while Soccer books recognize the very important role of teamwork[21] there is little elaboration on

the "model of teamwork" employed, i.e., explicit listing of the responsibilities of team members towards the team and
each other. This model is likely considered too obvious to explicate in a book on Soccer.

12



WIN−GAME

ATTACK DEFEND

Just
wait

Get−to−
the−ball Simple

Advance
Flank
Attack

Score−goal Dribble Pass−to
partner

Clear−by
kick−out

Create
offside trap

Get−to
the−ball

Just
wait

... ...
Dash
forward

Pass−to
partner

Figure 5: Team-operator hierarchy for player-agents in RoboCup soccer simulation. Boxed
operators are team operators.

knowledge — the referee announces all of results to all of the players. Thus, for instance, even if
one player-agent individually scores a goal, it is not the only one with that knowledge; rather this
goal is announced to all players. Thus, agents are often not responsible to communicate termination
of team operators, particularly those operators high-up in the operator hierarchy. For example, no
particular player agent will be responsible for communicating the termination of the team operator
win-game from Figure 5.

A second key feature of RoboCup — real-time demands — also leads to lower communication.
Basically, agents’ real-time performance is key in RoboCup. Therefore, agents’ performance may
degrade if they wait for communication to terminate team operators; communication is not (near)
instantenous as in real-world Soccer. While this factor works against agents’ communication, it is
likely a temporary limitation of the RoboCup domain, to be corrected in future implementations.

Given these features, it may appear as though communication is not crucial in RoboCup. Indeed,
human soccer players do not appear to engage in substantial verbal communication. However, in
human soccer, vision, gestures (pointing, or facial expressions), combined with plan-recognition
capabilities account for significant communication, albeit non-verbal. For instance, it is possible
for a player to easily recognize that its teammate has control of the ball, and if this teammate points
in a direction, then s/he is about to kick the ball in that direction. Also, in human play, a player’s
neck allows him/her to run in one direction, while maintaining its visual cone pointed in another
direction. In the absence of such sophisticated sensing and non-verbal communication capabilities,
player-agents in RoboCup must rely on explicit verbal communication. For instance, a player agent
may explicitly communicate to begin particular team tactics, since other agents’ may be unable to
infer that this player agent has possession of the ball, and thus, is about to launch an attack.

Thus, explicit verbal communication remains essential in the current RoboCup simulation. This
allows the communication techniques presented in Section 4.2 for pilot-agent teams to be re-used
in RoboCup. Indeed, our player-agent team has begun use such communication to indicate the
termination of particular team tactics and application of new tactics. For instance, a player-agent
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may indicate termination of the simple-advance and thus initiation of the flank-attack tactic. In the
future, we expect communication to continue to be key in RoboCup, but with increased emphasis
on real-time, non-verbal communication.

5.3 Team Operator Roles and Failure Recovery in RoboCup

The third aspect of team operators focuses on roles for team members, as well as detection of
team operator failures and recovery. The key here is to recognize that Soccer systems — e.g.,
4-3-3 system or 4-4-2 system — which place players in formations on the field indeed create
specialized roles for team members. For instance, formations involve roles such as a goalee, a
sweeper, full-backs, mid-fielders, and strikers[21]. The issues of detecting team operator failures
and recovery by substitution for teammates (as discussed in Section 4.3) are thus likely to prove
useful in RoboCup. For instance, it is quite possible that a striker-agent is “marked” by multiple
opponents, so that it is unable to participate in a team operator. In this case, it is useful for another
player to take on the role of a striker (temporarily) to score a goal.

However, such failure-detection and recovery requires advanced spatial reasoning and agent
tracking/plan recognition capabilities, to enable an agent to recognize that its teammate(s) is unable
to fulfill responsibilities. In the absence of such reasoning, in our current implementation, the
player-agents are unable to detect team operator failures and engage in recovery — this remains a
key issue for future work.

