Social Comparison for Failure Detection and Recovery

Gal A. Kaminka and Milind Tambe
Computer Science Department and Information Sciences Institute
University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292
{galk, tambe}@isi.edu

Abstract. Plan execution monitoring in dynamic and urcertain domains is an
important and dfficult problem. Multi-agent environments exacerbate this
problem, given that interacting and coordinated activities of multiple agents
are to be monitored. Previous approaches to this problem do not detect certain
classes of falures, are inflexible, and are hard to scale up. We present a novel
approach, SOCFAD, to failure detection and recovery in multi-agent settings.
SOCFAD isinspired by Social Comparison Theory from social psychology and
includes the following key novel concepts: (@) utilizing aher agents in the
environment as information sources for failure detection, (b) a detection and
repair method for previously undetectable failures using abductive inference
based on other agents' beliefs, and (c) a decision-theoretic approach to
selecting the information acquisition medium. An analysis of SOCFAD is
presented, showing that the new method is complementary to previous
approaches in terms of classes of failures detected.

1 Introduction

Agent behavior monitoring in complex dynamic environments is an important and
well known probdem, eg., [3], [10]. This problem is exacerbated in multi-agent
environments due to the added requirements for communication and coordination.
The omplexity and unpredictability of such dynamic environments causes an
explosion of state space @mplexity, which inhibits the ability of any designer,
human or machine (i.e., planners), to enumerate the @rred response in each posshle
state. The agents are therefore presented with countless opportunities for fail ure,
which could not have been anticipated. For instance, it is generaly difficult to
predict when sensors will return unreliable answers, communication messages get
lost, etc.

The agents must therefore be responsible for autonomously deteding the
fail ures, and for recovering from them. To this end, an agent must have information
about the ideal behavior expeded of it. This ideal can be cmpared to the agent’s
actual behavior to deted discrepancies indicating possble failures. Previous
approaches to this problem (e.g., [3], [10], [15]) have focused on the designer or
planner supdying the agent with redundant information, either in the form of
explicitly spedfied exeaution-monitoring conditions, or a model of the agent itself
which may be used for comparison. Indeed, monitoring explicit conditions on the
agent’s behavior have proved useful to us in initial stages of failure detedion.

However, bath of these approaches suffer from limitations which render them
insufficient for failure detection in general:

1. Information failures. Both approaches fail where relevant information is
unexpededly unavailable. For instance if a condition monitor depended
on a sensor to provide verification, a failure of the sensor will render the
monitor useless.

2. Inflexibility. Monitoring conditions in agent behavior can be toorigid in
highly dynamic environments, as agents in complex environments must
often adjust their behavior flexibly to respond to the actual circumstances
they are in.

3. Difficulty in scaling up. Both approaches mandate that the designer
supdy redundant information, which entails further work for the
designer, and encounters difficulties in scaling up to more @mplex
domains. Model-based approaches require the designer to spedfy the
agent design twice, in a sense: Oncein designing the agent, and again in
designing a self-model for simulation and comparison.

We propose a complementary novel approach to failure detedion and recvery,
which is unique to multi-agent settings. This approach, SOCFAD (Social
Comparison for FAilure Detedion), is inspired by ideas from Social Comparison
Theory [9]. The key idea in SOCFAD is that agents use other agents as ources of
information on the situation and the ideal behavior. The agents compare their own
behavior, beliefs, goals, and plans to those of other agents, in order to deted fail ures
and corred their behavior. The agents do not necessarily adapt the other agents
beliefs, but can reason about the differences in belief and behavior, and draw useful
conclusions regarding the @rrednessof their own actions. This approach all eviates
the problems described above:
11t alows agents to owrcome information failures, as reevant
information may be inferred from other agents behavior and used to
replace or complement the agent’s own erroneous perceptions.
2. It alows for flexibility in deteding fail ures, since the flexible, dynamic,
behavior of other agents’ is used as an ideal for comparison.
3. It doesn’t require the designer to provide the agent with redundant
information about itself (in the form of a model or conditions), utili zing
instead other agents as sources of information.

One key general heuristic used in SOCFAD is application in a team context. In
particular, teamwork or collaboration is ubiquitous in multi-agent domains. An
important issue in SOCFAD is that the agents being compared should be socially
similar to yidd meaningful differences. By constraining SOCFAD to use team-
members for comparison, we narrow down the search for socially-similar agents.
Furthermore, by exploiting agent modeling (plan-recgnition) techniques to infer
team members goals, SOCFAD enables efficient comparison without significant
communication overhead. We also allow the agent to explicitly reason about social
roles and status, so that it can compare itself only to agents that can provide it with
meaningful information.

