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Abstract1

Robust behavior in complex, dynamic environments
mandates that intelligent agents autonomously monitor their
own run-time behavior, detect and diagnose failures, and
attempt recovery. This challenge is intensified in multi-
agent settings, where the coordinated and competitive
behaviors of other agents affect an agent’s own
performance. Previous approaches to this problem have
often focused on single agent domains and have failed to
address or exploit key facets of multi-agent domains, such
as handling team failures. We present SAM, a
complementary approach to monitoring and diagnosis for
multi-agent domains that is particularly well-suited for
collaborative settings. SAM includes the following key
novel concepts: First, SAM’s failure detection technique,
inspired by social psychology, utilizes other agents as
information sources and detects failures both in an agent
and in its teammates. Second, SAM performs social
diagnosis, reasoning about the failures in its team using an
explicit model of teamwork (previously, teamwork models
have been employed only in prescribing agent behaviors in
teamwork). Third, SAM employs model sharing to alleviate
the inherent inefficiencies associated with representing
multiple agent models. We have implemented SAM in a
complex, realistic multi-agent domain, and provide detailed
empirical results assessing its benefits.

Introduction

Attaining robustness in face of uncertainty in complex,
dynamic environments is a key challenge for intelligent
agents (Toyama and Hager 1997). This problem is
exacerbated in complex multi-agent environments due to
the added requirements for communication and
coordination. Example domains include virtual
environments for training (Tambe et al. 1995), robotic
soccer (Kitano et al. 95), potential multi-robotic space
missions, etc. The inherent explosion of state space
complexity in these dynamic environments inhibits the
ability of any designer, human or machine (i.e., planners),
to specify the correct response in each possible state in
advance (Atkins et al. 1997). For instance, it is generally
difficult to predict when sensors will return unreliable
answers, communication messages get lost, etc. The agents
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are therefore presented with countless opportunities for
failure, and must autonomously monitor and detect failures
in their run-time behavior, then diagnose and recover from
them, i.e., agents must display post-failure robustness
(Toyama and Hager 1997).

Previous approaches to monitoring and diagnosis (e.g.,
Doyle et al. 1986, Williams and Nayak 1996) have often
focused on a single agent that utilizes designer-supplied
information, either in the form of explicit execution-
monitoring conditions, or a model of the agent itself. This
information allows the agent to compare its actual behavior
with the ideal behavior to detect failures. While powerful
in themselves, these methods have several limitations in
multi-agent dynamic environments.

First, these approaches are geared towards detecting and
diagnosing failures in a single agent’s own behaviors. They
do not consider failures in other agents even when those
affect the agent’s own performance. For instance, a
teammate’s failure can change the ideal behavior expected
of an agent, but this can only be known if the agent can
detect teammates’ failures.

Second, these single-agent approaches cannot capture
team-level failures, where the failures may not be all in a
single individual, but rather are distributed among a
number of agents in a team. In this case diagnosis and
recovery imply not only correcting the individual failure,
but also re-establishing coordination at the team-level.

Third, the single-agent perspective in these approaches
prevents them from utilizing other agents as sources of
knowledge to compensate for possible failures in some of
an agent’s own sensors, i.e., to use whatever information is
sensed about other agents to infer the failing sensors’
results2. For example, a driver may not see an obstacle on
the road, but if s/he sees another car swerve, s/he can infer
the presence of the obstacle.

Fourth, these previous approaches are hard to scale up to
complex, multi-agent environments. In particular, since
agents in such environments adjust their behavior flexibly
to respond to their actual circumstances, it becomes
increasingly hard to specify the correct behavior. For
instance, specifying a target range for monitoring the
velocity of a car becomes difficult if we are to take into
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account some of the possible responses of the driver, e.g.,
acceleration beyond the speed limit or slowing down to
avoid hitting another car.

To alleviate such limitations of the existing approaches,
we have developed  SAM (Socially Attentive Monitoring),
a new approach to failure detection, diagnosis and
recovery. SAM complements existing approaches by
addressing the difficulties and exploiting the opportunities
in multi-agent environments. It is particularly relevant for
collaborative (teamwork) settings, that are ubiquitous in
multi-agent environments. SAM allows detection of
failures in the monitoring agent and its peers by a technique
inspired by Social Comparison Theory (Festinger 1954).
The key idea is that agents compare their own behavior,
beliefs, goals, and plans to those of other agents, reason
about the differences in belief and behavior (not
necessarily imitating the others), and draw useful
conclusions regarding the correctness of their own actions
or their peers’. While information about other agents’
beliefs can be obtained via communication, such
communication can be a significant overhead or risk (in
hostile environments). Instead, SAM uses plan recognition
to infer other agents’ beliefs, goals, and plans from their
observable actions (communicating only if necessary and
feasible). Thus, SAM would be applicable in the car
swerving example discussed above. To reduce inefficiency
in keeping track of other agents’ beliefs/plans, SAM
utilizes model sharing for efficient reasoning with such
models.