In summary, this brief examination illustrates that the challenge of building a player-agent
teams for RoboCup soccer shares similarities with the challenge of pilot-agent teams of synthetic
helicopter combat. Both involve dynamic environments (in fact the environment is possibly
more dynamic in Soccer), and both raise the issues of (i) expressing and executing complex team
activities, (ii) communication, and (iii) team roles, failures and recovery. Indeed, synthetic soccer
raises the additional issue of understanding the opponents’ team tactics, although this issue has not
yet been addressed in synthetic helicopter combat. In practice, the representation techniques for
team operators in pilot-agent teams, as well as the rules used for communication for pilot-agent
teams have both been reapplied for player-agent teams. However, the rules for failure-detection
and recovery are not reapplied at present for the player-agent teams.

6 Some Experimental Observations

The pilot agent team for the synthetic combat domain currently contains about 1000 rules, while
the player agents for RoboCup currently contain about 50-75 rules. The pilot agent team fully
incorporates the team-operators and the model of teamwork introduced in Section 4, while the
player-agent team is yet to incorporate the notion of team-operator failures and recovery.

The player-agent team, with all eleven players, can currently be fielded in synthetic soccer
tournaments. The players use the team operator hierarchy from Figure 5. The communication
aspect of the teamwork model, i.e., rules for communication, are common to the player-agent and
pilot-agent teams. Unfortunately, at present, the players are less skillful in lower-level skills, such
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as accurate interception of the ball, which hampers their overall performance against other teams.
Improving lower-level skills in player-agents is an important issue for future work.

The rest of the experimental observations in this section now focus on the pilot-agent team, as
they measure the effectiveness of the fully implemented team operators. First, this team is observed
to alleviate three basic types of problems seen in our previous implementation:

� Recovery from incapabilities of key individuals, such as a commander or a scout (e.g., addresses
Item 1, Figure 3).

� Better communication and coordination within the team, as members recognize responsibilities (e.g.,
addresses Items 2 and 3, Figure 3).

� Improved tracking of own team state due to improved expressiveness (e.g., addresses Item 4, Figure
3); also possible to track team’s high-level goals and behaviors, not possible before.

Figure 6 illustrates that our current implementation provides significant flexibility in the level
of coordination among team members. The figure attempts to plot the amount of coordination
among team members (y-axis) over simulation time (x-axis). The percentage of team operators
in a pilot agent’s operator hierarchy (which consists of team and individual operators) is a rough
indicator of the amount of coordination. In particular, a lower percentage of team operators implies
a higher percentage of individual operators and hence low coordination among members; while a
higher percentage of team operators indicates tighter coordination. Time is measured in simulation
cycles, with 9475 cycles in this run.
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Figure 6: Percent team operators in an individual’s operator hierarchy (FFP = Fly Flight Plan).

The varying percentage of team operators over the run indicates the flexibility in the level of
coordination. Thus, for the first 500 cycles, when the agents are flying a flight plan (FFP) in
close formation, they are tightly coordinated, an individual’s operator hierarchy has 80% team
operators. For the next 50 cycles, the company halts, and then resumes flying its flight plan. At
cycle 1875, the company reaches the holding area, where the scout flies forward to scout the battle
position — the scout’s percentage is shown separately by a dashed line. Basically, the scout is
now only loosely coordinating with the rest of the company (33% team operators). After scouting,
the company moves the battle position at cycle 4336, and until cycle 7154, engages targets. The
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33% team operators in engaging targets indicate that the team members are to a large extent acting
independently. Nonetheless, the team operator percentage is never zero, i.e., these agents never act
completely alone. Later the company returns to base.

Figure 7 illustrates the reduction in communication due to our modifications to the joint
intentions framework. It shows results from a single test run of our implementation. Figure 7-a
projects percentages of operators, had the agents worked with a straightforward implementation
of the joint intentions framework — communicating at the termination of each team operator. In
this case, there are 25% team operators; and among the approx 75% individual operators, there
are 25% communication operators and the rest execute the agents’ actions. Figure 7-b shows
the percentage from an actual run with the modified joint intentions framework. Communication
percentage decreases more than 10-fold (just about 2% on communication). Instead, there is more
emphasis on agent- and team-tracking, performed using RESC[29, 26], with about 8% operators.

TEAM

INDIVIDUAL

ACTION TRACKING COMM

10

20

30

40

50
PERCENT
of TOTAL
OPERATORS

(a)

TEAM

INDIVIDUAL

ACTION TRACKING COMM

10

20

30

40

50
PERCENT
of TOTAL
OPERATORS

(b)OLD FRAMEWORK MODIFIED FRAMEWORK

Figure 7: Reduction in percentage of communication operators.

