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Abstract

Teamwork is a critical capability in multi�agent envi�
ronments� Many such environments mandate that the
agents and agent�teams must be persistent i�e�� exist
over long periods of time� Agents in such persistent
teams are bound together by their long�term common
interests and goals�

This paper focuses on �exible teamwork in such per�
sistent teams� Unfortunately� while previous work has
investigated �exible teamwork� persistent teams remain
unexplored� For �exible tamwork� one promising ap�
proach that has emerged is model�based� i�e�� providing
agents with general models of teamwork that explicitly
specify their commitments in teamwork� Such models
enable agents to autonomously reason about coordina�
tion� Unfortunately� for persistent teams� such mod�
els may lead to coordination and communication ac�
tions that while locally optimal� are highly problematic
for the team�s long�term goals� We present a decision�
theoretic technique to enable persistent teams to over�
come such limitations of the model�based approach� In
particular� agents reason about expected team utilities
of future team states that are projected to result from
actions recommended by the teamwork model� as well as
lower�cost �or higher�cost� variations on these actions�
To accomodate real�time constraints� this reasoning is
done in an any�time fashion� Implemented examples
from an analytic search tree and some real�world do�
mains are presented�

�� Introduction

Teamwork is critical in many multi�agent environ�
ments� such as� interactive simulations for training
and education����� RoboCup robotic and synthetic
soccer����� interactive entertainment���� multi�robot
deep sea or space exploration or reconnaissance� and

internet�based information integration� A key require�
ment in many of these domains is team persistence or
long�term existence� For instance� consider virtual en�
vironments for training����� Here� the Advanced Con�
cepts Technology Demonstration battle	eld simulation
exercise 
henceforth� referred to as ACTD� jointly con�
ducted in the US and Europe in October ����� lasted
for multiple days� Participating teams of synthetic pi�
lots were required to persist for at least a single mission
execution� which lasted several hours� Ideally� a pilot
team should have persisted through not one� but mul�
tiple such missions� without requiring a human�in�the�
loop to debug behaviors between missions� Teams of
robotic vehicles for deep sea or space exploration or re�
connaissance have similar requirements for persistence�
The RoboCup soccer tournament also requires player
teams 
robotic or synthetic� to persist for at least a
full game����� While such persistence is a matter of
degree 
team longevity in di
erent domains may vary��
a persistent team contrasts with a team working to�
gether to accomplish a speci	c temporary joint goal�
e�g�� the interaction of personal software agents to set
up a meeting among their users����

Persistent teams bring forth a range of research is�
sues ranging from robust team performance over ex�
tended time periods 
without requiring a human�in�
the�loop� to more abstract issues such as maintenance
of a team identity in the face of changing membership�
We hypothesize that the key challenges in persistent
teams arise from re�ective persistence� a team�s ex�
plicit re�ection and reasoning about its persistence� in
service of �exible teamwork� In particular� a teammust
re�ect upon both its past persistence 
e�g�� for learn�
ing from experience� and future persistence 
e�g�� for
appropriate resource allocation�� This paper will fo�
cus on the issues of re�ective future persistence for im�
proved resource allocation� That is� teamwork actions
in a persistent team� including coordination� communi�
cation or task�allocation actions� must be driven by the



team�s long�term common interests and goals� Thus� a
persistent teammust not exhaust all its resources in co�
ordinating for its current joint goal� if those resources
are better preserved for the team�s longer�term goals�
Analogously� however� a persistent team may need to
expend more than the necessary resources on its cur�
rent joint activity� to better serve the team�s longer
term goals� One example of the latter phenomenon is
team reorganization in anticipation of future tasks� as
seen in Section ��

Unfortunately� while previous work has recognized
the importance of persistence in individual agents����
it has so far failed to explore the issues in persis�
tent teams� Nonetheless� foundational issues in �ex�
ible teamwork in general are being investigated� One
promising approach that has emerged focuses on pro�
viding agents with explicit models of teamwork����
�� ���� These models are based on previous theo�
ries of teamwork���� �� ��� They enable agents to
autonomously reason about coordination and commu�
nication in teamwork� providing improved �exibility�
Such reasoning is driven by the model�s explicit speci	�
cation of team members� ideal behaviors in teamwork�
However� teamwork theories and models are not ex�
plicitly motivated by persistence� Thus� as illustrated
in Section �� they may specify coordination actions
that while locally optimal� consume enough of team
resources to jeopardize the team�s longer term goals�

