
Flexible Negotiation in Teamwork: Extended Abstract

Zhun Qiu and Milind Tambe

Information Sciences Institute and Computer Science Department
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292, USA
{zqiu, tambe}@isi.edu

Abstract

In a complex, dynamic multi-agent setting, coherent team
actions are often jeopardized by agents' conflicting beliefs
about different aspects of their environment, about
resource availability, and about their own or teammates'
capabilities and performance. Team members thus need to
communicate and negotiate to restore team coherence. This
paper focuses on the problem of negotiations in teamwork
to resolve such conflicts. The basis of such negotiations is
inter-agent argumentation (based on Toulmin's
argumentation structure), where agents assert their beliefs to
others, with supporting arguments. One key novelty in our
work is that agents' argumentation exploits previous research
on general, explicit teamwork models. Based on such
teamwork models, it is possible categorize the conflicts that
arise into different classes, and more importantly provide a
generalized and reusable argumentation facility based on
teamwork constraints. Our approach is implemented in a
system called CONSA (COllaborative Negotiation System
based on Argumentation).

Introduction

The past few years have seen an explosion of interest in
multi-agent systems in general, and multi-agent
collaboration or teamwork in particular. In multi-agent
teamwork, agents must plan or act together in service of
their common team goal. Unfortunately, in a complex,
dynamic multi-agent setting, such coherent team action is
often jeopardized by agents' conflicting beliefs about
factors such as their environment, overall resource
availability, and their own or their teammates' past and
present performance and capabilities. Such conflicts in
agents' beliefs may arise due to a variety of reasons. First,
typically in a distributed environment, agents have access
only to local information (not global information), obtained
from local sensors or information access mechanisms.
Thus, information locally sensed by one agent is
unavailable to the other agents, leading to conflicts.
Second, even if the same information is available to all of
the agents, their interpretations of this information may
differ due to their distinct individual contexts, or their
differing sensor capabilities, leading to conflicting beliefs.
Third, agents' individual problem solving or planning
activities may often need to proceed without all relevant

information from all others, and agents may thus produce
local plans that conflict with those of its teammates.
Finally, unreliable communication among agents may lead
the sending and receiving agents to believe in conflicting
information.

While recent research on teamwork has made progress
in enabling agents to flexibly coordinate and communicate
in a team, it has so far not addressed the problem of inter-
agent negotiation for conflict resolution. This paper is
focused on such collaborative negotiations in the context of
teamwork. The topic of inter-agent negotiations has long
been a subject of intense investigation in the multi-agent
literature. Beyond multi-agents, "negotiations" is well-
studied topic, in different forms, in different areas such as
economics, and political science1. Indeed, investigations
inspired from economics, such as game theoretic
approaches (e.g., Rosenschein and Zlotkin [Rosenschein
and Zlotkin 1994]), dominate much of the existing work on
agent-based negotiation. However, much of this literature
has focused on negotiations among self-interested agents,
that attempt to maximize their individual utilities, rather
than collaborative negotiations within a team. Furthermore,
this literature often focuses on the outcome of the
negotiation, e.g., by providing rules of encounter or
conventions that ensure that agents will not have any
incentive to deceive others. However, it does not provide
guidance on constructing such agents' internal (cognitive)
processes , e.g., their representations and reasoning
employed, to enable effective and/or efficient negotiation.

Our research strongly contrasts with the above research
thread, given its focus on building agents that can
participate in collaborative negotiations in service of
teamwork. In contrast with game-theoretic approaches,
our approach is based on the notion of argumentation.
Previous research in this area [Chu-Carroll and Carberry
1996, Freeman and Farley 1993, Mouaddib 1997, Parsons
and Jennings 1996] has provided several general purpose
techniques for argumentation-based negotiations. Building
on this previous work, and particularly, Toulmin's pattern
of argumentation [Toulmin 1958], we have developed an
argumentation-based negotiation system called CONSA
(COllaborative Negotiation System based on

1 Indeed, books on negotiation date at least as far back as 2,500 years ago,
e.g. Gautama's five volumes of "Nyaya-Sutra", or the "science of
discussion" was written in 550BC.