7 Related Work

There are two areas of related work — one focused on implementing theories of collaboration, and a
second focused on collaboration in RoboCup[16, 24]. With respect to the first area of related work,
as mentioned earlier, few research efforts have implemented theories of collaboration. Jennings’s
implementation of the joint intentions framework in an industrial multi-agent setting is one notable
exception[11]. Huber and Durfee describe a similar implementation, although in a smaller scale
testbed[8]. There are several key differences in our work. First, in both these efforts, agents’
collaborative activity appears to involve a two level hierarchy of a joint goal and a joint plan,
with individuals engaged in specific roles in the plan. When the joint goal is accomplished, the
collaborative activity is terminated. In contrast, our work focuses on complex, long-term team
activities, involving the execution of a dynamically changing team operator hierarchy. A high-
level mission leads to the execution of a whole variety team operators. It thus becomes essential to
maintain and track an explicit team state, and manipulate it via team operators — else agents will
lose track of the next team action. Second, the above efforts typically involve two-three agents
in the joint intention. The scaleup from two-three agent to five-eight agent per teams (as in our
work) creates new possibilities. More specifically, even if a single agent is incapacitated, the team
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operator hierarchy does not completely fall apart. However, agents have to explicitly check if
lower-level team operators are unachievable, and recover from failures. Recovery is important,
else the entire team effort will go to waste. Finally, in [11] issues of communication risk are not
considered (although they are considered in [8]).

Our recent work on team tracking[26] can also be classified within the above category, as it is
based on the joint intentions framework. This work — focused on inferring other team’s joint goals
and intentions based on observations of their actions — is the predecessor to the work reported
here. However, given its focus on tracking other teams, issues such as communication, recovery
from unachievable team operators were all explicitly excluded from consideration. (The domain
there was tracking the behaviors of a team of simulated enemy fighter jets, rather than helicopters.)

The second related area mentioned above is work focused on collaboration in RoboCup[16, 24].
This work has largely focused on learning — either via neural networks or decision trees — to
improve passing skills. The work reported in this article complements that work, by building a
higher-level layer of teamwork skills given such basic (lower level) passing techniques. It also
suggests two new targets for machine learning programs: (i) learning the team operator hierarchy
illustrated in Figure 5; and (ii) learning the general or common-sense rules for teamwork that have
been handcoded in this work.

8 Summary and Discussion

In a variety of dynamic multi-agent environments currently under development, achieving flexibility
in teamwork is critical[7, 28, 1, 13]. Yet, given the uncertainty in such domains, preplanned
coordination cannot sustain such flexible teamwork. To alleviate this problem, we have provided
individual agents with an explicit representation of team goals and plans, and an underlying
explicit model of team activity, which has already substantially improved agents’ flexibility in their
teamwork.

Further contributions of this paper include:

� Detailed illustration of implementations of the modified joint intentions framework[3], one
in a real-world multi-agent domain, and one in the RoboCup domain;

� Key modifications to the joint intentions framework to reflect important constraints in the
domain;

� Introduction and implementation of team operators(reactive team plans);

� Techniques for recovery from failure of team activities.

� Preliminary comparison of the agent-teams in RoboCup domain with the one in the synthetic
battlefield domain to test the generality of the team operators; as well as evaluate some of
the strengths and weaknesses of RoboCup as a common testbed for multi-agent systems.
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As an important side-effect, agent development has speeded up, since once agents are equipped
with such a model of teamwork, the knowledge engineer can specify higher-level team plans, and
let the individual agents reason about the coordination activities and recovery.

The key lessons in the work reported here are that as we build agent teams for increasingly com-
plex multi-agent systems, agents should be provided (i) explicit representations of team activities,
and more importantly (ii) some core common-sense knowledge of teamwork, separate from the
agent’s domain-level expertise (e.g., helicopter or soccer tactics). These lessons appears applicable
to other dynamic multi-agent domains, including other applications of the simulation technol-
ogy described here such as training for (natural) disaster relief, medical emergencies, interactive
entertainment, and education.
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