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Abstract. The promise of agent-based systems is leading towards the develop-
ment of autonomous, heterogeneous agents, designed by a variety of research/in-
dustrial groups and distributed over a variety of platforms and environments.
Teamwork among these heterogeneous agents is critical in realizing the full po-
tential of these systems and scaling up to the demands of large-scale applications.
Unfortunately, development of robust, flexible agent teams is currently extremely
difficult. This paper focuses on significantly accelerating the process of building
such teams using a simplified, abstract framework called team-oriented program-
ming (TOP). In TOP, a programmer specifies an agent organization hierarchy and
the team tasks for the organization to perform, abstracting away from the innu-
merable coordination plans potentially necessary to ensure robust and flexible
team operation. Our TEAMCORE system supports TOP through a distributed,
domain-independent layer that integrates core teamwork coordination and com-
munication capabilities. We have recently used TOP to integrate a diverse team
of heterogeneous distributed agents in performing a complex task. We outline the
current state of our TOP implementation and the outstanding issues in developing
such a framework.

1 Introduction

Agent-based systems currently operate in complex, dynamic environments such as user
interfaces [18], robotic space missions, virtual training environments [22], and Internet
information extraction [28]. These agents are often autonomous, heterogeneous, and
distributed over a variety of platforms and domains. Yet, users may desire such diverse
agents to work together to accomplish novel, complex tasks. Such reuse of existing
agents is preferable to building a monolithic application from scratch, as it promises to
significantly reduce software development effort while preserving modularity.

Indeed, agents working together in teams can tackle user-defined tasks more com-
plex than those they can perform as individuals. However, constructing such teams re-
mains a difficult challenge. In particular, current approaches to designing agent teams
lack the general-purpose teamwork models that would enable agents to autonomously
reason about the communication and coordination required in teamwork. The absence
of such teamwork models makes team construction highly labor-intensive. In particular,

� � � Visiting from PSA Peugeot-Citroën, Centre de Recherche de Vélizy-Villacoublay, France
y Visiting from the Computer Science Dept., RMIT, Melbourne, Australia



to enable agents to autonomously reason about coordination, human developers must
provide them with large numbers of domain-specific coordination and communication
plans. These domain-specific plans are not reusable, so we must develop new ones for
each new domain. Furthermore, the resulting teams often suffer from a lack of robust-
ness and flexibility. In real-world domains, teams face a variety of uncertainties, such
as a team member’s unanticipated failure in fulfilling responsibilities, members’ diver-
gent beliefs about their environment, and unexpectedly noisy or faulty communication.
Without a teamwork model, it is difficult to anticipate and pre-plan for the vast number
of coordination failures possible due to such uncertainties.

This paper focuses on minimizing the complexity of building robust and flexible
teams via a domain-independent infrastructure to support team-oriented programming
(TOP). In our proposed view of TOP, a “team-oriented programmer” has a set of (pos-
sibly heterogeneous) agents available. One builds a team to accomplish a task, not
by building large numbers of coordination plans, but rather by representing only the
domain-specific knowledge about team plans, as well as the organization hierarchy of
the existing agents that are intended to execute the team plans. The TOP infrastructure
then automatically ensures agents’ coordinated commitment to team plans, maintenance
of coherent group beliefs, appropriate tasking of individuals, and reorganization when
teammates are unable to perform their assigned tasks. We can reuse this infrastructure
even as we change the agents, the tasks, or even the overall problem domain. Section 2
describes our proposed view of TOP in more detail.

We have recently completed an initial implementation of a TOP infrastructure. Our
software system, TEAMCORE, integrates a general-purpose teamwork model and pro-
vides core teamwork capabilities to individual agents by wrapping them with TEAM-
CORE, as described in Section 3. Here, we call the individual TEAMCORE “wrapper”
a TEAMCORE agent. A TEAMCORE agent is a purely social agent, in that it has only
core teamwork capabilities, e.g., it does not possess sensing or action capabilities in the
domain of interest. We can take an existing agent that does have domain-level action
capabilities and make it team-ready through an interface with a TEAMCORE agent.
Agents made team-ready can rapidly assemble themselves into a team in any given do-
main. Unlike past approaches, such as the Open Agent Architecture (OAA) [15], which
provides a centralized blackboard facilitator to integrate a set of agents, TEAMCORE is
a fundamentally distributed team-oriented system. Furthermore, unlike OAA, TEAM-
CORE allows direct tasking at the team level via team-oriented programming.