Argumentation).
The key novel aspects of CONSA, particularly in

contrast with systems of legal argumentation [Freeman and
Farley 1993], are based on its focus on collaborative
negotiation. This focus enables CONSA to exploit
previous research on explicit, general models of teamwork
[6,12], that can provide significant advantages in
investigations of collaborative negotiations. In particular,
a principled framework of teamwork enables a clearer
understanding of collaborative negotiation, and the
strengths and limitations of current techniques. For
instance, such a principled framework enables an
understanding of the different conflict types that can arise
in teamwork, and the extent to which such conflict types
have been addressed in previous work on collaborative
negotiations. Indeed, such categorization of differences in
conflict types is absent in previous work on collaborative
negotiation. More importantly, teamwork models provide a
more detailed, yet domain-independent expertise for agents
to engage in argumentation. Such argumentation expertise
is reusable across domains. For instance, agents can reuse
argumentation knowledge based on role constraints and
task relationships, or own and teammates' responsibilities
in teamwork.

Domains and Motivations

The motivation for current research on negotiation is based
on our previous work in complex, multi-agent domains
such as real-world battlefield simulations [Tambe et al.
1995]. We have been building different teams of synthetic
pilot agents that successfully participate in combat
simulations in these environments. These pilot agent teams
include companies of attack helicopter pilots, divisions
of transport and escort helicopters pilots, and teams of
autonomous pilots for the future generation unmanned air
vehicles (UAVs). The second domain is Robocup [Kitano
et al. 1997] where we have twice successfully participated
in the RoboCup tournaments (twice in the top four teams).
We are also investigating the role of agent teams for
disaster rescue scenarios.

These above agent teams have been developed based on
a teamwork model called STEAM [Tambe 1997]. STEAM
is based on the joint intentions [Cohen and Levesque 1991]
and SharedPlans [Grosz and Kraus 1996] theories of
teamwork, but with practical extensions for monitoring and
replanning as well as decision-theoretic communication
selectivity. STEAM has provided significant teamwork
flexibility in all of these applications. Yet, STEAM does
not address the problem of conflicts in agents' beliefs and
relevant negotiations to resolve such conflicts, limiting
teamwork flexibility in key instances. We describe here
just a few key examples that outline some of the basic
issues for collaborative negotiations:

� The proceed case: A helicopter pilot team in the
combat simulation environment must plan firing
positions, i.e., positions for individual helicopters to
hide and attack the enemy. Typically, the commander

pilot agent plans all these positions, one per each team
member, and sends each individual planned position to
the relevant team member. For instance, a team
member with the call sign "cheetah102" may obtain a
position with coordinates that hide it behind a small
hill. Once all of the positions are communicated, the
commander asks its team to "proceed". Unfortunately,
in one case, one of the positions never reached a team
member ("cheetah102"), i.e., the message was sent but
lost due to radio interference. Thus, the commander
thought the message was sent, but "cheetah102" never
received it, leading to a conflict in beliefs.
Unfortunately, given its inability to resolve this
conflict, when the team was asked to proceed,
"cheetah102" just proceeded, without a firing position,
and thus got stuck and did not attack the enemy.

� The firing position case: In the above firing position
planning, the commander pilot agent typically
successfully plans firing positions that are at least one
or two kilometers apart from each other, as required
by doctrine. However, as individual pilots fly to those
positions, they may unexpectedly encounter enemy
vehicles and react by autonomously changing the
allocated positions. This may lead pilots to take up
positions that are inappropriately close to each other.
Or, two separate commanders may plan positions that
may accidentally conflict with other. In such cases,
individuals must resolve the conflict in firing positions
via negotiations. Without such negotiations, they may
take up firing positions that are inappropriate and
dangerous.

� The ball position case: In RoboCup soccer, players
have limited vision and thus inform each other about
ball position. Typically, rather than communicating
precise ball position (which constantly changes), they
exchange high-level information, e.g., the defenders
only inform each other if the ball is a threat, or if the
ball is cleared (and hence not a threat). However, the
players' sensors may deliver imprecise information
about ball location, due to inbuilt uncertainties in the
simulation, leading to a conflict in players' beliefs.
Furthermore, the players own interpretation of what
constitutes a threat may vary, leading to a similar
conflict in beliefs. Without a negotiation capability,
the agents are unable to resolve this conflict. Thus, one
defender may insist that the ball is a threat, while
another insists it is not. Defenders may thus
continually exchange these messages, without any
resolution, while the ball is kicked past them towards
their goal.

