Towards Flexible Teamwork in Persistent Teams

Milind Tambe and Weixiong Zhang
Information Sciences Institute and Computer Science Department
University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292
{tambe,zhang}@isi.edu

Abstract

Teamwork is a critical capability in multi-agent envi-
ronments. Many such environments mandate that the
agents and agent-teams must be persistent i.e., exist
over long periods of time. Agents in such persistent
teams are bound together by their long-term common
interests and goals.

This paper focuses on flexible teamwork in such per-
sistent teams. Unfortunately, while previous work has
mvestigated flexible teamwork, persistent teams remain
unexplored. For flexible tamwork, one promising ap-
proach that has emerged is model-based, i.e., providing
agents with general models of teamwork that explicitly
specify their commitments in teamwork. Such models
enable agents to autonomously reason about coordina-
tion. Unfortunately, for persistent teams, such mod-
els may lead to coordination and communication ac-
tions that while locally optimal, are highly problematic
for the team’s long-term goals. We present a decision-
theoretic technique to enable persistent teams to over-
come such limitations of the model-based approach. In
particular, agents reason about expected team utilities
of future team states that are projected to result from
actions recommended by the teamwork model, as well as
lower-cost (or higher-cost) variations on these actions.
To accomodate real-time constraints, this reasoning is
done in an any-time fashion. Implemented examples
from an analytic search tree and some real-world do-
mains are presented.

1. Introduction

Teamwork is critical in many multi-agent environ-
ments, such as, interactive simulations for training
and education[17], RoboCup robotic and synthetic
soccer[10], interactive entertainment[5], multi-robot
deep sea or space exploration or reconnaissance, and

internet-based information integration. A key require-
ment in many of these domains is team persistence or
long-term existence. For instance, consider virtual en-
vironments for training[17]. Here, the Advanced Con-
cepts Technology Demonstration battlefield simulation
exercise (henceforth, referred to as ACTD) jointly con-
ducted in the US and Europe in October 1997, lasted
for multiple days. Participating teams of synthetic pi-
lots were required to persist for at least a single mission
execution, which lasted several hours. Ideally, a pilot
team should have persisted through not one, but mul-
tiple such missions, without requiring a human-in-the-
loop to debug behaviors between missions. Teams of
robotic vehicles for deep sea or space exploration or re-
connaissance have similar requirements for persistence.
The RoboCup soccer tournament also requires player
teams (robotic or synthetic) to persist for at least a
full game[10]. While such persistence is a matter of
degree (team longevity in different domains may vary),
a persistent team contrasts with a team working to-
gether to accomplish a specific temporary joint goal,
e.g., the interaction of personal software agents to set
up a meeting among their users[6].

Persistent teams bring forth a range of research is-
sues ranging from robust team performance over ex-
tended time periods (without requiring a human-in-
the-loop) to more abstract issues such as maintenance
of a team identity in the face of changing membership.
We hypothesize that the key challenges in persistent
teams arise from reflective persistence: a team’s ex-
plicit reflection and reasoning about its persistence, in
service of flexible teamwork. In particular, a team must
reflect upon both its past persistence (e.g., for learn-
ing from experience) and future persistence (e.g., for
appropriate resource allocation). This paper will fo-
cus on the issues of reflective future persistence for im-
proved resource allocation. That is, teamwork actions
in a persistent team, including coordination, communi-
cation or task-allocation actions, must be driven by the

team’s long-term common interests and goals. Thus, a
persistent team must not exhaust all its resources in co-
ordinating for its current joint goal, if those resources
are better preserved for the team’s longer-term goals.
Analogously, however, a persistent team may need to
expend more than the necessary resources on its cur-
rent joint activity, to better serve the team’s longer
term goals. One example of the latter phenomenon is
team reorganization in anticipation of future tasks, as
seen in Section 3.

Unfortunately, while previous work has recognized
the importance of persistence in individual agents[3],
it has so far failed to explore the issues in persis-
tent teams. Nonetheless, foundational issues in flex-
ible teamwork in general are being investigated. One
promising approach that has emerged focuses on pro-
viding agents with explicit models of teamwork[15,
8, 14]. These models are based on previous theo-
ries of teamwork[12, 9, 4]. They enable agents to
autonomously reason about coordination and commu-
nication in teamwork, providing improved flexibility.
Such reasoning is driven by the model’s explicit specifi-
cation of team members’ ideal behaviors in teamwork.
However, teamwork theories and models are not ex-
plicitly motivated by persistence. Thus, as illustrated
in Section 3, they may specify coordination actions
that while locally optimal, consume enough of team
resources to jeopardize the team’s longer term goals.