Upon detecting a possible failure, SAM performs
diagnosis using an explicit teamwork model to establish the
exact difference in beliefs between the agents and the
significance of the difference. Explicit teamwork models
have begun to be used in multi-agent domains for
teamwork flexibility (Jennings 1995; Tambe 1997). SAM
exploits these models--and the guarantees they provide-- in
a novel way, running them in reverse for diagnosis. A
detailed diagnosis enables SAM to recover.

SAM complements previous work on execution
monitoring and diagnosis by alleviating key weaknesses
mentioned above. First, social comparison allows agents to
detect failures in their peers’ behavior, diagnose the
failures, and recover either by adjusting own behavior or
influencing the failing agents (e.g., by communicating with
the failing agents). Second, SAM utilizes an explicit
teamwork model to facilitate diagnosis and recovery at the
team-level (re-establishing team coordination), and not just
at the individual level. Third, SAM enables an agent to
compensate for some of its failures to sense the
environment directly, by sensing other agents’ behaviors,
from which SAM infers missing information about the
environment. Finally, SAM complements the models or
conditions normally specified by the designer with
information gained from other agents. These other agents
behave flexibly in their environment and thus effectively
provide a model that matches the particular state the agent
is facing. However, SAM has to address the possibility that
these other agents may be behaving erroneously.

Motivation and Examples

The motivation for our approach comes from our
application domain which involves developing automated
pilot agents for participation in a commercially-developed
battlefield simulation (Tambe et al. 1995). This real-world
environment is complex and dynamic, with uncertainties
such as unscripted behaviors of other agents, unreliable
communications and sensors, possibly incomplete mission
and task specifications, etc. These qualities present the
agents with never-ending opportunities for failure, as
anticipation of all possible internal and external states is
impossible for the designer. Two example failures may
serve to illustrate. The first failure involved a scenario
where a team of three helicopter pilot agents was to fly to a
specified landmark position. Having reached this position,
one of the team members, whose role was that of a scout,
was to fly forward towards the enemy, verifying its
position. The scout’s two teammates (role: attackers) were
to land and wait for its return to the specified position. All
of the pilot agents were explicitly provided conditions to
monitor for the landmark. However, due to an unexpected
sensor failure, one of the attackers failed to sense the
landmark marking the waiting position. So while the other
attacker correctly landed, the failing attacker continued to
fly forward with the scout, following the original plan
which called for flying in formation! The failing attacker
had clearly seen that the other attacker had landed, but it
did not use this information to infer the position of the
landmark. Furthermore, the other attacker and the scout did
not complain to the failing attacker about its failure.  In a
second example, a similar team of three helicopters was to
take off from the home base and head towards their battle
position. One of the agents unexpectedly did not receive
the correct mission specification, so while two of the agents
began to fly out as planned, the failing agent kept hovering
in place at the starting position indefinitely. Again, none of
the agents complained about the unusual performance of
the team.

We have collected dozens of such failure reports during
the last two years. While it is generally easy for the human
designer to correct these failures once they occur, it is hard
to anticipate them in advance. These failures occur despite
significant development and maintenance efforts. Given the
complexity of the dynamic environment, predicting all
possible states and all possible interactions is impossible.
Furthermore, these failures are not negligible. Rather, they
are very obvious (to the human observer) catastrophic
failures, for both individual agents and the team. In the
second example above, not only was the single agent stuck
behind unable to participate in the mission, but the
remaining agents were unable to carry out the mission by
themselves.

Furthermore, these failures are not due to a lack of
domain expertise, as the domain experts expect some
common sense handling of such failures even in the most
structured military procedure. Indeed, by exercising social
common sense, an agent may at least detect that something
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may be wrong. Social clues, such as (in the examples
above) noticing that teammates are leaving while the agent
is hovering in place, or that a team-member has landed
while the team was flying in formation, would have been
sufficient to infer that something may be wrong.