SOCFAD is implemented and dscussed within the @ntext of IFDARS
(Integrated Fail ure Detedion And Reavery System), a system provided to aur agents
for the purpose of fail ure detedion and recovery. IFDARS integrates different failure
detedion and recvery tedhniques within a unified framework, allowing evidence
from different failure detedion modules to be @mbined and reasoned about
explicitly.

An additional novelty in IFDARS is that it brings forth an assumption that
is implicitly made with the other approaches: The model (or condition) provided by
the designer is always corred (the model-correctness assumption). However, in
social comparison, other agents act as the knowledge sources, and cannot be assumed
to be crred at all times. In deteding fail ures by social comparison, the agents must
reason not only about the actual differences found, but also about the posshility that
the agent itself is not at fault, but its ocial role models. By making this assumption
explicit, IFDARS remvery modules can utili ze different information sources and
parameterized biases to reason about the differences in a general way.

2 SOCFAD and IFDARS: Motivation

The motivation for our approach comes from our appli cation domain which involves
developing automated pilot agents for participation in synthetic multi-agent
battlefield simulation environments [12]. The eavironment was commercialy
developed for military training, and is highly dynamic, complex, and rich in detail .
In addition to the unpredictability of the environment, communications and sensors
are unreliable, misdon and task spedfications may be incomplete, etc. These
qualities present the agents with never-ending opportunities for falure, as
anticipation of all possbleinternal and external statesisimpossble for the designer.
Two examples may serve to ill ustrate: In the first, a team of three helicopters takes
off from the home base and heads out towards their battle position. While two o the
agents foll ow the misdon plan, a single agent hovers in placeat the starting position
indefinitely, due to an unanticipated miscommunication of the misson spedfication.
In the semnd example, a smilar team of threeagents arrives at a spedfied landmark
position. One of the team-members, whose role is that of a scout, is to continue
forward towards the enemy, identifying and verifying its position. The scout’s team-
mates are to wait for its return in the spedfied position, and indeed one agent
corredly lands and waits. Due to unanticipated sensory fail ure, the remaining agent,
which is also supposed to wait, does not deted the landmark marking the waiting
point. Instead of waiti ng behind, it continues to fly forward with the scout, following
it into the battlefield.

We have mlleded dozens of such failure reports over a period of a few
months. While it is generally easy for the human designer to corred these fail ures
oncethey ocaur, it is generally hard to anticipate them in advance The fail ures occur
despite significant development and maintenance dfort -- given the complexity of
the dynamic environment, predicting all posshle states and all possble interactions
is impossible.

These failures are not negligible. Rather, they are very obvious fail ures,
usualy due to unanticipated (by the human designer) circumstances, and generaly

catastrophic, completely prohibiting the agent in question from participating in the
simulation. In the first example abowe, not only is the single agent stuck behind
unable to participate in the smulation, but the remaining agents are unable to carry
out the mission by themselves.

An underlying quality of many of these failures is that they are not spedfic
to military procedures. Indeead, the domain experts exped some level of common
sense handling of fail ures even in the most structured and strict military procedure.
By exercising social common sense, an agent may at least deted that something may
be wrong, even if it does not have knowledge of the military domains. Social clues,
such as (in the examples abowe) noticing that team-mates are leaving whil e the agent
is hovering in place or that a team-member has landed whil e the team was flying in
formation, would have been sufficient to infer that something may be wrong.

3 IFDARS

The Integrated Failure Detection And Recovery System (IFDARS) integrates
different failure detedion and remvery tedhniques, and allows for evidence from
multiple sources to be combined and reasoned about explicitly (Figure 1).

Come =) Internal Operator Agent-and Team -
utput Commands Hierarchy Modeling (RESC)
\ 4 ¢

dl Output Social

Idle o u »

Detection Condition Comparison
Monitoring (SOCFAD)

\ /

Collector/Integrator

2

V erify Failure and Recover

Figure 1. IFDARS Structure.