We have applied our current TOP infrastructure toward a concrete problem, the
evacuation of civilians stranded in a hostile area. In this target scenario, we wish to
build a system to enable a set of helicopters to fly in a coordinated formation to a land-
ing zone, pick up stranded civilians, and then fly back to a safe area. The system should
enable a human commander to interactively provide the helicopters with locations of
the landing zone, the safe area, and other key points in the evacuation route. Further-
more, the system needs to plan routes to avoid known obstacles, to dynamically obtain
information about enemy threats, and to change routes when needed.

In this evacuation scenario, TOP has been able to successfully integrate at least
eleven different agents into a team. Four of these agents are escort helicopter pilots,
and four are transport helicopter pilots, while the rest include a diverse set of agents



created by different developers: a multi-modal user interface agent (Quickset) [7], a
route-planning agent, and an information-gathering agent (Ariadne) [13]. Quickset is
itself a collection of agents, but our framework treats it as a single agent. These agents
are written in four different computer languages, run on two different operating systems,
and distributed geographically, yet TOP enables teamwork among them all.

2 Team-Oriented Programming

2.1 Agent Capability Descriptions

In our framework, the team-oriented programmer must develop a system to perform a
joint task. The programmer has a pool of available agents, possibly developed by dif-
ferent designers, based on different agent architectures, implemented in different lan-
guages, and running on different operating systems. Following the software engineering
trend of reuse, we would like to reuse these agent systems without modification in im-
plementing the team. We assume that each agent that is a potential team member has a
functional interface describing its capabilities. The capability description for an agent
specifies: (i) the set of tasks that the agent can perform; (ii) the input parameters for
the task request, as well as constraints on these parameters; (iv) outputs from perform-
ing the requested task, as well as constraints on the output. Figure 1 provides a partial
capability description for some of the agents in the evacuation scenario. While this ca-
pability description outlines key features and the relevant syntax, there is clearly a need
for a common ontology or a translation mechanism to provide clear semantics for this
description. This issue is outside the scope of this paper.

(QuickSet

(output (Start-point (unit latitude-longitude))
(End-point (unit latitude-longitude))))

(output (List-of-points (list-of (unit latitude-longitude))))

(output (number-of-transport (unit number))
(number-of-escorts (unit number))))

)

(Ariadne

(input (North-west-point (unit latitude-longitude))
(South-east-point (unit latitude-longitude)))

)
(output (List-of-hazards (list-of (unit latitude-longitude)))))

(goal provide-safety-info

(goal provide-nav-plan

(goal provide-labeled-points

(goal provide-number-of-units

(Route-Planner

(input (Start-point (unit latitude-longitude))
(End-point (unit latitude-longitude)))

(ouput (List-of-points (list-of (unit latitude-longitude)))))
)

(goal plan-route

(Helicopter

(input (Distance (unit meters))
(Angle (unit degrees))
(Relative-altitude (unit feet)))

(goal fly-coordinated

(output (Status (type helicopter-status))))

(input (GUnit (type ground-unit)))
(output (Status (type ground-unit-status))))

(input (Vehicle (type helicopter)))

(input (Vehicle (type helicopter)))
(output (Location (unit latitude-longitude))))

(input (Vehicle (type helicopter)))
(output (Distance (unit meters))))

)

(goal monitor-helicopter

(goal monitor-ground-unit

(goal monitor-location

(goal monitor-distance

Fig. 1. A partial description of capabilities for some of the agents in the Evacuation scenario.



Figure 1 shows that the route-planning agent can perform the Plan-Route task,
where the request message must provide the start and destination (in latitude-longitude
coordinates) as input. The output is a route, i.e., a list of points. A helicopter pilot
agent can perform several tasks, including coordinated flight, i.e., following another
aircraft. The parameters here include the distance, angle, and altitude at which to follow
the aircraft. The constraints on the input specify the units of those parameters. The
helicopter pilot agent can also perform the task of monitoring, by observing features of
its own vehicle, the terrain, or other agents. For a pilot agent to monitor the status of
another helicopter, the parameters must identify the specific vehicle and the attribute to
be monitored (status), and the output is the value of the specified attribute.