Social Monitoring: Detecting Failures

SAM is composed of three processes: (i) a failure detection
process, which involves comparison with peers, in
particular teammates, to detect the possibility of failure, (ii)
a diagnosis process to confirm the detected failure and
perform detailed diagnosis, and (iii) a recovery process.
We begin in this section by describing SAM’s failure
detection process, which is inspired by Social Comparison
Theory (Festinger 1954) from social psychology. The first
three axioms of this theory are as follows: (1) Every agent
has a drive to evaluate its opinions and abilities; (2) If the
agent can’t evaluate its opinions and abilities objectively,
then it compares them against the opinions and abilities of
others; (3) Comparing against others decreases as the
difference with others increases.

The numerous failure reports we have collected
empirically demonstrate the very real need of agents in
dynamic, unpredictable domains to evaluate themselves by
monitoring their execution (first axiom). Current
approaches emphasizing the designer as a source of
information against which to compare the agent’s
performance fit naturally under the title of objective
sources for the agent’s self-evaluation. SAM’s detection
technique is inspired by the remaining parts of the axioms--
allowing the agent to compare its own abilities and
opinions (i.e., behavior, beliefs, and goals) to those of
others, and considering the weight put on these
comparisons (third axiom).

SAM’s monitoring technique is an operationalization of
this descriptive social comparison process. To detect
possible failures, SAM compares the monitoring agent’s
own state and the state of other agents -- where an agent’s
state may include its beliefs, goals, behaviors, etc.
However, as implied by the third axiom of social
comparison theory, differences with other agents are
meaningful only to the extent that the other agents are
socially similar. If other agents’ states are expected to be
dissimilar to the agent’s state, they may be unable to
contribute relevant information towards the monitoring of
the agent’s own performance. Also, hostile agents may
intentionally want to use deception in order to influence the
agent’s decision making to advance their own agendas.

To address this issue, SAM currently limits its
comparison to the agent’s teammates only, as these tend to
work on common goals and related sub-plans, and can be
assumed to be non-hostile (given the ubiquity of teamwork
in multi-agent domains, this is not a limiting assumption).
Differences with team members’ states may imply a
possible failure in either agent. For instance, in the second
helicopter example above, the agent left hovering at the
starting point could detect a possible failure by comparing

its own state with teammates’ states.
SAM’s capabilities may differ depending on what state

information about teammates is compared, e.g., internal
beliefs and goals vs. observable behavior. In general, the
information compared should satisfy a trade-off between
two criteria:  (i) For efficiency, only limited information
should be maintained about other agents and compared,
and (ii) For maximized monitoring capabilities, the
information should capture as much as possible of the
agents’ beliefs, goals, and internal control processes, since
we can only hope to detect discrepancies in the actual
agent-attributes we are comparing.

Our agents’ design is based on reactive plans (operators)
(Firby 1987, Newell 1990), which form a decomposition
hierarchy that controls each agent. Operator hierarchies
provide a good trade-off between the criteria considered
above, as they are both compact enough to be reasoned
about efficiently, while being central to the agent behavior
(capturing its decision process). We therefore chose
operator hierarchies for our comparison purpose. Figure 1
presents a small portion of such a hierarchy. Each operator
in the hierarchy has preconditions for selecting it,
application conditions to apply it, and termination
conditions. The design of the hierarchical plans uses the
STEAM framework (Tambe 1997) for maintaining an
explicit model of teamwork. Following this framework,
operators may be team operators (that explicitly represent
the joint activities of the team) or individual (specific to
one agent). In Figure 1, boxed operators are team
operators, while other operators are individual. The filled
arrows signify the operator hierarchy currently in control,
while dotted arrows point to alternative operators which
may be used. In the figure, the agent is currently executing
the execute-mission team operator which is its highest-level
team operator, and has chosen (jointly with its team) to
execute the fly-flight-plan operator, for flying with the team
through the different mission-specified locations.

Execute Mission

Wait at Point

Travelling

Fly Route

Fly Flight Plan

Nap of  the Earth Contour Low-Level

Just  Wait Scout  Forward

Figure 1. An example operator hierarchy.