This paper takes some initial steps to enable persis-
tent teams to overcome such limitations in teamwork
models. In particular, in the complex, dynamic do-
mains of interest, it is not possible to optimally plan
all coordination activities in advance. Therefore, team
members dynamically reflect upon future persistence
when coordinating. Essentially, members compute the
long-term expected utility of the future impact of the
coordination action suggested by a teamwork model.
They also compute such utilities for variations of the
suggested action, that tradeoff teamwork quality for
resource consumption. Team members then select co-
ordination or communication actions that maximize
long-term expected team utility. Given dynamic do-
mains, team members dynamically change their ac-
tions with new information. Of course, one key chal-
lenge here is efficient operationalization of the above
idea. To this end, we propose a state-space formal-
ism to model possible future team states and actions.
A complete search of this state space 1s however im-
practical, since (i) a persistent team implies a search
extending to all possible future team states; and (ii)
hostile situations such as battlefields prohibit agents
from prolonged deliberation with no action. There-
fore, an any-time[l] search method is employed, based

on bounded-lookahead search.

The paper demonstrates the above approach in
three domains, and analyzes situations involving per-
sistent teams where this approach will dominate a
pure teamwork-model-driven approach. While a gen-
eral analysis is provided, the paper focuses in particular
on the STEAM model of teamwork[15]. STEAM is cho-
sen since it 1s a state-of-the-art teamwork model, that
has been successfully deployed in several real-world do-
mains. For instance, pilot teams based on STEAM
successfully participated in the ACTD exercise men-
tioned above[15]. STEAM-based soccer-players par-
ticipated in the RoboCup’97 tournament, winning the
third place prize in over 30 teams[16]. Nonetheless, our
investigation has broader applicability. STEAM itself
is based on the joint intentions theory[12], and is also
influenced by the SharedPlans theory[4]. Thus, lessons
learned here are applicable to other teamwork models
based on such theories, such as the joint responsibility
model[8] which is also based on joint intentions.

2. Background: STEAM

STEAM 1is an implemented model of teamwork,
aimed at enabling development of individual agents
that can engage in flexible teamwork [15]. STEAM
uses joint intentions as its basic building block and it
builds up a hierarchy of joint intentions correspond-
ing to a team’s goal or plan hierarchy. STEAM fa-
cilitates flexible teamwork via two classes of domain-
independent actions. The first class of coherence pre-
serving or C'P actions is based on the commitments in
the joint intentions theory, and aims to maintain co-
herence in the team. It includes the execution of the
establish-commitments protocol[15] to establish a joint
intention. Thus, given an arbitrary team plan OP; all
team members execute the protocol to simultaneously
select OP as their joint intention. CP actions also in-
clude an agent’s commitment to establishing mutual
belief in the team, when it privately discovers their
joint intention to have been terminated (i.e., either
achieved or unachievable or irrelevant). By requiring
agents to jointly begin and terminate joint intentions,
STEAM ensure full coherence within a team. STEAM
uses a decision-theoretic approach to select the most
cost-effective method of executing C'P actions, e.g., it
may rely on visual contact rather than explicit com-
munication.

The second class of domain-independent actions in
STEAM is maintenance and repairor MR actions. One
key aspect of MR actions is an explicit specification of
the dependency relationship of the joint intention on in-
dividual team members’ activities. STEAM uses such

dependency specifications to infer the status of a joint
intention, based on the status of individual members’
activities. For instance, if a key individual team mem-
ber fails to perform its activities, the joint intention
itself may be unachievable. In such a case, STEAM’s
MR actions suggest an appropriate reorganization.

STEAM is currently implemented in Soar[17] as a
set of about 280 production rules. For a concrete ex-
ample, consider the operator (reactive-plan) hierarchy
shown in Figure 1 for synthetic helicopter pilots devel-
oped using STEAM. This operator hierarchy is simi-
lar to reactive-plan hierarchies in architectures such as
RAPS[2]. One key novelty however is team operators
(reactive team plans), which explicitly express a team’s
joint activities, unlike the regular “individual opera-
tors” which express an agent’s own activities. Thus,
operators shown in [] such as [Engage] are team oper-
ators (others are individual operators). At any point
in time, one path through this operator hierarchy is
active, which 1s an agent’s currently active joint inten-
tions (corresponding to team operators), and intentions
(corresponding to individual operators). STEAM’s CP
and MR actions are based on these joint intentions. As
an example of an MR action, consider the team oper-
ator [travelling] in Figure 1, where one team member
flies as the flight leader, while others follow the leader.
All other members’ activities are thus dependent on
the flight leader. If the flight leader crashes [travelling]
is inferred to be unachievable. Reorganization now oc-
curs, as some other team member takes over the activ-
ities of the flight leader.