IFDARS uses three different failure-detedion modules which all interface in a
unified manner by generating ‘interesting events--indications of possble failures
(false positives are allowed). Events have specificity--they may be generic, i.e,
general indications, not localized to a spedfic fault; or they may be specific--
indicating for instancethat the aircraft may have a problem with its geed. To allow
the system to reason about spedfic fail ure-detedion modules, all events are tagged by
the failure-detedion module that generated them. Events have weight which
indicates how important they are, and certainty that in fact a failure took place
Events may also be generated as a response to aher events. For example, a
continuing repetition of events is itsef a reason to susped a falure may be
underway, and so if a failure repeats itsef too dten, an event describing this
repetition is generated.

The events are mlleded together from the different detedion modulesin the
colledor/integrator component. Given a set of events E,... E,, with corresponding
weights Wy,... Wy and certainties C,,....Cy, for spedficity i, the alarm level A; is
calculated as follows:

k
Ai = YWGC
i=1
Once alarm levels are raised abowe threshold, the system reasons about the possble
failures, verifying and possbly remvering from the failures. The re@mvery process
lowers the alarm levels appropriately.

The three wrrent failure-detedion modules in IFDARS are: (a) a socia
comparison module, implementing SOCFAD, (b) a condition-monitoring module,
and (c) an activity measurement module. The three modules utili ze different input
sources for deteding failures. The @ndition monitoring module monitors the
currently running reactive plans, via designer-supgdied conditions. The activity
measurement module attempts to deted when the agent is unreasonably idle (i.e.,
stuck). The social comparison module is the basis for SOCFAD. We have found all
three modules to be useful in deteding falures in the agent’s behavior, but as
conditi on-monitoring approaches and activity measurement monitoring are already
common tedhniques in failure detedion, we will focus on the social comparison
process in the next section.

4 Social Comparison for Failure Detection: SOCFAD

SOCFAD is inspired by Social Comparison Theory [4], a theory from socia
psychology, developed to explain cognitive processs in groups of humans. Newell
[9] presents the first three axioms of this theory as follows (pg. 497):
1. Every agent has a drive to evaluate its opinions and abilities.
2. If the agent can’t evaluate its opinions and abiliti es objedively, then
it compares them against the opinions and abilities of others.
3. Comparing against others deaeases as the difference with others
increases.

The numerous reports of failures we have @lleded demonstrate the very real need of
agentsin dynamic, unpredictable domains to eval uate themsel ves by monitoring their
exeadtion. This empirically verifies the importance of the first axiom. Approaches
emphasizing the designer as a source of information against which to compare the
agent’s performance fit naturally under the title of objedive sources for the agent’s
self-evaluation. SOCFAD focuses on the remaining perts of the axioms - allowing
the agent to compare its own abiliti es and opinions (i.e., behavior, beliefs, operators,
and goals) to those of others (second axiom), and considering the weight put on the
results of such comparison (third axiom).

Although Social Comparison Theory is descriptive, we have begun to
operationalize it for monitoring (see Algorithm 1). The abstract version of our
algorithm accepts inputs representing the states of agents being compared - their
beliefs, goals, behavior, etc. The agents states are then compared by Find-
Difference to deted possble failures, and a social similarity metric is used in the

function Smilarity to produce a level of certainty in the detected failure.

Social-Failure-Detect(myself, other-agents) {
1.Difference — Find-Difference(my-self, other-agents)
2.If Difference = NIL then goto 5
3.Failure-Certainty— Smilarity(Difference)
4.If Failure-Certainty > 0 then return Difference as a detected
failure, with certainty Failure-Certainty.
5.No failure was detected. Return NIL.

Algorithm 1. Social Failure Detection (Abstract Version).

The interesting issues in this algorithm are hidden in the two functions Find-
Difference and Smilarity. Different capabiliti es and performance result by changing
the information being compared by Find-Difference, (e.g., internal beliefs and goals
vs. observable behavior). In Find-Difference, it is useful to (i) limit agent states
compared for efficiency, and (ii) use information that captures the antrol processes
of the agents. Agent's plan hierarchies usualy satisfy bath constraints, but
potentially other aspeds of states could be used. The Smilarity function reasons
about the social simil arity of agents being compared, and trand ates the differences to
a catainty that indeed a fail ure has ocaurred. These algorithms will be incrementally
developed through the rest of this section.