To compare its own operator hierarchy with other agents’
hierarchies, an agent must acquire knowledge about the
others. Such knowledge can be acquired in two ways: it can
be communicated by the other agents or it can be inferred
by the monitoring agent based on its observation of the
other agents via plan recognition. The choice to prefer one
method over the other (or use a combination of both) is
dependent on the (i) cost and (ii) expected reliability of
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these methods, which changes across domains.
In many realistic domains, continuous communication

involves significant cost, both in overhead and risk. For
example, in our battlefield simulation domain, the cost of
communications is very high, as the agents operate in a
hostile environment and expose themselves to risks by
communicating with each other. In contrast, the cost of
plan recognition is relatively low, being mostly a
computational cost rather than a survival risk. In addition,
in a team context, plan recognition is often quite reliable
due to assumptions that can be made about the behavior of
other agents, since they are team members. Our estimates
of reliability and the cost make plan recognition an
attractive choice for acquiring knowledge of others.

We use the RESCteam (Tambe 1996) method for plan-
recognition, but different techniques may be used
interchangeably, as long as they provide the needed
information and representation. RESCteam provides real-
time plan recognition capabilities, constructing operator
hierarchies (in the recognizing agent’s memory) that
correspond to the other agents’ currently executing reactive
operators. The monitoring agent therefore has unified
access not only to its own hierarchies, but also to the
(inferred) operator hierarchies of other team members,
constructed by RESCteam. In figure 2 below, the left
hierarchy is the hierarchy actually in control of the agent.
The right one is inferred by RESCteam to be currently
executed by another agent.

Agent's  Hierarchy

Execute Mission

Travelling

Fly  Route

Fly Flight Plan

Execute Mission

Travelling

Fly Route

Fly Flight Plan

Other's (Inferred) Hierarchy

Nap of the Earth Low-Level

Figure 2. Two example hierarchies in the agent’s memory.

Comparing the agents’ operator hierarchies involves a top-
down comparison of the operators in equal depths of the
hierarchies (hierarchies of different lengths are also
considered different). In figure 2, the difference that would
be detected is between the two leaf nodes, since all
operators above them are identical.

Any such difference indicates a possible failure, if
teammates were supposed to be executing similar operators
in the first place. Before we discuss further diagnosis of
this failure (next Section), we address here one inherent
inefficiency in this failure detection method--it potentially
needs to keep track of the operator hierarchies of all other
teammates. To alleviate this inefficiency, we rely on
model-sharing--the use of shared hierarchies for team
operators (Tambe 1996). Team operators at equal depths
(the agent’s own, and those inferred of others), which

should be identical for all team-members, are shared in the
agent memory. Thus, only individual operators are
maintained separately. When team-operator differences
occur (see next section), SAM unshares the hierarchies at
the point at which they differ to allow reasoning about the
differences to continue, without having to maintain
separate hierarchies needlessly. Model sharing thus
maintains conceptually different hierarchies, while limiting
the actual computational overhead.

Social Diagnosis and Recovery

While SAM’s detection process indicates possibilities of
failures, its diagnosis process verifies the failure and
generates an explanation for it utilizing social knowledge
sources (other agents and the explicit teamwork model).
These sources determine the expected similarity between
the agents involved, and thus determine whether, and to
what degree, the difference in operators is truly an
indication of failure. In particular, differences can be
detected at the team level (the monitoring agent and its
teammates are not executing the same team operator), or
individual level. The extent of the diagnosis and recovery
depends on the type of difference detected.

Team-Operator Differences
In the case of team-operator differences, SAM’s failure
diagnosis is driven by explicit models of teamwork. Such
models have recently emerged as a promising approach to
provide greater flexibility in teamwork (Jennings 1995;
Tambe 1997). In particular, they alleviate the need for
domain-specific coordination plans.
    The key idea in SAM is based on the observation that
teamwork models specify how a team should work in
general. Thus, tracing back through such a model can help
confirm and diagnose team failures. In particular,
teamwork models contain domain-independent axioms that
prescribe general responsibilities for team members and the
team. These axioms in turn have been derived from
teamwork theories, such as joint intentions (Levesque et al.
1990) and SharedPlans (Grosz and Kraus, 1996). Our basic
idea is to backchain through these axioms to diagnose the
failure.  For instance, one axiom of the joint intentions
framework mandates that a persistent (committed) team
goal cannot be abandoned unless there exists mutual belief
in the team goal being irrelevant, achieved, or
unachievable. Thus, if the agent discovers a goal has been
abandoned by others, it can infer they believe mutual belief
has been established in the goal’s irrelevancy, achievement,
or unachievability.