This paper takes some initial steps to enable persis�
tent teams to overcome such limitations in teamwork
models� In particular� in the complex� dynamic do�
mains of interest� it is not possible to optimally plan
all coordination activities in advance� Therefore� team
members dynamically re�ect upon future persistence
when coordinating� Essentially� members compute the
long�term expected utility of the future impact of the
coordination action suggested by a teamwork model�
They also compute such utilities for variations of the
suggested action� that tradeo
 teamwork quality for
resource consumption� Team members then select co�
ordination or communication actions that maximize
long�term expected team utility� Given dynamic do�
mains� team members dynamically change their ac�
tions with new information� Of course� one key chal�
lenge here is e�cient operationalization of the above
idea� To this end� we propose a state�space formal�
ism to model possible future team states and actions�
A complete search of this state space is however im�
practical� since 
i� a persistent team implies a search
extending to all possible future team states� and 
ii�
hostile situations such as battle	elds prohibit agents
from prolonged deliberation with no action� There�
fore� an any�time��� search method is employed� based

on bounded�lookahead search�
The paper demonstrates the above approach in

three domains� and analyzes situations involving per�
sistent teams where this approach will dominate a
pure teamwork�model�driven approach� While a gen�
eral analysis is provided� the paper focuses in particular
on the STEAMmodel of teamwork����� STEAM is cho�
sen since it is a state�of�the�art teamwork model� that
has been successfully deployed in several real�world do�
mains� For instance� pilot teams based on STEAM
successfully participated in the ACTD exercise men�
tioned above����� STEAM�based soccer�players par�
ticipated in the RoboCup��� tournament� winning the
third place prize in over �� teams����� Nonetheless� our
investigation has broader applicability� STEAM itself
is based on the joint intentions theory����� and is also
in�uenced by the SharedPlans theory���� Thus� lessons
learned here are applicable to other teamwork models
based on such theories� such as the joint responsibility
model��� which is also based on joint intentions�

�� Background� STEAM

STEAM is an implemented model of teamwork�
aimed at enabling development of individual agents
that can engage in �exible teamwork ����� STEAM
uses joint intentions as its basic building block and it
builds up a hierarchy of joint intentions correspond�
ing to a team�s goal or plan hierarchy� STEAM fa�
cilitates �exible teamwork via two classes of domain�
independent actions� The 	rst class of coherence pre�
serving or CP actions is based on the commitments in
the joint intentions theory� and aims to maintain co�
herence in the team� It includes the execution of the
establish�commitments protocol���� to establish a joint
intention� Thus� given an arbitrary team plan OP� all
team members execute the protocol to simultaneously
select OP as their joint intention� CP actions also in�
clude an agent�s commitment to establishing mutual
belief in the team� when it privately discovers their
joint intention to have been terminated 
i�e�� either
achieved or unachievable or irrelevant�� By requiring
agents to jointly begin and terminate joint intentions�
STEAM ensure full coherence within a team� STEAM
uses a decision�theoretic approach to select the most
cost�e
ective method of executing CP actions� e�g�� it
may rely on visual contact rather than explicit com�
munication�

The second class of domain�independent actions in
STEAM ismaintenance and repair orMR actions� One
key aspect of MR actions is an explicit speci	cation of
the dependency relationship of the joint intention on in�
dividual team members� activities� STEAM uses such
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dependency speci	cations to infer the status of a joint
intention� based on the status of individual members�
activities� For instance� if a key individual team mem�
ber fails to perform its activities� the joint intention
itself may be unachievable� In such a case� STEAM�s
MR actions suggest an appropriate reorganization�

STEAM is currently implemented in Soar���� as a
set of about ��� production rules� For a concrete ex�
ample� consider the operator 
reactive�plan� hierarchy
shown in Figure � for synthetic helicopter pilots devel�
oped using STEAM� This operator hierarchy is simi�
lar to reactive�plan hierarchies in architectures such as
RAPS���� One key novelty however is team operators

reactive team plans�� which explicitly express a team�s
joint activities� unlike the regular �individual opera�
tors� which express an agent�s own activities� Thus�
operators shown in �� such as �Engage� are team oper�
ators 
others are individual operators�� At any point
in time� one path through this operator hierarchy is
active� which is an agent�s currently active joint inten�
tions 
corresponding to team operators�� and intentions

corresponding to individual operators�� STEAM�s CP
and MR actions are based on these joint intentions� As
an example of an MR action� consider the team oper�
ator �travelling� in Figure �� where one team member
�ies as the �ight leader� while others follow the leader�
All other members� activities are thus dependent on
the �ight leader� If the �ight leader crashes �travelling�
is inferred to be unachievable� Reorganization now oc�
curs� as some other team member takes over the activ�
ities of the �ight leader�
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Figure 1. Attack domain: Portion of team op-
erator (reactive-plan) hierarchy.