[EXECUTE-MISSION]

[Fiy-fiight-plan]

Flyfcﬁol

[route /\mploy * \
‘\ Mask Unmask weapons §§n’§’r2"|:tp%im

[Traveliing]

[Engage] Prepare-to]

return—to—base

Select— Goto—new
mask-location Dip

Initialize Maintain

High Lo i
level level COMOU NOE hover position Mask

Figure 1. Attack domain: Portion of team op-
erator (reactive-plan) hierarchy.

3. Implications for Persistent Teams

STEAM’s CP and MR actions are focused on opti-
mally performing its currently active joint intentions.
In fact, STEAM uses decision-theoretic techniques to
optimize execution costs of C'P actions. Unfortunately
for a persistent team, STEAM does not reason about
the longer-term impact of its suggested CP and MR

actions. For instance, helicopter may need to fly to
the location of other helicopters to optimally commu-
nicate (it avoids breaking radio silence), but from a
long-term perspective it may consume both precious
time and fuel. Furthermore, STEAM does not consider
the possibility of achieving partial coherence given the
resource cost of full coherence.

Thus, a key issue for a persistent team is that the
resources allocated (or not allocated) in CP or MR
actions may be highly detrimental for its longer-term
joint goals. The following examples are illustrative of
such problems.

1. In the ACTD simulation (see Section 1), when a
helicopter-pilot team reaches its simulated battlefield,
it typically establishes a joint intention to plan attack-
ing positions. Once such positions are planned, heli-
copters fly to those positions. At this point, agents
establish a joint intention to engage the enemy. In
one simulation run, when the helicopters reached the
battlefield, the enemy began advancing towards them.
Unfortunately, the CP action to establish a joint in-
tention to plan attacking positions took a significant
amount of time — some helicopters were not ready.
Thus, before the agents could ready themselves to en-
gage the enemy, the enemy was close enough to shoot
down some of the helicopters.

2. In the RoboCup soccer simulation domain, three or
more out of 11 soccer players act as defenders, to de-
fend their goal from the opponents. Initially, the de-
fenders establish a joint intention to look out for an
attack by the opponents. The players have very lim-
ited vision, and thus, not all can simultaneously see
an attack. If any one defender spots an attack, it
must inform others that their current joint intention is
achieved (CP action), so they can all jointly block the
attack. However, since defenders can be positioned
far apart, and since a player’s shouting has limited
range, significant time would be consumed if a player
was to move to inform others. Meanwhile, the attack-
ing player can bypass the defenders, thus defeating the
defender’s next joint goal of blocking the attackers.

3. In the ACTD simulation, the helicopter team is typi-
cally divided into two subteams. One scout subteam,
consisting of two helicopters, is first sent forward to
scout the battle position, while the second attack sub-
team remains hidden from the enemy. Upon comple-
tion of scouting, the two subteams together attack the
enemy. In one run, one helicopter in the scout subteam
crashed. Since this did not cause the relevant joint in-
tention to be unachievable (one scout helicopter was
still flying), no MR action was executed to reorganize
the subteams. However, human experts suggested re-
organization. In particular, given a threat to the re-
maining scout helicopter in the battle position, they
suggested that one helicopter from the attack subteam
should join the scout subteam.

In the first two cases, a key problem is that STEAM
insists on pursuing CP actions to reach a coherent team
state, even though these actions consume a signifi-
cant amount of time (resource). Furthermore, STEAM
does not reason about the long-term impact of the
resources consumed by these CP actions. Indeed,
this resource consumption is highly problematic for
the team’s longer-term goals. In the third example,
STEAM does not execute an MR action, since the cur-
rent joint intention is still achievable, and, once again,
STEAM does not reason about the long-term impact
of this decision — that without an MR action in its
present state, there is a threat to its team member in
the future.