In our implementation, the agents utilize one such
explicit model of teamwork, STEAM (Tambe 1997), for
their collaborative execution of team operators. STEAM
ensures that team operators are established jointly by the
team via attainment of mutual belief in their preconditions,
and terminated jointly by attaining mutual belief in the
team-operator’s termination conditions (either
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achievement, unachievability, or irrelevancy conditions). In
theory, team operators must therefore always be identical
for all team members. However, given the well recognized
difficulty of establishing mutual belief in practice (Halpern
and Moses 1990), differences in team operators
unfortunately do occur. Furthermore, for security or
efficiency, team members sometimes deliberately reduce
communication, and inadvertently contribute to such team-
operator differences. For instance, agents may assume that
an external object in team members’ visual range (such as a
landmark) is visible to all, and may not communicate about
it.

Given STEAM’s guarantees that the team operator must
always be identical, any team-operator differences detected
by SAM therefore imply not only a possibility but a
certainty of team coordination failure. Having established
this certainty in the failure, SAM’s team-level diagnosis
next attempts to identify the exact differences between its
own beliefs and its teammates’ beliefs that have led them to
execute different team operators--this aspect of diagnosis is
key for recovery, and it proceeds as follows. First, given a
difference between the monitoring agent’s T1 team
operator and the other team-members’ T2 team operator,
SAM infers that the entire team was initially executing T1
(since no differences were detected earlier). However, now
teammates have begun executing T23. Therefore, SAM
infers that the teammates  believe that one or more of the
disjunctive preconditions necessary for selection and
execution of T2 were satisfied. Furthermore, SAM infers
that teammates believe that one or more of the disjunctive
termination conditions of T1 have been achieved.
Typically, the intersection between these two sets of
possible beliefs determines the actual set of beliefs that the
teammates hold that are different at this point4. In addition,
the teamwork model guarantees SAM that this is the only
real difference that has led to the teammates’ executing T2.
Of course, this intersection idea can be applied to both
team and individual operator differences, but it is of
particular importance for team-level failures given the
guarantees provided by the teamwork model.

In the example of the agent’s failure to detect a key
landmark, SAM infers that the other agents are carrying out
the wait-at-point operator (one attacker lands, while the
scout goes forward). Once this discrepancy is noted (“I am
executing fly-flight-plan, they are executing wait-at-
point”), SAM determines that since the other agents have
terminated “fly-flight-plan” they have either met with an
enemy, or reached the landmark. From their current choice
of “wait-at-point” operator (whose preconditions include
reaching the landmark), SAM infers that the teammates
believe that they have indeed reached the landmark. Thus,
given the guarantees of teamwork models, the difference in
team operators is  elaborated by the diagnosis process to
infer specific differences in team members’ beliefs.

                                                
3 The case where the team did not switch but the monitoring agent did is
also possible, but is not described here for brevity
4 Empty intersection cases are a topic for future work.

SAM next continues to backchain through the teamwork
model, attempting to glean further information about the
belief difference. To begin with, it infers if this difference
of beliefs among team members is one that causes the
operator in question to be achieved, unachievable, or
irrelevant. SAM can then diagnose the failure in further
detail. For instance, in a different failure scenario, the scout
was shot down but this was known only to some agents in
the team. They then began to communicate as part of a
replan procedure to take over the role of the dead scout.
The agents that did not see the scout crash failed to
understand why these messages were sent, and chose to
ignore them, therefore causing a failure in coordination.
However, using SAM, the monitoring agent indirectly
determines that the scout is no longer functioning when it
receives communication messages from its peers calling for
a replan. In particular, SAM first infers that the other
agents are executing a “replan” team-coordination operator.
This triggers a difference with the agent’s own “wait-at-
point”. SAM then infers that the preconditions for a replan
have become true, which means that there was a failure in
“wait-at-point” which made it unachievable (as opposed to
achieved or irrelevant). The only possible reason for this is
that the scout cannot complete its mission.

Recovery is greatly facilitated by better diagnosis.
Currently, SAM’s recovery assumes that the agent’s
perception is incomplete, but not inconsistent. For
example, an agent’s sensors may fail to detect the landmark
(a “don’t know” response), but would not erroneously say
it is there when it isn’t. Thus, SAM’s diagnosis that
teammates have come to believe in something which the
monitoring agent does not know about (or vice versa)
enables the monitoring agent to recover by adopting this
belief  (or in the reverse case, by letting others know about
this belief). The above assumption is made only in the
recovery stage, not in the detection or diagnosis stages, and
removing it is a topic for future work.