- - I >
Fly Flight Plan Wait at Point

Fly Route Just Wait Scout Forward
Travelling

Nap of the Earth Contour Low-Level

Figure 2. An Example Operator Hierarchy

Our agents' design is based on reactive plans (operators) ([5], [9], [11]), which form
a hierarchy that controls each agent (Figure 2). The design implements the Joint
Intention Framework [7]. Following this framework, operators may be team
operators (shared by the team) or individual (spedfic to ane agent). Boxed operator
names sgnify team operators, which achieve and maintain joint goals, while the
other operators are individual. Team operators require @ordination with the other
members of the team as part of their application ([13], [14]). Figure 2 presents a
small portion of the hierarchy. The filled arrows sgnify the operator hierarchy
currently in control, whil e dotted arrows point to alternative operators which may be
used. In the figure, the agent is currently exeaiting the exeaite-misson team

operator as its highest-level team plan, and has chosen to exeaute the fly-fli ght-plan
operator, for flying the agent team through the different locations gedfied in its
mission.

Operator hierarchies form the basic structure of our agent’s reasoning
process and were natural objeds for comparison. To gperationalize SOCFAD we
require a way of acquiring knowledge of the operator hierarchies of other agents (so
that we have something to compare against), a definition for Find-Difference (a
procedure for comparing hierarchies), and a definitiorgforlarity as well.

In theory, knowledge of other agents can be ammunicated. However, such
communication is often highly impractical given significant communication costs,
risk in communicating in hostile environments, and unreliability in dynamic and
uncertain settings. Instead our implementation of SOCFAD relies on agent modeling
(plan reaognition) techniques that infer an agent’s beliefs, goals, and plans from its
observable behavior and surrounding.

We use the RESCiea, [13] method in modeling other agents, but different
techniques may be used interchangeably, as long as they provide the needed
information and representation. RESCie, Will be briefly described here (see[13] for
more detail). RESCi. represents other agents' plans by buil ding additional operator
hierarchies in the agent’s memory which correspond to the other agents inferred
reactive plans currently exeauted. Thus, the monitoring agent has unified access not
only to its own original operator hierarchy, but also to the inferred operator
hierarchies of other team members (Figure 3).

Agent's Hiearchy Other'sHierarchy

(Inferred via agent modeling)
Fly Flight Plan

Fly Flight Plan

Fly Route
Travelling Travelling

Nap of the Earth Low-Level

Fly Route

Figure 3. An Example of Two Hierarchies in the Agent’'s Memory.

Based on the representation of the other agents plans by operator hierarchies, the
Find-Difference function can be esly implemented (Algorithm 2) as the smple
process of comparing the cosen operators in equal depths of the hierarchies.
Hierarchies of different lengths are also considered different.

Find-Difference(my-operator-hierarchy, other-hierarchies) {
1.Depth~ 0O
2.Compare operators in hierarchies at depth Depth
3.If a difference is found, return it.
4.Else, are the operators leaves of the hierarchies?
4.1 No. Increase Depth. Goto 2.
4.2 Yes. Return NIL.

Algorithm 2. Find-Difference.

As implied by the third axiom of social comparison theory, differences with other
agents are meaningful only to the extent that the other agents are socially similar.
Other agents may not be exeauting pans that are relevant to the agent’s goals, and
therefore may not be able to contribute relevant information towards the monitoring
of the agents own plans and goals. Worse yet, other agents may intentionally want to
use deception in order to influencethe agent’s dedsion making to advancetheir own
agendas.

Fortunately, a team context provides an initial solution. Team members tend
to work on joint goals and sub-plans related to the one the agent should be exeauting,
and can be assumed to be non-hogtil e (therefore not intentionally deceving the agent
in question). The cmparison process in Find-Difference therefore mnsiders team
members only.

4.1 Team Operator Differences

Our agents use the Joint Intentions framework [7] as the basis for their coordination
of team activities. In this framework, explicit team operators form the basis for
teamwork, requiring mutual belief (MB) on the part of the team members as a
condition for the establishment, and termination (based on achievement,
unachieveability, or irrelevancy), of explicit team operators. Team operators must
therefore be identical for all team members. A difference in team operators is
therefore a certain sign of failure, regardless of its cause.

In one example abowe, one agent has failed to deted a key landmark
position and continued exeaution of the “fly-flight-plan” team operator. However, its
teammates corredly deteded the landmark and terminated exeaution of that
operator. They then switched to exeating “wait-at-point” team operator, in which
two agents are to land whil e the scout is to go forward and scout the enemy positi on.
Through agent modeling, the miscoordinating agent infers the operators the other
agents are exeauting. It reali zes that they could potentially be exeauting the “wait-at-
point” operator and deteds a discrepancy with its own team operator of “fly flight
plan”. At this point it does not know which sideis corred — either itsdf is at fault or
its teammates. Regardless the agent can conclude that a failure has occurred with
the team and the coordination among its members.