4 Reasoning about Persistence

To overcome the limitations of STEAM, we have de-
signed and implemented an approach called STEAM-L
(short for STEAM with lookahead). STEAM-L uses a
decision-theoretic approach, enabling a persistent team
to reflect upon its future, and maximize long-term ex-
pected team utility. With STEAM-L, team members
compute the expected utility of the future impact of the
coordination action suggested by the teamwork model
(STEAM). STEAM-L also computes expected utility
of variants of the suggested coordination action, where
the variants may tradeoff team coherence for resource
consumption. Thus, for instance, variants of a CP
action may inform only a certain percentage of team
members rather than all of the team. While this vari-
ant may lead to a lower-quality team state in the short
term (due to reduced coherence), resources saved lead
the team to a better state in the long term. Such a CP
variant is an illustration of STEAM-L’s introduction
of flexibility in the commitments in teamwork. Thus,
while STEAM’s decision-theoretic reasoning does not
change the basic commitments of individual joint ac-
tions — 1t only minimizes costs for embedded CP ac-
tions — STEAM-L’s reasoning can change the nature
of these commitments.

4.1 State-space representation

For efficient operationalization of the lookahead rea-
soning in STEAM-L, we have cast it as state-space
search over team’s future states. There are two types
of states (nodes) that need to be modeled. The first
type, called action nodes, are where agents can apply
actions. The second type are outcome nodes, where
agents wait for the outcome of their actions. Figure 2
illustrates a simple state space, where square and cir-
cle nodes represent action and outcome nodes, respec-

tively. Each action node may have multiple possible
actions. Since agents may expend resources when tak-
ing actions, there is a resource cost associated with an
edge outgoing from an action node. The number on an
outgoing edge from an outcome node is the probability
that an outcome occurs. In particular, due to uncer-
tainty in the real-world, agents can only estimate the
likelihood of particular outcomes of their actions. As
seen in the figure, action nodes are followed by outcome
nodes, and vice versa. Associated with the leaf node in
the tree is the final situation cost. The resulting search
tree is essentially a decision tree[13].

[e] [¢]
2

Prob: P1
Cost: C1 O/ D s3
Actionl Action4 O
D Prob: (1-PT, S4

Action2 Prob:P2_| | "7
Cost: C2
Prob:(1-P2)

Figure 2. Decision tree search.

[] Action node
(O Outcome node

The actions in this search are of two types. The
first type are all teamwork-related actions suggested
by STEAM, specifically C'P actions and MR actions.
In this paper, STEAM-L focuses on agents’ decisions
with respect to CP and MR actions, and it explores
their variations in its lookahead search. The second
type of actions are domain-specific actions, such as the
pilots” operator hierarchy as shown in Figure 1. In
principle, variations of these actions could also be ex-
plored in the lookahead search, but that will be outside
the scope of this paper. Furthermore, given the hierar-
chy of domain-specific operators provided, STEAM-L
does not simulate the effect of every low-level action.
Instead, it searches over abstract high-level operators.

A state in this search space is an agent’s model of
the team’s overall state. It includes both the team’s
mutual belief and the private beliefs of team members.
However, not all private beliefs of other members need
be modeled, but only those relevant to initiation and
termination of the relevant joint intentions.

4.2 Any-timelookahead search

In the search tree in Figure 2, an agent selects among
the multiple possible actions at the action node by
computing expected utilities of different actions, and
selecting an action that maximizes expected long-term
team utility. Even though the number of team’s fu-
ture possible states is generally huge, agents must com-
pute expected utilities efficiently in an anytime fash-

ion, and have a decision on next action ready all the
time to respond to unexpected events. To this end,
STEAM-L carries out an iterative-deepening lookahead
search [11]. STEAM-L is always activated at an action
state where a decision on the next C'P or MR action
needs to be made. The algorithm runs in iterations
with each subsequent iteration searching to a deeper
depth than the previous iteration. The first iteration
runs to depth one or a depth that is determined by
an estimate on the total time available for lookahead
search. Each iteration of the algorithm uses best-first
or depth-first search. When the search reaches the fron-
tier, it applies a static node evaluation to compute the
node cost f(n) of node n. The costs of the frontier
nodes are then backed up to the root. For internal
node n, its node cost is backed up from the costs of its
children ni,no, - -+, n; as follows:

mln{f(nl)a f(n2)a T f(nb)}a
if n 18 an action node;
f(n) - Z?:l pz’f(ni), (1)

if n 1s an outcome node.

The algorithm terminates whenever it 1s required to
provide a decision on the next action, which is a move
from the current action state toward the best action
state on the search frontier of the most recent iteration.