� The enemy position case: In the combat simulation
environment, a very similar situation to the one above
in terms of ball position does arise (except that instead
of the ball, agents are concerned about enemy
position). The key difference here though is that there
can be two or more different enemy units, rather than a
single ball as in Soccer.

As seen in these examples, while team members do acquire
conflicting beliefs, the lack of negotiation capabilities leads
to a significant degradation in their individual performance
as well as the overall team performance.

Analysis of Conflicts

As mentioned in the introduction, a teamwork model
provides several advantages for collaborative negotiations,
including a categorization of the conflicts types, clearer
understanding of capabilities of previous collaborative
negotiation systems, and more importantly, argumentation
knowledge based on such teamwork models. Therefore,
this section provides a brief description of a principled
teamwork model (which in our case is STEAM [Tambe
1997]).

STEAM
STEAM is an implemented model of teamwork, aimed at
enabling development of individual agents that can engage
in flexible teamwork [Tambe 1997]. STEAM uses joint
intentions as its basic building block and builds up a
hierarchy of joint intentions corresponding to a team's goal
or plan hierarchy. STEAM facilitates flexible teamwork
via two classes of domain-independent actions. The first
class of coherence preserving or CP actions is based on the
commitments in the joint intentions theory. It includes the
execution of the establish-commitment protocol [Tambe
1997] to establish a joint intention, and by requiring agents
to jointly begin and terminate joint intentions, STEAM
ensure full coherence within a team.

The second class of domain-independent actions in
STEAM is maintenance and repair or MR actions, aimed at
replanning (particularly via team reorganization). One key
aspect of MR actions is an explicit specification of the
dependency relationship of the joint intention on individual
team members' activities, based on the notion of a role. A
role constrains a team member vi (or a subteam) to some
suboperator(s) opvi of the team operator [OP]. Three
primitive role-relationships can currently be specified in
STEAM, implying:

AND-combination: [OP] � opv1 /\ ... /\ opvn

OR-combination: [OP] � opv1 \/ ... \/ opvn

Role dependency: opvi � opvj (opvi dependent on opvj)

These primitive role constraints may be combined, to
specify more complex relationships. All these role
relationships can create a whole role-constraint hierarchy,
corresponding to an agent's plan hierarchy (see below).
CONSA, our negotiation algorithm, currently exploits this
hierarchy to guide agents to detect conflicts and generate
efficient arguments.

STEAM also requires an explicit representation of a
team's plan(s) or task. For a concrete example of explicit
representation of team plans, consider Figure 1. It depicts
an operator hierarchy (similar to a reactive plan hierarchy
[Firby 1987]) for our Soar-based [Newell 1990] synthetic
helicopter pilots developed using STEAM. One key

novelty however is team operators (reactive team plans),
which explicitly express a team's joint activities. Thus,
operators shown in [] such as [Engage] are team operators.
At any point in time, one path through this operator
hierarchy is active, which is an agent's currently active
joint intentions (corresponding to team operators), and
intentions (corresponding to individual operators).

Figure 1: Helicopter pilot domain: Portion of team operator
(reactive-plan) hierarchy.

Conflicts in STEAM
Given this background on STEAM, we can now categorize
some of the conflicts that can arise in teamwork.

� Conflicts in joint initiation of a team operator: Two
team members may have conflicting beliefs about
coherently initiating a team operator. Conflict may
arise because:

a) Ability: One team member may be unable to
participate in the execution of the team operator
(it may not believe that the preconditions of the
team operator are satisfied).

b) Preference: One team member may prefer to
execute an alternative team operator (it may have
the ability, but it may still prefer the alternative).

c) Cause: Even if both members are able to and
prefer to initiate the joint goal, they may have
different reasons to do this, which sometimes lead
to conflicts also.

� Conflicts in joint termination of a team operator: Two
team members may have conflicting beliefs about
coherently terminating a team operator.

a) Ability: One team member may be unable to
terminate the team operator.

b) Preference: One team member may prefer to
continue executing the team operator.

c) Cause: The termination may occur for different
reasons, e.g., one agent may believe the joint goal
to be achieved, while another believes it to be
unachievable or irrelevant.