The purpose of utili zing the joint intentions framework is to benefit from
the domain-independent guarantees it provides for team coordination. As the agents
are designed to foll ow the framework, it would appear at first that the abowe fail ures
of miscoordination cannot occur. However, given the well reamgnized dfficulty of

establishing mutual belief in practice, differences in team operators do ocaur. In the
example motivating this discusdon, since the landmark that was to signa
termination of the “fly-flight-plan” operator is in the external environment, it was
asumed to be visible to all agents. Thus, mutual belief that the landmark was
deteded was assumed by the agent that succesully deteded it, and it corredly
abandoned the team operator (this assumption is motivated by the inefficiency of
continuous communications). The seamnd agent, which had missed detedion of the
landmark was true to the joint intentions framework as well: It didn’t abandon one
team operator without establishing mutual belief that it was achieved, unachievable,
or irrdlevant. The key point is that whil e bath agents have @rredly foll owed the joint
intentions framework, afailurein sensing, coupled with a practical assumption about
establi shment of mutual belief caused the joint-goals of bath agentsto differ. And no
matter which agent is right, a failure has certainly ocaurred, since the team is no
longer coordinated.

Similarity (Operator-Difference) {
If Operator-Difference is between team operators then
return maximum certainty

Algorithm 3a. Similarity, Version 1.

To qperationalize this discusson, we @n now define an initial version of the
Similarity function used in the social fail ure detedion algorithm (Algorithm 1). The
key idea is that at the team level, agents have identical team operators, and so are
maximally socially similar.

4.2 Individual Operator Differences

The previous sdion discused dfferences between agents that are maximally
simil ar--agents that have joint goals and together form a team. However, in service
of team operators different agents may work on different individual operators. These
individual operators do not necessrily carry with them the responsibiliti es for
mutual belief that team operators do, and so differences in individual operators are
not sure signs of failure, but at best indications of the possibility.

We therefore require additional information about the agents causing the
difference which can help in determining whether the difference is justified or not.
For instance agents working towards smilar goals have similar social roles: For
example, in a socce game there are field players and a goalie which have different
roles within the team. Agents with similar roles would serve as better sources of
information for plan-exeaition monitoring than other agents. Related to the social
roleis social status, which may also justify differencesin individual operators among
team members. For instance, in the military domain agents of different ranks may
follow different individual operators to guide their behavior.

The example where a failing agent was guck in place while its team-
members have taken off and were flying away serves to ill ustrate this distinct type of
discrepancy. Here, a comparison of the agent’s own chosen method-of-flight operator
to the methods of flight chosen by its comrades indicates to the agent that it is not

acting like the rest of the team - that in fact a failure may have occurred (see leaf
operators in Figure 3).

We have provided our agent with the means to explicitly utili ze the social
similarity of team-members in their reasoning. The agent explicitly considers the
parameter of the social role of other agents within the team in filtering and assgning
weights to the information inferred about them. For example, if the agent is an
attacker, which is one of the roles in a team in our domain, it will assgn more
weight to aher agents which are attackers. For efficiency, the agent may completely
ignore agents which it deddes, based on their role, are not relevant as information
sources.

Even after filtering irrdevant differences with agents of differing social
roles, there remain individual differences which are justifiable and do not constitute
a failure, smply becuse agents may not necessarily find themselves in identical
external and internal states. For instance in the real world, no two agents can share
the exact same physical space We therefore require more techniques which can
raise our confidence that indeel a failure has occurred, when a discrepancy in
individual operators is found.

The abowe discusson brings us to an updated version of the Similarity
function, incorporating the heuristics discussed above: social role and social status.
The exact definition of role and status, and the weights by which they modify the
certainty (3.1-3.2 in Algorithm 3b below) are domain dependent, as are the default
certainties that a failure has occurred.

Similarity (Operator-Difference) {
1. Certainty— Default /* or a-priori certainty */
2. If Operator-Difference is between team operators then
Certainty- Maximum Certainty /* From version 1 */
3. Else /* difference between individual operators */
3.1 If Operator-Difference is between agents with same Role, then increase
Certainty, else decrease it.
3.2 If Operator-Difference is between agents with same Status, then
increase Certainty, else decrease it.
4. Return Certainty.

}
Algorithm 3b. Similarity, Version 2.