The static node evaluation or static node cost f(n)
of a node n is a function of the node’s resource cost
r(n) and situation cost s(n), i.e., f(n) = F(r(n), s(n)),
where F'(+) is a function. STEAM-L computes expected
utility of future states, where expected utility is com-
puted as the minimum expected backup cost, using the
backup rules of (1).

While both STEAM and STEAM-L wuse joint-
intentions based teamwork model, they have two main
differences. First, STEAM-L conducts a lookahead
search, while STEAM’s response i1s compiled in based
on an examination of the direct outcomes from an ac-
tion. The significant advantage of looking ahead is that
it can discover a trap within the lookahead horizon, so
that agents can avoid a path leading to the trap. In-
deed in a scenario where a disastrous situation is just
a few steps away from a favorable action, the original
STEAM can fail. One such case is the helicopter-pilot
team joint attack example discussed in Section 3. Sec-
ond, given the resource costs of STEAM’s teamwork ac-
tions, STEAM-L explores lower-cost (but locally sub-
optimal) variations of those actions. In other words,
STEAM ignores the cost of spending resources which
may cause problems in the long term.

5. Experimental Results

The main goal of our experimental study is to in-
vestigate the effectiveness of STEAM-L’s lookahead
search for team persistence with resources being taken
into account. To this end, we compare STEAM-L and
STEAM head to head on three domains, an artificial
search tree model as well as two real domains: heli-
copter teams and soccer-player teams. On the search
tree model, we examine the probabilities that STEAM-
L wins against STEAM, in terms of the total amount
of resources both algorithms consume and the quality
of the final states they can reach. On the real domains,
we compare the performance of the algorithms on ex-
amples such as those in Section 3.

Another purpose of our experimental study is to ex-
amine how resource cost and situation cost will effect
STEAM-L’s performance. In this study, we use a linear
combination of these two costs to compute node cost.
Specifically, the node cost f(n) of a frontier node n is
computed as f(n) = r(n)+w-s(n), where r(n) and s(n)
are the resource cost and situation cost of n, and w 1s
a weight on situation cost, a parameter of STEAM-L
which can be tuned for a good performance.

5.1. Artificial search tree

The motivations to use an artificial search tree are
that it is easy to generate and reproduce so that re-
sults can be easily verified; it is easy to manipulate so
that different features of state space can be examined
closely; and most importantly results from the domain
help us to better understand the phenomena in real
domains. The artificial search tree is a variation of an
incremental random tree [18].

One important property of situation costs in real
world problems is their dependence. Two situation
costs have some degree of dependence if their corre-
sponding action nodes share common edges on the
paths from the starting node to them. This is because
the actions corresponding to the common edges have
the same effects on the action nodes in the future. The
degree of dependence depends on the number of edges
these action nodes share in common. We use the fol-
lowing method to introduce dependence in the situa-
tion costs in our artificial search tree. We first assign
random numbers, drawn from the same distribution, to
action nodes. We then compute the situation cost on
an action node as the sum of its random number and
the situation cost on its direct action-node parent.

In our experiments, edge (resource) costs are
random numbers uniformly chosen from a set of
{1/M,2/M,---,1 — 1/M}, and random numbers on

percentage STEAM-L
wins on resources

100
95
90

percentage STEAM-L
wins on situation

T J 65F T
4 60r b
4 551 b

g5k) 1 B0

80" N 14 :
75r 140

70> | 35¢ =|ookahead =)
- = 30k ~|ooKahead = i

65 = - —jooKaneaq =
Fooaeagz 25+ ~|ookaneaq = b
60 lookanead = 5| 20 Tlookanead=s - 4
2 4 6 8 10 2 4 6 8 10
weight on situation weight on situation
evaluation, w evaluation, w

(a) Total resource cost. (b) Final situation evaluation.
Figure 3. STEAM-L vs. STEAM on trees with
branching factor 3 & depth 40.

action nodes are similarly chosen from another set of
{1/M,2/M,--- 1 —1/M}, where M = 232 — 1. Fig-
ure 3 shows the results on random tree with uniform
branching factor 3 and depth 40. Notice that a tree
with depth 40 is equivalent to a task that requires 20
actions, where the other 20 levels of nodes are outcome
nodes. The results are averaged over 500 instances.