� Conflicts in the execution of an individual operator:
Two agents, executing two separate individual roles
may unintentionally interfere with each other's role

[EXECUTE-MISSION]

[Fly-flight-plan] [Engage] [Prepare-to-return-
to-base]

[Fly-control-route]

[Travelling]

Low
Level Contour

High
Level

Mask Unmask
Enmploy
weapons

Return-to-
control-point

Initialize
hover

Maintain
position

Select-
mask

Goto-new-
mask-location

......

......
......

............

performance.

Since an individual operator is not initiated or terminated
jointly, the conflict here may arise not in its initiation and
termination, but in its execution. In contrast, in team
operators conflicts may arise in initiation and termination.
There can be conflicts in the execution of team operators as
well. However, this is not mentioned as a separate
category, since execution of a team operator involves
execution of operators in its subgoal. Thus, execution
conflicts for team operators are essentially conflicts in the
initiation and termination of team operators that are
executed in its subgoal, or conflicts in the execution of the
individual operators executed in its subgoal.

We can now re-examine the cases from Section 2. Here,
in "the proceed case", a team member's "proceed" message
is intended to attain coherence in the termination of their
current team operator to "plan-firing-positions". Thus, this
is a type 2(a) conflict, due to ability. The "ball position"
case is also a type 2(a) conflict, as players have conflicting
beliefs about terminating their team operator to detect ball
threat. The "firing position case" is a type 3 conflict, in
agent's individual activities. Finally, the "enemy position"
case belongs to type 2(c), since the helicopters agree to
terminate the team operator, but have conflicting beliefs
regarding enemy positions.

Approach Outline and Preliminary
Implementation

As mentioned earlier, we have designed and implemented
an approach called CONSA for collaborative negotiations.
The following sections discuss the representations and
reasoning in CONSA.

Representations of Beliefs
In devising an approach to address the problem of
collaborative negotiation, the following key issue must be
addressed. STEAM, particularly its CP actions, are aimed
at maintaining coherence in the team, and they succeed in
the absence of a "true" conflict, e.g., where an agent
sending a message has new information that unavailable to
other agents. Any approach to collaborative negotiation
must accommodate such CP actions, and not force
unnecessary negotiations in the absence of a "true"
conflict. Of course, at present, the limitation in STEAM is
exactly the opposite - it fails to recognize any conflict
situations , and fails to negotiate. The new approach must
thus reach a compromise where agents may consider
negotiations iff there is a "true" conflict.

Agents' belief representation must thus enable efficient
recognition of such true conflict situations. To this end,
CONSA relies on equipping agents' beliefs with strengths.
The strengths of a belief is derived based on the evidence
that supports it. For instance, in the proceed case, the agent
not receiving its firing position ("cheetah102") can
strongly believe that it has not received this position, since
there is no evidence that the firing position has been

received. In contrast, when executing the team operator
[fly-flight-plan] individual team members only weakly
believe that there is no enemy on their flight path, because
their local sensors only cover a portion of the flight path
and cannot guarantee that there is no enemy on the flight
path. Thus, for a given belief Bi, an agent "cheetah102",
may (i) strongly believe Bi; (ii) weakly believe Bi; (iii)
weakly believe not(Bi); (iv) strongly believe not(Bi).

One key novel heuristic used in CONSA, in weighing
presented evidence is that an agent is expert in its own
role. Thus, if "cheetah102" states to the team that it has not
received its firing position, the above heuristic ranks this as
strong evidence, since "cheetah102" is considered an
expert in its own role of receiving the firing position.

The strength based beliefs enables STEAM to efficiently
detect true conflict cases. For instance, while agent
"cheetah103" may weakly believe that there is no enemy
on the team's flight path, it may be informed by an agent
"cheetah102" that it ("cheetah102") has spotted enemy on
the flight path. "cheetah103" does not treat this as a
conflict, given its earlier weak belief, and strong evidence
in favor of the presence of enemy. In contrast, if
"cheetah102" had strong belief that it has not received a
firing position, it will treat any new information stating
that it has received a firing position as a "true" conflict,
and consider engaging in negotiations.