4.3 Towards Recovery Based on Social Comparison

In general, to recover from a failure, a processof diagnosisis required. Here again
social comparison raises novel isaes. Firgt, it does not make the model-correctness
assumption made in previous approaches. Seand, it all ows the processof diagnosis
and recovery to utilize social sources of information which were not utilized before.
Model-correctness assumption. In remvering from a failure deteded by
social comparison, the agent must reason explicitly about the differences in beliefs
that exist between itself and the other members of the team. From the fact that other
agents are eeauting a different plan, the agent can infer by abduction that the

preaonditions necessary for seledion and exeaution of that plan were satisfied by the
other agents. It can then reason about the relevance of these premnditi ons to its own
sdleded plan. For instance in the example of the agent’s failure to deted a key
landmark, it appears that the other agents are arrying out the wait-at-point operator
(one agent lands, whil e the other one which is known to be the scout goes forward).
Once this discrepancy is noted (“1 am exeauting fly-flight-plan, they are exeauting
wait-at-point™), the agents makes an abductive inferencethat the other agents believe
that the team has indeal reached the landmark. However, the agent does not
necessrily adapt the team-members view - it does not asaume the model (other
agents) to be correct.

Socially-based recovery. As the mode-corredness assumption is made
explicit, social information sources can be utili zed for diagnosis and remvery. If the
agent believesit is at fault, it can alter its own beliefs by adopting the preconditions
which it inferred are satisfied for the other agents operators. In particular, team
operator’s preanditions require mutual belief, and so by adopting them the agent
alows the mrred team plan to be sdleded, therefore synchronizing itself with the
rest of the team. For example, the agent in the landmark example fixed its own
beliefs regarding the landmark based on this abduction. This fulfills the
preanditions of its own “wait-at-point” operator, which is now sdeded and al ows
the agent to recover gracefully from the failure.

5 Results and Evaluation

Our agent, including IFDARS, is implemented completely in Soar [9].
Approximately 1200 rules are used in the implementation of the agent, which
includes the military procedures, as well as the teamwork and agent-modeling
capabiliti es. Additional 60 rulesimplement IFDARS, forming an add-on layer on top
of the procedures making up the agent.

The social comparison approach to failure detedion complements the
condition-monitoring detedion methods, being able to detea different types of
faillures. In general, the cndition-monitoring approaches cannot deted failures
where a feature of the environment is not deteded, and are limited in their abiliti es
to deted failures where the inputs to the agent (as perceived by the sensors) are
incorred. Model-based approaches in particular use the agent’s own inputs to
generate an ideal output which is compared to the actual output to deted problemsin
the processconverting inputs to autputs. However, fail ures may ocaur in the inputs to
the agent due to sensory problems, resulting either in incorred readings or in
missng perceptions. A model-based approach cannot deted these failures as it uses
the eroneous inputs. However, the social comparison approach can deted such
fallures and corred them as demonstrated in the example of the undeteded
landmark.

In contrast, social comparison methods will encounter probems in single-
agent situations, or if all team members encounter identical failures smultaneousy
(which we hypothesize to acaur very infrequently in complex multi-agent settings).
There a processof comparison would not generate any differences if the exeaution of
the plan is incorred, as the agents would all display the same incorred behavior.

Here a model-based or condition-monitoring approach is very suitable for deteding
failures.

Our explicit choice to prefer agent-modeling to communications for
acquiring the information for comparison from the other agent stems from practical
constraints common to many multi-agent domains. However, in general, using the
following dedsion treg an agent can dedde whether to use agent modeling for
acquiring the information, or to have (by request or by design) the other agents
communicate back their beliefs, plans and goals:

-TC
@® cChance Node PRT

[J Decision Node 1-PRT TC-ER

Agent
Modeling

B-TC-ER

-CC

Communication -CC-ER

B-CC

1.PRC B-CC-ER

Figure 4. Decision Tree for Information-Acquiring Method.

The purpose of acquiring information about the other agents (by either modeling or
communications) is to deted possble failures. In the dedsion tree abowe, the agent
seeks to maximize its expeded utility from the processof acquisition. Thus, a bonus
B is rewarded in the dedsion tree abowe if the agent indeal acquires new
information. This bonus is not awarded if the information does not differ in any way
from what the agent already knew. TC and CC are the sts for modeling and
communicating, respedively (CC is the total cost incurred by sender and recever).
PK is the probability that the information is already known (so no difference is
deteded), PRT the probahility that the modeling processwas reliable, and PRC the
probability that communications were reliable (for bath modding and
communication, reliability implies that the information was acquired corredly). ER
is the penalty for making a mistake - for example for incorred inference made by
modeling, or for receiving an unreliable message.