�� Implications for Persistent Teams

STEAM�s CP and MR actions are focused on opti�
mally performing its currently active joint intentions�
In fact� STEAM uses decision�theoretic techniques to
optimize execution costs of CP actions� Unfortunately
for a persistent team� STEAM does not reason about
the longer�term impact of its suggested CP and MR

actions� For instance� helicopter may need to �y to
the location of other helicopters to optimally commu�
nicate 
it avoids breaking radio silence�� but from a
long�term perspective it may consume both precious
time and fuel� Furthermore� STEAM does not consider
the possibility of achieving partial coherence given the
resource cost of full coherence�

Thus� a key issue for a persistent team is that the
resources allocated 
or not allocated� in CP or MR
actions may be highly detrimental for its longer�term
joint goals� The following examples are illustrative of
such problems�

�� In the ACTD simulation �see Section ��� when a
helicopter�pilot team reaches its simulated battle�eld�
it typically establishes a joint intention to plan attack�
ing positions� Once such positions are planned� heli�
copters �y to those positions� At this point� agents
establish a joint intention to engage the enemy� In
one simulation run� when the helicopters reached the
battle�eld� the enemy began advancing towards them�
Unfortunately� the CP action to establish a joint in�
tention to plan attacking positions took a signi�cant
amount of time � some helicopters were not ready�
Thus� before the agents could ready themselves to en�
gage the enemy� the enemy was close enough to shoot
down some of the helicopters�

	� In the RoboCup soccer simulation domain� three or
more out of �� soccer players act as defenders� to de�
fend their goal from the opponents� Initially� the de�
fenders establish a joint intention to look out for an
attack by the opponents� The players have very lim�
ited vision� and thus� not all can simultaneously see
an attack� If any one defender spots an attack� it
must inform others that their current joint intention is
achieved �CP action�� so they can all jointly block the
attack� However� since defenders can be positioned
far apart� and since a player
s shouting has limited
range� signi�cant time would be consumed if a player
was to move to inform others� Meanwhile� the attack�
ing player can bypass the defenders� thus defeating the
defender
s next joint goal of blocking the attackers�

�� In the ACTD simulation� the helicopter team is typi�
cally divided into two subteams� One scout subteam�
consisting of two helicopters� is �rst sent forward to
scout the battle position� while the second attack sub�
team remains hidden from the enemy� Upon comple�
tion of scouting� the two subteams together attack the
enemy� In one run� one helicopter in the scout subteam
crashed� Since this did not cause the relevant joint in�
tention to be unachievable �one scout helicopter was
still �ying�� no MR action was executed to reorganize
the subteams� However� human experts suggested re�
organization� In particular� given a threat to the re�
maining scout helicopter in the battle position� they
suggested that one helicopter from the attack subteam
should join the scout subteam�
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In the 	rst two cases� a key problem is that STEAM
insists on pursuing CP actions to reach a coherent team
state� even though these actions consume a signi	�
cant amount of time 
resource�� Furthermore� STEAM
does not reason about the long�term impact of the
resources consumed by these CP actions� Indeed�
this resource consumption is highly problematic for
the team�s longer�term goals� In the third example�
STEAM does not execute an MR action� since the cur�
rent joint intention is still achievable� and� once again�
STEAM does not reason about the long�term impact
of this decision � that without an MR action in its
present state� there is a threat to its team member in
the future�

� Reasoning about Persistence

To overcome the limitations of STEAM� we have de�
signed and implemented an approach called STEAM�L

short for STEAM with lookahead�� STEAM�L uses a
decision�theoretic approach� enabling a persistent team
to re�ect upon its future� and maximize long�term ex�
pected team utility� With STEAM�L� team members
compute the expected utility of the future impact of the
coordination action suggested by the teamwork model