CONSA's Approach to Negotiation
CONSA can now be outlined as involving the following
steps:

1) Step 1: Conflict detection: Agents do not directly
accept other agents' beliefs communicated through the
CP or other communicative actions (as currently done
in STEAM). Instead, they check for conflicts, based
on the above belief representation technique. In
particular, the communicating agent's belief and any
supporting evidence provided is weighed against the
receiving agent's own beliefs with possibly contrary
supporting evidence. If the communicating agent
sends no evidence (if it is considered already available
to everyone), the receiving agent uses simple plan-
recognition to re-construct this evidence, and check
for any conflicts.

2) Step 2: Decision on negotiation: Even if conflicts are
detected, agents should not automatically engage in
protracted negotiations. As the "ball position case" in
Section 2 clearly illustrates, the cost of negotiations
may outweigh the benefits (e.g., the ball may be shot
into the goal by the time the defenders complete their
negotiations). CONSA relies on a decision theoretic
approach to address this issue. CONSA weighs three
alternatives once it detects a conflict. First, an agent
can negotiate in detail with its teammate. Second, it
can avoid the negotiation, and just accept the
teammates' belief. Third, it can refuse to negotiate, but
not accept the teammates' belief either (working with
its own beliefs instead). Under different

circumstances, the cost and utility of each of these
choices will vary. In the "ball position case", the agent
will reject the first option as its expected utility is
lower than the remaining two options, given its
significant cost. Thus, CONSA will terminate, and no
negotiations will occur.

3) Step 3: Begin negotiations: If an agent does decide to
continue with negotiation, it will send arguments to its
teammate with whom the conflict is discovered,
including the supporting evidence for its own beliefs
(that conflict with the sender's beliefs).

 i. 3a: Construct the argument in support of the agent's
own belief: build a proof chain to attack the sender's
conflicting beliefs.

 ii. 3b: Prune the argument: it's not always necessary to
communicate the whole argument to the other
agent. Instead, those mutually believed or easily
inferred parts can be ruled out for sake of
efficiency;

 iii. 3c: Communicate the argument.

4) Step 4: Continue negotiations: if the conflict is
resolved, stop; else, if conflict detected go back to step
2, but with the original message receiver now the
sender, and the sender now the message receiver.

In Step 3, agents construct their arguments in support of
their beliefs. In our approach, argumentation is based on
Toulmin's argumentation structure [Toulmin 1958].
According to Toulmin, arguments consist of data and
claims and warrants1:

� Claim: some conclusion whose merit we are seeking
to establish;

� Data: the facts we appeal to as a foundation for the
claim;

� Warrants: the authority for taking the step from the
data to the claim.

In our context, claims are the facts the agents individually
or mutually believe in. For example in a role relationship
situation, the facts that "the role relationship for a team
operator T is an AND combination", or "one of the role is
fulfilled", or "the top goal has been achieved", etc., are all
claims. Warrants are the rules of actions an agent should
take based on role constraints, such as :

� Warrant W*: "AND-combination(T) + All-roles-
fulfilled(T) � achieved(T)"
That is, for a team operator T, if it is an AND-
combination, and all of its roles are achieved , then
the team operator is achieved.

� Warrant W**: "OR-combination(T) + Any-role-
fulfilled(T) � achieved(T)"
where T is a team operator

In CONSA, data also have supporting structure consisting
of warrants and evidence data, recursively, so we can view

1 Toulmin actually also has "qualifications" and "rebuttals" as part of his
basic argument structure, but we are not using these notions in our
approach.

them as claims also. Thus, henceforth only "leaf" claims
(which have no further supporting argument structure) are
referred to as data.

Consider the case of joint goal termination (case 2, from
section 3.2). Here we utilize STEAM's role-constraints to
create warrants and guide agents to evaluate propositions
and construct counter-arguments.

In the detection step (step 1), when an agent receives a
joint-goal-completed message, it will first compare the
message with the agent's private beliefs. If no conflicts are
found, the agent will then backchain the message based on
the role relationship constraints (using applicable warrants
of role constraints) to infer the sender's beliefs in
fulfillment of all relevant roles. For instance, if the
message is "achieved(T)", then from the applicable warrant
"AND-combination(T) + All-roles-fulfilled(T) �

achieved(T)" and the claim "AND-combination (T)", the
agent can infer back that the sender believes that "All-
roles-fulfilled(T)" is true.