In the example of the failure to detect the landmark, once
the agent diagnoses the problem that the other agents have
detected the landmark (making the “fly-flight-plan”
achieved), it recovers completely by adopting the other
agents’ belief. This adoption of belief makes the
preconditions for its own “wait-at-point” operator true, and
it re-establishes mutual belief with the team, completely
resolving the problem.

Individual Operator Differences
In service of team operators different agents may work on
different individual operators. Thus, a difference in
individual operators may not necessarily signify failure.
Individual operators do not carry with them the
responsibilities for mutual belief that team operators do,
and also none of the guarantees provided by a teamwork
model. Therefore, SAM consults additional information
about the agents causing the difference which can help in
determining whether the difference is justified or not, prior
to embarking on the diagnosis of the exact set of
differences in beliefs. Agents working towards similar
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goals have similar social roles or status. For example, in a
soccer game there are field players and a goalie which have
different roles within the team. Agents with similar roles
serve as better sources of information for plan-execution
monitoring than agents with different roles. In some cases,
SAM may choose to completely eliminate some agents
which are too socially dissimilar from further consideration
even at the detection level, so that differences in choice of
individual operators will no longer signify possible failures.
At the team level, however, these agents are still very much
considered.

SAM will therefore choose to fully diagnose only
differences with agents of similar role/status, assigning
appropriate discounted weight to the explanation
generated. The example where a failing agent was stuck in
place while its team-members have taken off and were
flying away serves to illustrate. Here, the agent compares
its chosen method-of-flight operator to the method-of-flight
chosen by its comrades. This comparison is meaningful
since at least one of the comrades has a similar role and
status. The comparison indicates to the failing agent that it
is not acting like its team-mates - that a failure may have
occurred (see leaf operators in Figure 2). The process of
diagnosis here results in SAM’s inferring that the reason
for the difference is that the mission specification of the
flight-method (which is a precondition for selecting a
particular method) is different between the agents.
However, it is highly improbable that two different mission
specifications were intentionally sent out to two agents in a
team (domain-specific knowledge). Therefore, the
monitoring agent communicates with teammates and their
commander to possibly resolve this problem.

Results and Evaluation

Our agent, including SAM, is implemented completely in
the Soar integrated AI architecture (Newell 1990). About
1200 rules are used to implement the agent, including the
military procedures, teamwork capabilities (STEAM), and
plan-recognition capabilities (RESCteam). Approximately 60
additional rules implement SAM, forming an add-on layer
on top of the procedures making up the agent.

SAM can resolve a significant portion of the team and
individual failures in our collected failure reports, too
numerous to discuss here in detail. We have therefore
chosen to illustrate SAM’s strengths and limitations via
systematic experimentation with variations of the landing
point failure described above. Here, we systematically
tested SAM’s capabilities in all possible permutations of
the original scenario, i.e., all possible pairings of agents’
failures and roles. To make things tougher, only a single
agent deployed SAM. Thus, in our experiments SAM had
to detect and diagnose failures not only in the monitoring
agent, but also in one or more of its teammates.

In the first set of experiments, our SAM-executing agent
(called SAM in the tables below) plays its original role of
an attacker (Table 1). The other agents (other-1 and other-
2) also play their original role. For further variations in

failure scenarios, we set up another set of experiments,
where SAM plays the other role involved in the scenario,
that of the scout (see Table 2).

The first column in the tables is experiment number. The
next three columns note the three agent/roles in the
experiments. Entries marked “Fail” indicate that in the
given experiment (row), the agent in question has failed to
detect the landing point, and thus continued execution of
“fly-flight-plan”. The “Detect” column marks “Yes” in
experiments in which SAM was successful in detecting a
difference in operators indicating possible failure (and
“No” otherwise). The Diagnose column similarly indicates
whether SAM’s diagnosis procedure was successful at
generating an explanation of the failure. Recovery was
successful in all cases where a diagnosis was generated.