STEAM�� STEAM�L also computes expected utility
of variants of the suggested coordination action� where
the variants may tradeo
 team coherence for resource
consumption� Thus� for instance� variants of a CP
action may inform only a certain percentage of team
members rather than all of the team� While this vari�
ant may lead to a lower�quality team state in the short
term 
due to reduced coherence�� resources saved lead
the team to a better state in the long term� Such a CP
variant is an illustration of STEAM�L�s introduction
of �exibility in the commitments in teamwork� Thus�
while STEAM�s decision�theoretic reasoning does not
change the basic commitments of individual joint ac�
tions � it only minimizes costs for embedded CP ac�
tions � STEAM�L�s reasoning can change the nature
of these commitments�

4.1 State-space representation

For e�cient operationalization of the lookahead rea�
soning in STEAM�L� we have cast it as state�space
search over team�s future states� There are two types
of states 
nodes� that need to be modeled� The 	rst
type� called action nodes� are where agents can apply
actions� The second type are outcome nodes� where
agents wait for the outcome of their actions� Figure �
illustrates a simple state space� where square and cir�
cle nodes represent action and outcome nodes� respec�

tively� Each action node may have multiple possible
actions� Since agents may expend resources when tak�
ing actions� there is a resource cost associated with an
edge outgoing from an action node� The number on an
outgoing edge from an outcome node is the probability
that an outcome occurs� In particular� due to uncer�
tainty in the real�world� agents can only estimate the
likelihood of particular outcomes of their actions� As
seen in the 	gure� action nodes are followed by outcome
nodes� and vice versa� Associated with the leaf node in
the tree is the 	nal situation cost� The resulting search
tree is essentially a decision tree�����
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Figure 2. Decision tree search.

The actions in this search are of two types� The
	rst type are all teamwork�related actions suggested
by STEAM� speci	cally CP actions and MR actions�
In this paper� STEAM�L focuses on agents� decisions
with respect to CP and MR actions� and it explores
their variations in its lookahead search� The second
type of actions are domain�speci	c actions� such as the
pilots� operator hierarchy as shown in Figure �� In
principle� variations of these actions could also be ex�
plored in the lookahead search� but that will be outside
the scope of this paper� Furthermore� given the hierar�
chy of domain�speci	c operators provided� STEAM�L
does not simulate the e
ect of every low�level action�
Instead� it searches over abstract high�level operators�

A state in this search space is an agent�s model of
the team�s overall state� It includes both the team�s
mutual belief and the private beliefs of team members�
However� not all private beliefs of other members need
be modeled� but only those relevant to initiation and
termination of the relevant joint intentions�

4.2 Any-time lookahead search

In the search tree in Figure �� an agent selects among
the multiple possible actions at the action node by
computing expected utilities of di
erent actions� and
selecting an action that maximizes expected long�term
team utility� Even though the number of team�s fu�
ture possible states is generally huge� agents must com�
pute expected utilities e�ciently in an anytime fash�
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ion� and have a decision on next action ready all the
time to respond to unexpected events� To this end�
STEAM�L carries out an iterative�deepening lookahead
search ����� STEAM�L is always activated at an action
state where a decision on the next CP or MR action
needs to be made� The algorithm runs in iterations
with each subsequent iteration searching to a deeper
depth than the previous iteration� The 	rst iteration
runs to depth one or a depth that is determined by
an estimate on the total time available for lookahead
search� Each iteration of the algorithm uses best�	rst
or depth�	rst search� When the search reaches the fron�
tier� it applies a static node evaluation to compute the
node cost f
n� of node n� The costs of the frontier
nodes are then backed up to the root� For internal
node n� its node cost is backed up from the costs of its
children n�� n�� � � � � nb as follows�

f
n� �

����
���

minff
n��� f
n��� � � � � f
nb�g�
if n is an action node�P

b

i��
pif
ni��

if n is an outcome node�


��

The algorithm terminates whenever it is required to
provide a decision on the next action� which is a move
from the current action state toward the best action
state on the search frontier of the most recent iteration�

The static node evaluation or static node cost f
n�
of a node n is a function of the node�s resource cost
r
n� and situation cost s
n�� i�e�� f
n� � F 
r
n�� s
n���
where F 
�� is a function� STEAM�L computes expected
utility of future states� where expected utility is com�
puted as the minimumexpected backup cost� using the
backup rules of 
���

While both STEAM and STEAM�L use joint�
intentions based teamwork model� they have two main
di
erences� First� STEAM�L conducts a lookahead
search� while STEAM�s response is compiled in based
on an examination of the direct outcomes from an ac�
tion� The signi	cant advantage of looking ahead is that
it can discover a trap within the lookahead horizon� so
that agents can avoid a path leading to the trap� In�
deed in a scenario where a disastrous situation is just
a few steps away from a favorable action� the original
STEAM can fail� One such case is the helicopter�pilot
team joint attack example discussed in Section �� Sec�
ond� given the resource costs of STEAM�s teamwork ac�
tions� STEAM�L explores lower�cost 
but locally sub�
optimal� variations of those actions� In other words�
STEAM ignores the cost of spending resources which
may cause problems in the long term�

�� Experimental Results

The main goal of our experimental study is to in�
vestigate the e
ectiveness of STEAM�L�s lookahead
search for team persistence with resources being taken
into account� To this end� we compare STEAM�L and
STEAM head to head on three domains� an arti	cial
search tree model as well as two real domains� heli�
copter teams and soccer�player teams� On the search
tree model� we examine the probabilities that STEAM�
L wins against STEAM� in terms of the total amount
of resources both algorithms consume and the quality
of the 	nal states they can reach� On the real domains�
we compare the performance of the algorithms on ex�
amples such as those in Section ��

Another purpose of our experimental study is to ex�
amine how resource cost and situation cost will e
ect
STEAM�L�s performance� In this study� we use a linear
combination of these two costs to compute node cost�
Speci	cally� the node cost f
n� of a frontier node n is
computed as f
n� � r
n��w�s
n�� where r
n� and s
n�
are the resource cost and situation cost of n� and w is
a weight on situation cost� a parameter of STEAM�L
which can be tuned for a good performance�

5.1. Artificial search tree

The motivations to use an arti	cial search tree are
that it is easy to generate and reproduce so that re�
sults can be easily veri	ed� it is easy to manipulate so
that di
erent features of state space can be examined
closely� and most importantly results from the domain
help us to better understand the phenomena in real
domains� The arti	cial search tree is a variation of an
incremental random tree �����

One important property of situation costs in real
world problems is their dependence� Two situation
costs have some degree of dependence if their corre�
sponding action nodes share common edges on the
paths from the starting node to them� This is because
the actions corresponding to the common edges have
the same e
ects on the action nodes in the future� The
degree of dependence depends on the number of edges
these action nodes share in common� We use the fol�
lowing method to introduce dependence in the situa�
tion costs in our arti	cial search tree� We 	rst assign
random numbers� drawn from the same distribution� to
action nodes� We then compute the situation cost on
an action node as the sum of its random number and
the situation cost on its direct action�node parent�

In our experiments� edge 
resource� costs are
random numbers uniformly chosen from a set of
f��M� ��M� � � �� � � ��Mg� and random numbers on
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Figure 3. STEAM-L vs. STEAM on trees with
branching factor 3 & depth 40.

action nodes are similarly chosen from another set of
f��M� ��M� � � �� � � ��Mg� where M � ��� � �� Fig�
ure � shows the results on random tree with uniform
branching factor � and depth ��� Notice that a tree
with depth �� is equivalent to a task that requires ��
actions� where the other �� levels of nodes are outcome
nodes� The results are averaged over ��� instances�

Figure �
a� shows that by taking resource costs into
account and looking deeper� STEAM�L spends less to�
tal resources than STEAM with a large percentage 
y�
axis�� Figure �
a� also shows that when the weight
on situation cost� w� increases� the percentage that
STEAM�L wins drops� This is because although with
a large w� STEAM�L tends to take an action with a
good 
or small� situation cost� the 	nal state may carry
a large resource cost� Figure �
b� shows that when w is
small� increasing w can signi	cantly increase the pos�
sibility that STEAM�L wins in terms of 	nal situation
cost� However� when w is large enough� larger than �
in Figure �
b�� increasing w does not help STEAM�L
signi	cantly� Figure � indicates that there is a tradeo

between total resource costs and 	nal situation cost� A
strategy that uses more resources tends to reach a 	nal
state with a high quality� Figure � also means that by
carefully adjust the parameter w� STEAM�L can out�
perform STEAM in both resource costs and situation
cost if STEAM�L searches deep enough�

5.2. Applications

STEAM�L has been successfully applied to key ex�
amples where STEAM earlier faced problems in the
helicopter�pilot and soccer player teams� STEAM�L
was provided the expected plan 
i�e�� the expected fu�
ture sequence of team operators�� estimates of resource

costs for these team operators and related teamwork

CP and MR� actions� likelihoods of expected out�
comes� and situation costs of expected outcomes� An
outcome involving a loss of coherence was rated poorer
than one without such a loss� Outcomes where a goal
was scored 
in RoboCup� and where enemy would en�
gage the helicopters from close range 
in the helicopter
domain� were rated very poorly� The following dis�
cusses results of STEAM�L�s application to the illus�
trative problems from Section ��

�� STEAM�L does a �ve�step lookahead� to recognize the
problem in full synchronization �establishing the �rst
joint intention�� and instead selects partial synchro�
nization in the helicopter team in limited time� Basi�
cally� upon seeing the enemy� the helicopter�team esti�
mates the total time available before it can engage the
enemy� STEAM�L
s �ve�step lookahead search indi�
cates that full synchronization for the two joint inten�
tions established� as suggested by STEAM� consumes
signi�cant amount of time �resource cost�� and leads
to su�ciently high likelihood of actual loss of some he�
licopters to enemy �re �very high situation cost�� Par�
tial synchronization has lower cost� since it consumes
lower amount of time �resource cost� and leads only
to a possible loss of coherence of one�two helicopters
�which may not participate in further team activities��

	� STEAM�L
s four�step lookahead search shows that
if a defender who spots the attack just shouts once
to inform others� without moving towards others�
that would maximize expected utility� Essentially� by
shouting once� this defender makes it highly likely that
at least one other defender will hear it �but not nec�
essarily all defenders�� This increases the likelihood of
blocking the attack �given at least two defenders�
 not
shouting and acting alone would decrease that likeli�
hood� Yet� shouting� unlike moving does not consume
the key team resource of time �shouting costs millisec�
onds� while moving costs seconds��

�� STEAM�L
s three step lookahead enables a helicopter
from the attack subteam to join the scout subteam�
since lookahead search discovers the threat to the sin�
gle helicopter in the scout subteam� One key assump�
tion made here is that initial allocation of tasks to
subteams is assumed to be appropriate� Thus� any sig�
ni�cant change in the number of members in a team
leads agents to reason about possible member reorga�
nization �rather than waiting until the relevant joint
intention is unachievable��

STEAM�L is not yet in a mature state� un�
like STEAM� In particular� STEAM�based helicopter
teams have been 	elded in several large�scale synthetic
exercises mentioned in Section �� While in general this
participation has been successful� key problems have
emerged� Teamwork �exibility provided by STEAM�L
in the helicopter teams can address these problems�

�



With respect to RoboCup� we now realize that the
strategy followed by the players 	elded in RoboCup���
was identical to the outcome from STEAM�L� The
success of the team provides a limited validation to
STEAM�L�s reasoning� Conversely� in RoboCup���
this strategy was pre�compiled� and STEAM�L�s rea�
soning now validates this strategy� Learning from
STEAM�L�s reasoning to pre�compile a response ap�
pears appropriate in situations involving signi	cant
time pressure� such as RoboCup� and remains an is�
sue for future work�

5.3. Analysis of Results

In real domains� in key problematic examples� such
as those in Section �� STEAM�L takes actions that are
better than those recommended by STEAM� These re�
sults match those on random trees in Figure �� Yet� in
a majority of the cases� in our real domains� STEAM�L
selects the same CP orMR action as one recommended
by STEAM� This is a surprising discrepancy� STEAM�
L almost always di
ers from STEAM in random trees�
but not as much in the real�world domains 
although
it does di
er as discussed in Section �����

The reason is an important regularity in the ex�
pected utility of team states in real�world domains�
Consider 	rst situations with insigni	cant resource

time� constraints� e�g�� a helicopter team when there
is no enemy nearby� Here� a CP action can lead a
team to a coherent state� STEAM�L�s lookahead search
on such a coherent state does not degrade its expected
utility� Informally� there are no hidden negatives that
STEAM�L discovers in the future of this coherent state�
A non�CP action� however� will lead the team to a
non�coherent state� which has a lower expected utility�
STEAM�L�s lookahead search on such a state leads to
further degradation in the expected utility� as STEAM�
Lmay discover further negatives of non�coherence in its
lookahead� Thus� STEAM�L�s lookahead only con	rms
the appropriateness of STEAM�s selection of a CP ac�
tion� Such regularity in the expected utility is absent
in random trees�

In situations with signi	cant time constraints 
e�g��
when enemy vehicles move close to a helicopter team��
another regularity is observed� so that STEAM�L�s
choice di
ers signi	cantly from STEAM� Here� while
a CP action leads to a coherent state� it takes up too
much of the available time� STEAM�L�s lookahead now
discovers signi	cant negatives or traps in the future of
this coherent state� e�g�� a future state is seen in which
some team pilots are possibly shot down� Thus� looka�
head leads to a drastic reduction in the expected util�
ity of coherent states under resource constraints� Such

situations are a trap for STEAM� as it does not look
beyond the next action� Thus� STEAM�L chooses in
such cases to select a variation of a CP action� while
STEAM rigidly follows a CP action�

Based on the above analysis� it appears STEAM�L
becomes more e
ective in state space where resources
are scarce and situation costs vary dramatically� Thus�
it would appear bene	cial to invoke STEAM�L�s looka�
head selectively� only in such cases�

�� Summary� Discussion� Future Work

Recent progress in theories of teamwork��� ��� ���
as well as implemented models of teamwork inspired
by such theories��� ��� ���� have led to an improved
understanding of teamwork� and to complex teamwork
applications� We have begun to understand that team�
work is distinct from pure coordination� and the im�
portance of commitments in teamwork� In our own
previous work� we have applied STEAM����� a state�
of�the�art teamwork model� in several real�world� syn�
thetic domains� This paper takes a step beyond the
state�of�the�art� by investigating an important novel
phenomenon in teamwork� that of persistent teams� Al�
though persistent teams remain unexplored� they are
an important requirement in many multi�agent appli�
cations� In addition to identifying persistent teams�
contributions of this paper include the presentation
of� 
i� key issue of resource allocation for coordina�
tion in teamwork� given long�term goals of persistent
teams� 
ii� a decision�theoretic formalization of this re�
source allocation problem� 
iii� STEAM�L as a speci	c
decision�theoretic approach� based on augmentation of
STEAM with anytime lookahead search� 
iv� appli�
cation and analysis of STEAM�L in several domains�
STEAM�L leads to improved �exibility in the commit�
ments in teamwork� motivated by long�term team in�
terests� Given that STEAM is rooted in the joint inten�
tions theory����� and also borrows from SharedPlans����
the results bear upon other teamwork models based on
such theories�

While persistent agents and teams remain uninves�
tigated in general� one exception is Horvitz�s work
on continual computation���� He provides theoretical
models for how persistent agents should expend idle
time� particularly for solving future problems� given
probability distributions of expected problems and
their expected costs� He also models the issue of ex�
pending a fraction of the current problem�solving time
for future problems� STEAM�L complements Horvitz�s
exploration in two ways� First� STEAM�L focuses on
coordination and communication in agent teams rather
than individual behaviors� Second� Horvitz�s work con�

�



cerns allocating computational resources to a set of
immediate next problems� while our work focuses on
selecting the next team action using information col�
lected from a search into future team states�

One major challenge for future work is formalizing
commitments in the context of persistent teams� In
particular� with STEAM�L� team members may not
necessarily ful	ll their commitments 
for instance� to
inform others�� if doing so harms the longer�term in�
terests of the team� Such �exibility in teamwork com�
mitments is important in uncertain environments� To
formalize such �exible commitments� a reviewer for this
paper suggests adding to the �relativizing clause� in
the joint intentions framework����� However� this topic
requires further investigation�

Another major challenge is understanding the in�
teraction between agent persistence and team persis�
tence� Here it is useful to consider a categorization
of teams along two dimensions� persistence of teams
and persistence of members� We can thus consider
at least four team types� First� in a persistent team
consisting of persistent members 
PTPM� there is no
change in team membership� Second� in a persistent
team consisting of non�persistent members 
PTNM��
team membership may change over time� Third� in
a NTPM� agents temporarily form a team for a spe�
ci	c objective� An NTNM is a non�persistent team
with non�persistent members� This paper has focused
on PTPM� but discussed one issue 
reorganization� of
PTNM� Analyzing these di
erent team types is an in�
teresting area of further research�
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