Next, the receiving agent can again compare all these
Sender's inferred claims to its own existing beliefs. If still
no conflicts are found, it will then backchain through such
claims (just inferred from last round of backchaining). In
the example above, the receiving agent will backchain
through the inferred claim "All-roles-fulfilled(T)", to
generate other inferred claims for comparison with its own
beliefs. In this case, the inferred claims refer to the role
fulfillment of individuals or subteams in the operator
hierarchy. This backchaining process continues until the
agent finds a conflict or reaches the bottom of the tree
where the roles are individually executed2.
When the agent finally finds a conflict between its own
beliefs and the backchained claims of the message-sending
agent (and it has decided through step 2 to start a
negotiation process), it can thus build a complete proof
chain to attack the original claim from the whole
backchaining path. In most cases, this chain will be too
much overhead to communicate completely, so instead of
communicating the whole chain to the other agent as a
counter-argument, the agent will go through a pruning
process to rule out the mutually believed or easily inferred
components of it and only communicate the remaining
claims (step 3).

The following is now a detailed illustration of the above
approach in the "proceed" case.

� Mutually known facts in the "proceed" case by all
the helicopters beforehand:

� Warrant w1: AND-combination(T) ^ All roles
fulfilled (T) � achieved(T)

� Warrant w2: AND-combination(T) ^ ~ All roles
fulfilled(T) � ~ achieved(T)

� Warrant w3: ~ my role fulfilled(T) � ~ All

2 There is an intriguing possibility that if the agent has more trust in the
other agent, it may just backchain for a certain number of rounds and
accept the claim when no conflicts come out, instead of expanding down
each time to the bottom of the role relationship tree, which may be an
unnecessary overhead.

roles fulfilled(T)
� Claim c1: AND combination(T)

� Before sending the "proceed" message, the
commander takes the following steps:

� Claim c2: All roles fulfilled(T) (the commander
supposes all helicopters received their firing
positions and this is mutually believed);

� Reasoning step: c2 + c1 + w1 � c3
("achieved(T)");

� Pruning: w1, c2, c1 (which are all supposed to
be mutually believed);

� Communicate: c3 (to all helicopters).

� "Cheetah102" (helicopter who missed its firing
position message) reasons when it gets c3 (the steps
shown below are correspondent with the steps in
CONSA algorithm):

� Claim ~c4: ~ my role fulfilled(T);
� Step1. Detection step (see Figure 2 below):

1) Check the message (c3) itself and no
conflicts found;

2) Backchaining: c3 + c1 + w2 � c2 (no
conflicts found);

3) Backchaining one more level: c2 + w3 �
c4 (conflict found);

� Step 2. Decided to engage in negotiation;
� Step 3. Begin negotiation:

3a. Arguments building step: the attacking
chain: ~c4 + w3 � ~c2, ~c2 + c1 + w2 � ~c3;
3b. Pruning: w2, w3 (which are supposed to be
mutually believed);
3c. Communicate: c4 � ~c2 � ~c3 (back to
the commander)

� Reasoning process of the commander afterwards:

First, evaluate supporting and weakening arguments
of "top goal achieved"(c3). Next, decide to accept
the negative branch (~c3) since c4 has more weight
in that its the area of expertise of "cheetah102" to
determine if its own role is fulfilled.

Figure 2: Reasoning process of "cheetah102" when it
received the "proceed" message

The above chart shows how "cheetah102" detects the
conflicts by backchaining down the role hierarchy. Here

the left box represent the local belief base of "cheetah102"
and the right box is its backchaining trace, where arrows
illustrate backchaining steps, which can be taken as
"supported by".

Description of Preliminary Implementation
We have at present partly implemented the above CONSA
approach in the Soar problem-solving architecture [Newell
1990]. This implementation currently exploits the role
relationship structures associated to every team operator in
STEAM. It fully implements step 1 and 3 of the CONSA
approach and at present only address the conflicts
occurring in the termination phase of a joint intention, by
having the agents examine the role fulfillment status
through the expanded role relationship tree. It however
cannot resolve joint-goal-initiation and individual-goal
conflicts as yet.

Our implementation has enabled agents to begin
negotiations in the running "proceed case". Currently we
have written nearly thirty Soar rules and below is part of
the Soar outputs from CONSA's execution trace in the
"proceed" case. The trace shows that the helicopter agent
who misses the message is now taking steps to detect the
conflict and start up a negotiation process. Here
cheetah101 (the commander) and cheetah102 are call signs
of two helicopters, and numbers like "130" etc. are
decision cycle numbers(steps) in Soar. "O58", "O59" etc.
are all executed Soar operators. For example, in step 130,
cheetah102 executes the operator O58 to begin an
inconsistency control, i.e. to engage in the process of
detecting and resolving a conflict in the team.