Figure 3(a) shows that by taking resource costs into
account and looking deeper, STEAM-L spends less to-
tal resources than STEAM with a large percentage (y-
axis). Figure 3(a) also shows that when the weight
on situation cost, w, increases, the percentage that
STEAM-L wins drops. This is because although with
a large w, STEAM-L tends to take an action with a
good (or small) situation cost, the final state may carry
a large resource cost. Figure 3(b) shows that when w is
small, increasing w can significantly increase the pos-
sibility that STEAM-L wins in terms of final situation
cost. However, when w is large enough, larger than 6
in Figure 3(b), increasing w does not help STEAM-L
significantly. Figure 3 indicates that there is a tradeoff
between total resource costs and final situation cost. A
strategy that uses more resources tends to reach a final
state with a high quality. Figure 3 also means that by
carefully adjust the parameter w, STEAM-L can out-
perform STEAM in both resource costs and situation
cost if STEAM-L searches deep enough.

5.2. Applications

STEAM-L has been successfully applied to key ex-
amples where STEAM earlier faced problems in the
helicopter-pilot and soccer player teams. STEAM-L
was provided the expected plan (i.e., the expected fu-
ture sequence of team operators), estimates of resource

costs for these team operators and related teamwork
(CP and MR) actions, likelihoods of expected out-
comes, and situation costs of expected outcomes. An
outcome involving a loss of coherence was rated poorer
than one without such a loss. Outcomes where a goal
was scored (in RoboCup) and where enemy would en-
gage the helicopters from close range (in the helicopter
domain) were rated very poorly. The following dis-
cusses results of STEAM-L’s application to the illus-
trative problems from Section 3.

1. STEAM-L does a five-step lookahead, to recognize the
problem in full synchronization (establishing the first
joint intention), and instead selects partial synchro-
nization in the helicopter team in limited time. Basi-
cally, upon seeing the enemy, the helicopter-team esti-
mates the total time available before it can engage the
enemy. STEAM-L’s five-step lookahead search indi-
cates that full synchronization for the two joint inten-
tions established, as suggested by STEAM, consumes
significant amount of time (resource cost), and leads
to sufficiently high likelihood of actual loss of some he-
licopters to enemy fire (very high situation cost). Par-
tial synchronization has lower cost, since it consumes
lower amount of time (resource cost) and leads only
to a possible loss of coherence of one-two helicopters
(which may not participate in further team activities).

2. STEAM-L’s four-step lookahead search shows that
if a defender who spots the attack just shouts once
to inform others, without moving towards others,
that would maximize expected utility. Essentially, by
shouting once, this defender makes it highly likely that
at least one other defender will hear it (but not nec-
essarily all defenders). This increases the likelihood of
blocking the attack (given at least two defenders); not
shouting and acting alone would decrease that likeli-
hood. Yet, shouting, unlike moving does not consume
the key team resource of time (shouting costs millisec-
onds, while moving costs seconds).

3. STEAM-L’s three step lookahead enables a helicopter
from the attack subteam to join the scout subteam,
since lookahead search discovers the threat to the sin-
gle helicopter in the scout subteam. One key assump-
tion made here is that initial allocation of tasks to
subteams is assumed to be appropriate. Thus, any sig-
nificant change in the number of members in a team
leads agents to reason about possible member reorga-
nization (rather than waiting until the relevant joint
intention is unachievable).

STEAM-L 1s not yet in a mature state, un-
like STEAM. In particular, STEAM-based helicopter
teams have been fielded in several large-scale synthetic
exercises mentioned in Section 1. While in general this
participation has been successful, key problems have
emerged. Teamwork flexibility provided by STEAM-L
in the helicopter teams can address these problems.

With respect to RoboCup, we now realize that the
strategy followed by the players fielded in RoboCup’97
was identical to the outcome from STEAM-L. The
success of the team provides a limited validation to
STEAM-L’s reasoning. Conversely, in RoboCup’97
this strategy was pre-compiled, and STEAM-L’s rea-
soning now validates this strategy. Learning from
STEAM-L’s reasoning to pre-compile a response ap-
pears appropriate in situations involving significant
time pressure, such as RoboCup, and remains an is-
sue for future work.

5.3. Analysisof Results

In real domains, in key problematic examples, such
as those in Section 3, STEAM-L takes actions that are
better than those recommended by STEAM. These re-
sults match those on random trees in Figure 3. Yet, in
a majority of the cases, in our real domains, STEAM-L
selects the same CP or MR action as one recommended
by STEAM. This is a surprising discrepancy: STEAM-
L almost always differs from STEAM in random trees,
but not as much in the real-world domains (although
it does differ as discussed in Section 5.2).