Exp
#

attack
SAM

attack
other1

scout
other2

Detect Diagnose

1 - - - N/A N/A
2 Fail - - Yes Yes
3 - Fail - Yes Yes
4 Fail Fail - No No
5 - - Fail Yes Yes
6 Fail - Fail Yes Yes
7 - Fail Fail Yes Yes
8 Fail Fail Fail No No

Table 1. SAM - attacker, other-1 - attacker, other-2 - scout

Exp
#

attack
other1

attack
other2

scout
SAM

Detect Diagnose

9 - - - N/A N/A
10 Fail - - Yes Yes
11 - Fail - Yes Yes
12 Fail Fail - Yes Yes
13 - - Fail Yes Yes
14 Fail - Fail Yes No
15 - Fail Fail Yes No
16 Fail Fail Fail No No

Table 2.  SAM - scout, other-1 and other-2 - attackers.

In experiments 1 and 9 no failure occurred (a “-” in
columns 2-4), and SAM’s capabilities were not applicable.
There are thus 14 cases where at least one agent fails. Of
those, SAM detected a failure in 11, and generated a
diagnosis for 9.

Experiment 2 is the original failure scenario. Here, as
mentioned in the previous section, SAM detected a
difference between its own “fly-flight-plan” and the other
agents’ “wait-at-point” and through diagnosis, realized the
other agents believe the landmark is detected. It then
recovered from the failure by adopting this belief,
compensating for its own sensors’ failure to detect the
landmark. Experiment 13 is analogous, except that here
SAM is playing the scout. SAM proves successful there as
well.

There are 6 cases (experiments 3, 5, 7, 10-12) where a
reverse difference occurs, in which the agent running SAM
has detected the landmark successfully, but one or more
other agents did not (and are continuing with “fly-flight-
plan”). In all but one of these, a diagnosis is completed and
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recovery facilitated. This is a particularly strong result,
since here a single agent deploying SAM is detecting a
failure in one or more of its peers’ perceptions.

In cases where two out of the three agents fail,  SAM
does better in detecting failures when working as the scout
(capturing all of the cases 12,14,15), than when working as
the attacker (not capturing all of 4,6,7). This is due to the
fact that as a scout, even when SAM was failing, usually
one of the two attackers would unambiguously signify
detecting it by landing. In contrast, in case 4, when SAM
was failing as an attacker, the scout is the only agent that
did not fail. Here, since the scout continues to fly out to the
battle position, and since SAM has not seen the landmark,
SAM’s plan-recognition fails to detect the scout’s internal
operator shift to “wait-at-point”. Instead, SAM believes
that the scout is continuing with “fly-flight-plan”, and so no
operator difference is generated. This shows a  limitation of
relying exclusively on plan-recognition in SAM, since
plan-recognition may sometimes fail. Indeed,  cases 14 and
15 further illustrate this point. These cases are also difficult
to diagnose given the ambiguity in plan-recognition. Here,
when one attacker detected the landmark and landed, while
the other continued to fly along, the team was essentially
split, and SAM’s plan-recognition failed to unambiguously
infer whether the team as a whole was running “fly-flight-
plan” or “wait-at-point”. It could only identify that each of
the other agents was running a different operator, and thus
only detected the failure (but did not diagnose it).
   Although SAM is sensitive to plan-recognition
ambiguity, this difficulty is alleviated since it focuses on
teams and team-members. This constrains very much the
space of possible hypotheses, and reduces the chance for
ambiguity. Indeed, as the results of the experiments clearly
show, there was only one case of detection failure and only
two cases of diagnosis failure due to ambiguity.

SAM’s two other failures at detection are both in cases
where all three agents have failed together - which is
another limitation of SAM. When all agents fail together,
no differences in observed behavior or inferred operators
occur, and so no failure is detected.

The combined results of the two sets of experiments
demonstrate that just two agents running SAM--the scout
and an attacker--are sufficient to detect failure, fully
diagnose, and recover in all 12 cases where at least one
agent behaves correctly (i.e., all cases except for those
where all agents fail together).

Although we deliberately point out SAM’s limitations
and strengths as they show in the 14 experiments, its
performance should also be compared to that of the
techniques focusing only on single-agent perspective.
Those would fail to even detect a failure in all 14 cases,
even with all three agents running a diagnosis system. This
is due to their lack of social attention to other agents. They
consider only the agent’s own sensors that are supposed to
detect the landmark, but ignore the sensors telling them
about what other agents are doing. Thus, they cannot
diagnose or recover from failures in other agents.

A reviewer of this paper suggested contrasting these

results with an evaluation of SAM running with no
condition monitoring in place. In this case, none of the
agents can detect the landmark, and so SAM will fail to
detect the problem. This is to be expected, as SAM is a
complementary technique, and does not consider the task-
specific sensors that the condition monitors do.