By following the treg it is clear that the agent should rely on agent
modeling rather on communications from other agents whenever TC+(1-PRT)*ER <
CC+(1-PRC)*ER. In our domain, the @mst of communications is very high, as the
agents operate in a hostile environment and expose themselves by communicating
with each other. On the other hand, the @mst of agent modeling is relatively low,
being mostly a computational cost rather than a survival risk. In addition, in a team
context, modeling is often reliable, in contrast to communications, which are
unreliable quite often. Our estimation of reliability and the st of error make agent
modeling an attractive dhoicefor acquiring knowledge of others. For simplicity, one

may choose to assime reliable mmunications and agent-modeling, and then the
agent’s choice is dictated solely by the cost of modeling vs. communications.

6 Related Work

Social comparison is related to work on multi-agent coordination and teamwork,
although in general, social comparison generalizesto also deted failuresin exeaution
of individual operators, which are outside the scope of coordination. Particularly
relevant are observation-based methods, which utili ze agent modeling rather than
communications for coordination (e.g., [6], [14]). Work on teamwork [14]
concentrates on maintaining identical joint goals to prevent miscoordination, while
the focus of SOCFAD is on deteding when the goals do differ. Indeed, social
comparison can be useful for remvering from failures in teamwork. The remvery
from the undeteded landmark failure mentioned earlier can be @nstrued as an
example of active mardination on the part of the team. Huber and Durfee[6] do not
asume joint goals but instead look at coordination as emergent from opportunistic
agents, which coordinate with others when it suits their individual goals. As these
agents do not have team goals, they cannot assume maximal social smilarity at the
team coordination level, and so would not be able to deted team failure. Also, while
Huber and Durfee demonstrate the benefits of using plan-reagnition rather than
explicit communications in a dynamic domain, they do not discuss the qualiti es of
the domain which make plan-reagnition beneficial. The dedsion-tree provided in
the previous section presents a first step towards this direction.

Atkins et al. [2] attacks a similar problem of deteding states for which the
agent does not have a plan ready. They offer a clasdfication of these states, and
provide planning algorithms that buil d tests for these states. However, their approach
considers only the individual agents and not teams. It also suffers from the same
limitations as condition monitoring approaches in not being able to deted modeled
states which have not been sensed corredly. For instance their approach cannot
deted states which were not planned-for by the planner, but are still “safe’ [2] such
as the example of the undetected landmark.

Social comparison is also related to imitation [2]. In fact, imitation can be
shown to be a spedal case of the general social comparison algorithm (Algorithm 1).
By choosing to compare itself against the observable behavior of other agents, rather
than their internal goals, the social comparison approach leads to imitation. In the
example of the agent faili ng to deted a landmark and land, a simple imitation of the
scout would be dearly inadequate. Alternatively, imitation of the other attacker
would lead to failure later on as the agent is gill exeauting the wrong team-operator
and follows the wrong sequence of actions.

To illustrate this point further, consider a similar case, where the failing
agent is actually the scout that is supposed to go forward. Upon reaching the
landmark, its two team-members land waiting for it to go forward. Since it didn’t
deted the landmark the agent is dgill exeaiting the flying-in-formation plan. If it
were to imitate its team-mates, it would simply land or hover near them whil e they
are waiti ng for it to go forward. Instead, with SOCFAD the agent would compare the
plan that it is exeauting with those of its team-mates, and realize that they are now

exeadting a different plan, based on deteding a landmark which it has failed to
detect. It could thus recover from such an error.

Mataric [8] used socialy similar agents (next of kin) to investigate
generation of group behavior from local interactions, whil e the focus of SOCFAD is
on failure detedion. By restricting group members to be socially similar, Mataric
showed little aoommunication is necessary as the agents can make crred predictions
on the behavior of their pees, and this allows coherent group behavior to emerge.
Although SOCFAD emphasizes the importance of social similarity for the
individual, we do not assume it. In fact, a core issie in SOCFAD is the search for
socially similar agents which can be used for comparison among all agents.

7 Summary and Future Work

This paper presents a novel approach to failure detedion, an important problem
plaguing multi-agent systems in large-scale, dynamic, complex domains. Existing
approaches often face difficulty in addressng this problem in such domains. The key
novelties of our approach are: (a) a new failure detedion method, utilizing other
agents in the environment as information sources for comparison, (b) a genera
heurigtic for team-based comparison, (c) a detedion and repair method for
(previoudy undetedable) information failures using abductive inference based on
other agents beliefs, and (d) a dedsion-theoretic approach to sdeding the
information acquisition medium.