The reason is an important regularity in the ex-
pected utility of team states in real-world domains.
Consider first situations with insignificant resource
(time) constraints, e.g., a helicopter team when there
is no enemy nearby. Here, a CP action can lead a
team to a coherent state. STEAM-L’s lookahead search
on such a coherent state does not degrade its expected
utility. Informally, there are no hidden negatives that
STEAM-L discovers in the future of this coherent state.
A non-CP action, however, will lead the team to a
non-coherent state, which has a lower expected utility.
STEAM-L’s lookahead search on such a state leads to
further degradation in the expected utility, as STEAM-
L may discover further negatives of non-coherence in its
lookahead. Thus, STEAM-L’s lookahead only confirms
the appropriateness of STEAM’s selection of a CP ac-
tion. Such regularity in the expected utility is absent
in random trees.

In situations with significant time constraints (e.g.,
when enemy vehicles move close to a helicopter team),
another regularity i1s observed, so that STEAM-L’s
choice differs significantly from STEAM. Here, while
a CP action leads to a coherent state, it takes up too
much of the available time. STEAM-L’s lookahead now
discovers significant negatives or traps in the future of
this coherent state, e.g.; a future state is seen in which
some team pilots are possibly shot down. Thus, looka-
head leads to a drastic reduction in the expected util-
ity of coherent states under resource constraints. Such

situations are a trap for STEAM, as it does not look
beyond the next action. Thus, STEAM-L chooses in
such cases to select a variation of a C'P action, while
STEAM rigidly follows a C'P action.

Based on the above analysis, it appears STEAM-L
becomes more effective in state space where resources
are scarce and situation costs vary dramatically. Thus,
it would appear beneficial to invoke STEAM-L’s looka-
head selectively, only in such cases.

6. Summary, Discussion, Future Work

Recent progress in theories of teamwork[4, 12, 9],
as well as implemented models of teamwork inspired
by such theories[8, 14, 15], have led to an improved
understanding of teamwork, and to complex teamwork
applications. We have begun to understand that team-
work is distinct from pure coordination, and the im-
portance of commitments in teamwork. In our own
previous work, we have applied STEAM[15], a state-
of-the-art teamwork model, in several real-world, syn-
thetic domains. This paper takes a step beyond the
state-of-the-art, by investigating an important novel
phenomenon in teamwork, that of persistent teams. Al-
though persistent teams remain unexplored, they are
an important requirement in many multi-agent appli-
cations. In addition to identifying persistent teams,
contributions of this paper include the presentation
of: (i) key issue of resource allocation for coordina-
tion in teamwork, given long-term goals of persistent
teams; (ii) a decision-theoretic formalization of this re-
source allocation problem; (iii) STEAM-L as a specific
decision-theoretic approach, based on augmentation of
STEAM with anytime lookahead search; (iv) appli-
cation and analysis of STEAM-L in several domains.
STEAM-L leads to improved flexibility in the commit-
ments in teamwork, motivated by long-term team in-
terests. Given that STEAM is rooted in the joint inten-
tions theory[12], and also borrows from SharedPlans[4],
the results bear upon other teamwork models based on
such theories.

While persistent agents and teams remain uninves-
tigated in general, one exception is Horvitz’s work
on continual computation[7]. He provides theoretical
models for how persistent agents should expend idle
time, particularly for solving future problems, given
probability distributions of expected problems and
their expected costs. He also models the issue of ex-
pending a fraction of the current problem-solving time
for future problems. STEAM-L complements Horvitz’s
exploration in two ways. First, STEAM-L focuses on
coordination and communication in agent teams rather
than individual behaviors. Second, Horvitz’s work con-

cerns allocating computational resources to a set of
immediate next problems, while our work focuses on
selecting the next team action using information col-
lected from a search into future team states.

One major challenge for future work is formalizing
commitments in the context of persistent teams. In
particular, with STEAM-L, team members may not
necessarily fulfill their commitments (for instance, to
inform others), if doing so harms the longer-term in-
terests of the team. Such flexibility in teamwork com-
mitments is important in uncertain environments. To
formalize such flexible commitments, a reviewer for this
paper suggests adding to the “relativizing clause” in
the joint intentions framework[12]. However, this topic
requires further investigation.