SAM’s results should also be contrasted with those
achieved with imitation (Bakker and Kuniyoshi 1996).
Imitation is a very special case of the general SAM method
-- by choosing to always adapt the others’ view, SAM leads
to imitation. However, imitation works only in the presence
of a correct role-model. The scout has a unique role in the
team, and so has no role-model to imitate. Thus, imitation
would be inadequate in all experiments in table 2. The
attacker has a role model (the other attacker) and would
manage to land correctly in experiments 2 and 6, but would
also imitate its role-model when the role-model is failing
(experiments 3 and 7).

Finally, to evaluate SAM’s plan-recognition efficiency
provided by model sharing, we compare the number of
operators selected during a typical mission by an agent
running with two other full hierarchies (as in a team with
three agents), to that of the same agent doing modeling but
using model-sharing for efficiency. The agent not using
model-sharing keeps track of 57 different operators during
the course of a typical mission. The latter agent, running
with model sharing, keeps track of only 34 different
operators--a two-fold computational savings.

The results demonstrate that SAM is a useful technique
for detecting and diagnosing failures, able to capture
failures in the agent running SAM and in its teammates,
facilitating recovery not only of an individual agent, but of
the team as a whole.

Related Work

We have already discussed some key related work—
imitation and previous work on monitoring and diagnosis—
earlier in the paper. In addition, SAM is related to work on
multi-agent coordination and teamwork, although it
generalizes to also detect failures in execution of individual
operators, which are outside the scope of coordination.
Particularly relevant are observation-based methods, which
use plan recognition rather than communications for
coordination. Huber and Durfee (1996) do not assume an
explicit model of teamwork, but rather view collaboration
as emergent from opportunistic agents, which coordinate
with others when it suits their individual goals. These
agents do not have the guarantees of maximal social
similarity at the team level, and while they possibly will
find the detected differences useful, they cannot be certain
of failures, nor facilitate team recovery (since the other
agent may simply have left the team opportunistically).
Work on teamwork (Jennings 1995, Tambe 1997)
concentrates on maintaining identical joint goals to prevent
miscoordination, while the focus of SAM is on detecting
when the goals do differ. Indeed. SAM is useful as a
diagnosis component for general teamwork models,
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allowing a general teamwork replanner to take over the
recovery process.

Atkins et al. (Atkins et al. 1997) attack a similar problem
of detecting states for which the agent does not have a plan
ready. They offer a classification of these states, and
provide planning algorithms that build tests for these states.
However, their approach considers only the individual
agents and not teams. It thus suffers from the same
limitations as other single agent approaches in being unable
to detect modeled states which have not been sensed
correctly.

Summary and Future Work

This paper presents SAM, a novel system for failure
detection, diagnosis and recovery in large-scale, dynamic,
multi-agent domains. SAM is not only able to detect
failures in the individual agent deploying it, but also in that
agent’s peers--even if they are not deploying SAM
themselves. SAM additionally diagnoses and recovers from
failures at the team level -- it thus truly performs social
diagnosis, spanning failures distributed in a number of
agents rather than in one particular individual.

Key novel aspects of SAM include: (a) a new failure
detection method, able to detect previously undetectable
failures in the monitoring agent, and in its peers, (b) a
social diagnosis method, able to diagnose failures in
behavior of agents and agent-teams, based on an explicit
teamwork model, and (c) a model-sharing technique for
limiting the inefficiencies inherently associated with
keeping track of multiple agent models. Finally, SAM
exploits a novel synergy among three different agent
components, specifically plan-recognition, teamwork, and
monitoring components. These general principles would
appear to be applicable in many domains such as those
mentioned in the introduction.

In our work, we have implemented SAM in a complex,
realistic multi-agent environment and conducted a careful
and systematic evaluation of its benefits and limitations,
demonstrating SAM’s applicability in different single- and
multiple-failure scenarios. We demonstrated that SAM was
able to diagnose almost all failures in these cases, but
approaches focusing on single-agent perspective have
failed to even detect the failures.

Many areas are open for future work. Further exploration
of Social Comparison Theory or the uses of model-based
teamwork diagnosis is high on our agenda. We also plan to
investigate further individual-operator differences, which
do not enjoy the guarantees and diagnostic power of team-
level failures.
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