Several iswues are open for future work. One important issue is in
techniques and biases useful for dedding which side is corred where a differenceis
encountered with another agent, but no information is known to support either side.
Previous approaches have arbitrarily chosen to hias their dedsion by making the
model corredness assumption implicitly. IFDARS allows to explicitly handle this
state by other biases and heuristics to be used. A simple techniques that may be used
is to follow the majority, so that if a majority of agents agree with one agent, its
beli efs and behavior istaken to be cmrred. Such atednique has clear limitations, but
initial experiments dow it to be quite useful. Another technique is to hias the agent
deteding the failure towards accepting responsibility for the failure (low sdf-
confidence) or for rejeding it, possbly attributing it to the other agent. This bias can
be easily parameterized, and can result in very different behaviors on the part of the
fallure-deteding agent. An additional option enabled by IFDARS is to utilize
evidence supplied by other failure-detection modules to provide additional evidence.

Ancther important isaue left for future work is the integration of learning
into the detedion and reavery process whereby the agent should be able to learn not
only how to respond to deteded fail ures, but also the settings in which they are likely
to arise, how to prevent them from happening, etc. A key oljed for learning is ocial
similarity, where the agent would learn which agents are socially similar, or
otherwise serve as goad source of information for fail ure-detedion purposes (good
role-models).

References

1. Atkins E. M.; Durfeg E. H.; and Shin, K. G. 1996 Deteding and reacting to
unplanned-for world states, in Proceedings of the AAAI-96 Fall symposium on
Plan Execution. pp. 1-7.

2. Bakker, P.; and Kuniyoshi, Y. 1996 Robad see roba do: An overview of roba
imitation. AISB Workshop on Learning in Robots and Animals, Brighton, UK.

3. Doyle R. J, Atkinson D. J,, Doshi R. S., Generating perception requests and
expedations to verify the exeaution of plans, in Proceedings of AAAI-86,
Philadelphia, PA (1986).

4. Festinger, L. 1954. A theory of social comparison proceddasian Relations,
7, pp. 117-140.

5. Firby, J. 1987 An investigation into reactive planning in complex domains. In
Proceedings of the National Conference on Artificial Intelligence (AAAI-87).

6. Huber, M. J.; and Durfee, E. H. 1996. An Initial Assessment of Plan-
Recognition-Based Coordination for Multi-Agent TeamsPioceedings of the
Second International Conference on Multi-Agent Systems (ICMAS-96). Kyoto,
Japan. pp. 126-133.

7. Levesgue, H. J; Cohen, P. R; Nunes, J 1990 On acting together, in
Proceedings of the National Conference on Artificial Intelligence (AAAI-1990),
Menlo Park, California, AAAI Press.

8. Mataric, M. J. 1993 Kin Remgnition, Similarity, and Group Behavior. In
Proceedings of the Fifteenth Annual Cognitive Science Society Conference.
Boulder, Colorado. Pp. 705-710.

9. Newell A., 1990.Unified Theories of Cognition. Harvard University Press.

10. Reece G. A.; and Tate, A. Synthesizing protedion monitors from causal
structure, inProceedings of AIPS-94, Chicago, Illinois (1994).

11 Rao, A. S;; Lucas, A.; Morley, D., Selvestrel, M.; and Murray, G. 1993 Agent-
oriented architedure for air-combat smulation. Tednical Report: Tecdhnica
Note 42, The Australian Artificial Intelligence Institute.

12. Tambe, M.; Johnson W. L.; Jones, R.; Koss F.; Laird, J. E.; Rosenbloom, P. S;;
and Schwamb, K. 1995 Inteligent Agents for interactive simulation
environments.Al Magazine, 16(1) (Spring).

13. Tambe, M. 1996 Tracking Dynamic Team Activity, in Proceedings of the
National Conference on Artificial Intelligence (AAAI-96), Portland, Oregon.

14. Tambe, M. 1997 Agent Architedures for Flexible, Practical Teamwork, in
Proceedings of the National Conference on Artificial Intelligence, Providence
Rhode Island (To appear).

15. Williams, B. C.; and Nayak, P. P. 1996. A Model-Based Approach to Reactive
Self-Configuring Systems. [IAroceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96), Portland, Oregon.