......
Begin inconsistency checking...
130: O: O58 inconsist-control
131: ==S: S23 (operator no-change)
132: O: O59 make-decision
Decide to negotiate
133: O: O60 compare-message
No conflicts in saved message itself.
Doing backchaining...
134: O: O61 backchain
135: O: O62 compare-modeling Conflicts with my belief
role-fulfilled: *no* detected after backchaining.
136: O: O66 communicate-disagreement
Communicate: cheetah102 role-fulfilled *no* to
cheetah101
137: ==S: S24 (operator no-change)
138: O: O67 wait
139: O: O68 wait
......

We can see from the above execution trace that after
helicopter "cheetah102" decided to start a conflict
resolving process (step 2), it first check the received
message itself. After finding no conflict there, the agent
began backchaining and comparison (step 1). When it
found the clash with its beliefs, the agent then
communicated its disagreement back to the commander

no conflicts

no conflicts

C3: achieved(T)

C2: All roles fulfilled(T)

C1, W2

C4:
My role fulfilled(T)

~C4:
~My role fulfilled(T)

(All other roles
fulfilled)

W3

Backchaining treeLocal beliefs

and waited for its response (step 3).

Related Work

We begin discussion of related work by focusing on the
closely related research on argumentation-based
negotiation. We will also later examine game-theoretic
approaches to negotiation.

Chu-Carroll and Carberry [Chu-carroll and Carberry
1996] describe a computational model that captures the
collaborative planning process in a recursive Propose-
Evaluate-Modify cycle of actions. Their model is able to
detect potential conflicts regarding both proposed actions
and proposed beliefs, and to initiate collaborative
negotiation subdialogues to resolve the detected conflicts.
They also identify the focus of modification, and select
appropriate evidence to justify an intended mutual belief.
Parsons and Jennings [Parsons and Jennings 1996] draw
upon a logic of argumentation to devise a system of
argumentation and use it to implement a form of dialectic
negotiation. In their context, an argument is a sequence of
logical steps indicating support or doubt of a proposition.
They have a function of flattening, which can measure the
set of arguments into some metric of how favored the
proposition is, by determining which class of acceptability
the arguments belong to. Freeman and Farley [Freeman
and Farley 1993] present elements of a theory of
argumentation as a method for providing decision support
and justification for plausible reasoning in weak theory
domains. Their work is based on Toulmin schema. In this
context they describe a theory of argument as dialectical
process, where the format of a two-sided argument is used
to intertwine the strengths and weakness of support for
competing claims.

One key novel aspect of our work, which differentiates it
from the above approaches is that we are focusing on
collaborative negotiation and are thus able to use rules of
collaboration (teamwork model) as warrants. This enables
CONSA to begin to build a reusable system of
argumentation.

A second difference in CONSA from the above
approaches (except for Freeman and Farley's work) is its
basis in Toulmin's argument structure, which facilitate the
guidance for the agents to detect conflicts and generate
arguments. With reference to Freeman and Farley's work,
they have a more varied set of warrants with degrees of
certainty than we have, which may not be always sound.
CONSA does not allow anything other than deductive
reasoning, although the data (e.g. of whether roles are
fulfilled) is often uncertain in our case.

Third, instead of focusing just on argumentation (as in a
legal argumentation domain in Freeman and Farley's
work), we embed negotiation in functioning systems where
agents must engage in teamwork. Thus, our agents are
behaving in a team context and are designed to execute
team tasks. They must detect those conflicts that are
critical to team performance, and negotiate only about
those issues. In particular, agents must not argue all the

time.
Additionally, as mentioned, we take into account the

cost of negotiation itself and utilize a decision-theoretic
approach to make selective negotiation. Furthermore, we
have begun to categorize conflict types in the context of
the principled teamwork model of STEAM.