Another major challenge is understanding the in-
teraction between agent persistence and team persis-
tence. Here it is useful to consider a categorization
of teams along two dimensions: persistence of teams
and persistence of members. We can thus consider
at least four team types. First, in a persistent team
consisting of persistent members (PTPM) there is no
change in team membership. Second, in a persistent
team consisting of non-persistent members (PTNM),
team membership may change over time. Third, in
a NTPM, agents temporarily form a team for a spe-
cific objective. An NTNM is a non-persistent team
with non-persistent members. This paper has focused
on PTPM, but discussed one issue (reorganization) of
PTNM. Analyzing these different team types is an in-
teresting area of further research.

7. Acknowledgements

The research was supported in part by NSF grant
IRI-9711665, in part by NSF grant IRI-9619554, and in
part by contract N66001-95-C-6013 from ARPA/ISO.
We thank Randy Hill, Jon Gratch and Paul Rosen-
bloom for discussion of issues related to the ACTD
demonstration, and the RoboCup simulation group for
discussion of issues related to RoboCup.

References

[1] M. Boddy and T. Dean. Solving time-dependent plan-
ning problems. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages 979—
984. [JCAI-89, Morgan Kaufmann, August 1989.

[2] J. Firby. An investigation into reactive planning in
complex domains. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), 1987.

[3] S. Franklin and A. Graesser. Is this an agent
or just a program? a taxonomy for autonomous

[10]

[11]

[12]

[13]

[14]

[15]

[16]

agents. In Proceedings of the third international work-
shop on agents, theories, architectures, and languages.
Springer-Verlag, New York, 1996.

B. Grosz and S. Kraus. Collaborative plans for com-
plex group actions. Artificial Intelligence, 86:269-358,
1996.

B. Hayes-Roth, L. Brownston, and R. V. Gen. Mul-
tiagent collaobration in directed improvisation. In
Proceedings of the International Conference on Mult:-
Agent Systems (ICMAS-95), 1995.

T. Haynes, S. Sen, N. Arora, and R. Nadella. An au-
tomated meeting scheduling system that utilizes user
preferences. In Proceedings of the International Con-
ference on Autonomous Agents (Agents’97), 1997.

E. Horvitz. Models of continual computations. In Pro-
ceedings of the National Conference on Artificial In-
telligence (AAAI), 1997.

N. Jennings. Controlling cooperative problem solv-
ing in industrial multi-agent systems using joint in-
tentions. Artificial Intelligence, 75, 1995.

D. Kinny, M. Ljungberg, A. Rao, E. Sonenberg,
G. Tidhard, and E. Werner. Planned team activity.
In C. Castelfranchi and E. Werner, editors, Artificial
Social Systems, Lecture notes in AI 830. Springer, NY,
1992.

H. Kitano, M. Tambe, P. Stone, S. Coradesci, H. Mat-
subara, M. Veloso, I. Noda, E. Osawa, and M. Asada.
The robocup synthetic agents’ challenge. In Proceed-
ings of the International Joint Conference on Artificial
Intelligence (IJCAI), August 1997.

R. E. Korf. Depth-first iterative-deepening: An op-
timal admissible tree search. Artificial Intelligence,
27:97-109, 1985.

H. J. Levesque, P. R. Cohen, and J. Nunes. On acting
together. In Proceedings of the National Conference
on Artificial Intelligence. Menlo Park, Calif.: AAAI

press, 1990.

H. Raiffa. Decision analysis. Addison Wesley, Read-
ing, MA, 1968.

C. Rich and C. Sidner. COLLAGEN: When agents

collaborate with people. In Proceedings of the Interna-
tional Conference on Autonomous Agents (Agents’97),
1997.

M. Tambe. Towards flexible teamwork. Journal of Ar-
tificial Intelligence Research (JAIR), 7:83-124, 1997.

M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem,
G. Kaminka, S. Marsella, I. Muslea, and M. Tallis.
ISIS: Using an explicit model of teamwork in
Robocup97. In RoboCup-97: The first robot world cup
soccer games and conferences. Springer-Verlag, Heidel-
berg, Germany, 1998.

M. Tambe, W. L. Johnson, R. Jones, F. Koss, J. E.
Laird, P. S. Rosenbloom, and K. Schwamb. Intelli-
gent agents for interactive simulation environments.
AI Magazine, 16(1), Spring 1995.

W. Zhang and R. E. Korf. Performance of linear-space
search algorithms. Artificial Intelligence, 79:241-292,
1995.