Rosenschein and Zlotkin's research [Rosenschein and
Zlotkin 1994] is representative of a growing work on this
topic based on game theory. As mentioned before, they
focus on self-interested utility maximizing agents in
contrast with our collaborative agents in a team setting.
They design conventions to ensure agents to act in certain
ways, e.g. their Vickrey's auction mechanism ensure that
agents will bid without deception. However, they do not
focus on the representation and reasoning processes in
negotiation. Also, they assume that agents have complete
knowledge of the utility matrix and the precise utility
function, which is hard to obtain in a dynamic context
where agents sometimes have discrepancies in utility
assessment. In addition although they focus on techniques
to choose a best action from multiple of available choices
based on the utilities and so forth, how agents can plan and
generate such actions in the first place is still a big
question.

Summary and Future Work

We have developed techniques to enable agents to engage
in flexible teamwork, where the teamwork may be in
service of applications such as distributed planning, as well
as multi-agent plan execution, or multi-agent design, or
other such team activities. One key problem in teamwork is
collaborative negotiations to resolve conflicts in agents'
beliefs. To address the problem, we have designed and
partly implemented a system CONSA for collaborative
negotiation. The novelty of our approach is its basis in
model-based teamwork, which enables us to distinguish
between different types of conflicts in teamwork, and
guide agents in taking appropriate steps to resolve such
conflicts.

Our preliminary framework is based on Toulmin's
argumentation structure and is exploiting the role
relationships and task structures in STEAM teamwork
model, which enables a generalized and reusable
argumentation facility. One other novel aspect of our
approach is that it considers the appropriateness and cost of
negotiation/argumentation, which is non-trivial in
complex, dynamic domains.

Although we have currently assumed that the entire role
relationship structure is available to all of the agents thus
the agents can only argue about the role performance data,
we could however assume that not everything about other
roles and how their combinations work are known to all
agents. This could be an interesting source of
argumentation as well in the future.

Acknowledgment

This research is supported in part by DARPA Award No.
F30602-98-2-0108, and in part by AFOSR Contract No.
F49620-97-1-0501.

References

[1] Chu-Carroll, J., and Carberry, S. 1996. Conflict
detection and resolution in collaborative planning. In M.
Wooldridge, J. Muller, and M. Tambe, editors, Intelligent
Agents, Volume II: Lecture Notes in Artificial Intelligence
1037. Springer-Verlag, Heidelberg, Germany.

[2] Cohen, P. R., and Levesque, H. J. 1991. Teamwork.
Nous, 35.

[3] Firby, J. 1987. An investigation into reactive planning
in complex domains. In Proceedings of the National
Conference on Artificial Intelligence (AAAI).

[4] Freeman, K., and Farley, A. 1993. Toward Formalizing
Dialectical Argumentation. In Proceeding of the Fifteenth
Annual Conference of the Cognitive Science Society.

[5] Grosz, B., and Kraus, S. 1996. Collaborative plans for
complex group actions. Artificial Intelligence, 86:269-358.

[6] Jennings, N. 1995. Controlling cooperative problem
solving in industrial multi-agent systems using joint
intentions. Artificial Intelligence, 75.

[7] Kitano, H., Tambe, M., Stone, P., Coradesci, S.,
Matsubara, H., Veloso, M., Noda, I., Osawa, E., and
Asada, M. 1997. The robocup synthetic agents' challenge.
In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI).

[8] Mouaddib, A. 1997. Progressive negotiation for time-
constrained autonomous agents. In Proceedings of the
International Conference on Autonomous Agents
(Agents'97).

[9] Newell, A. 1990. Unified Theories of Cognition.
Harvard Univ. Press.

[10] Parsons, S., and Jennings, N. R. 1996. Negotiations
through argumentation--a preliminary report. In
Proceedings of the International Conference on Multi-
agent Systems, 267-274.

[11] Rosenschein, J. S. and Zlotkin, G. 1994. Designing
conventions for automated negotiation. AI Magazine, 15.

[12] Tambe, M. 1997. Towards flexible teamwork. Journal
of Artificial Intelligence Research (JAIR), 7:83-124.

[13] Tambe, M., Johnson, W. L., Jones, R., Koss, F., Laird,
J. E., Rosenbloom, P. S., andSchwamb, K. 1995.
Intelligent agents for interactive simulation environments.
AI Magazine, 16(1).

[14] Toulmin, S. 1958.The uses of argument. Cambridge:
Cambridge University Press.