Thus, the tasks may have varied types. They may involve achievement goals, as in
the route-planning example above, or maintenance goals, as in the case of a helicopter
pilot’s coordinated flight. Furthermore, tasks may initiate an activity, as in the exam-
ples above, or tasks may also terminate activities. For instance, a task may request that
an agent terminate a task previously initiated. Tasks may also extend beyond active
achievement of goals to include passive observation of conditions that potentially affect
team execution, as in the monitoring tasks discussed above.

2.2 The Team-Oriented Program

Given this pool of agents, the team-oriented programmer’s job is to implement the
problem-specific aspects of the system. We can specify these problem-specific aspects
at the “team level”, a level of abstraction requiring that the programmer specify only:

– the team organization hierarchy for achieving the team goals
– the team goals and the team procedures for achieving them, including:

� models of initiation conditions, when the team should propose the goal
� models of conditions for achievement, irrelevance, and unachievability, when

the team should terminate the goal
– coordination constraints among the agents executing the team’s joint activities

o o o

Team Readiness Layer

Domain level agents

Communication

executed by
Team Oriented Program

tasks & monitoring

Fig. 2. An abstract view of team-oriented programming.

This team-oriented program is to be executed via a TOP infrastructure, which con-
sists of a “team-readiness” layer that provides an interface for agents written in different
language. Figure 2 illustrates our view of the TOP infrastructure that enforces team be-
havior. It ensures coherent execution of team plans by providing task instructions to



the domain-level agents at the appropriate times. This team-readiness layer hides the
details of the coordination behavior, low-level tasking, and flexible re-planning. We can
implement this abstract specification of the TOP infrastructure in several ways, and we
make no assumptions about its internal structure (e.g., whether it consists of a set of
distributed agents or a single controller).

The team-oriented program specifies the organization hierarchy through roles that
may be filled by individual agents or groups of agents. Figure 3 illustrates a portion
of the evacuation scenario’s organization hierarchy, where each leaf node corresponds
to an individual role, while the internal nodes correspond to teams of agents. At each
of these nodes, we have a description of the required capabilities of the corresponding
agent or subteam. For instance, the “Orders-Obtainer” role requires an ability to acquire
knowledge of the mission parameters. The labels in italics specify the domain-level
agent currently filling the corresponding role within the organization.

We currently implement the team goals and procedures aspect of the team-oriented
program via reactive team plans. While these reactive team plans are much like situated
plans or reactive plans for individual agents [8], the key difference is that they explic-
itly express joint activities of the relevant team. These reactive team plans ensure that
all TEAMCORE agents know the overall team procedure. This team procedure may
execute a team activity, plan a team activity, collaboratively design an artifact, collabo-
ratively schedule, or collaboratively monitor and diagnose.

Escort helos

Route-PlannerOrders-Obtainer Flight Team Safety-Obtainer

Transports Escorts

Lead-Section Follow-Section

Transport helos

Divisions

(Quickset) (Route Planner) (Ariadne)

(Transport) (Escort)

Big-Team
(Big-Team)

Fig. 3. Partial organizational hierarchy of agents in evacuation team.

The reactive team plans in the team program require that the programmer specify
the initiation conditions, termination conditions, and team-level actions to be executed
as part of the plan. The TOP infrastructure ensures that the team will synchronize it-
self appropriately in executing the plan. Thus, the programmer need not program such
synchronization actions. The infrastructure ensures such synchronization with respect



to both time of plan execution and the identity of the plan, so all members will choose
the same plan out of a set of multiple candidates.

The programmer also specifies the termination conditions, under which a team plan
is achieved, irrelevant or unachievable. Such explicit specification ensures that all team
members have this knowledge, so that the team can terminate the goal coherently. Once
again, the programmer does not specify the procedure for coherent plan termination.
Instead, the TOP architecture uses the termination conditions as the basis for automati-
cally generating the communication necessary to jointly terminate a team plan.

Figure 4 shows some of the team goals and procedures for the evacuation domain.
Each nodes corresponds to a goal (in bold), as well as the agent or team (in parenthe-
ses) responsible for its achievement. The team programmer specifies particular roles or
subteams, taken from the organization hierarchy, to perform a given goal. The TOP in-
frastructure then assigns agents/subteams to the appropriate roles. For instance, it could
assign Quickset the role of “Orders-Obtainer” by noting that Quickset can achieve the
Obtain-Orders goal. The links of Figure 4 correspond to decomposition and abstrac-
tion relationships between goals and subgoals.

Evacuate
(Big-Team)

(Big-Team)(Big-Team)
Process-Orders

Obtain-Orders
(Orders-Obtainer)

Plan-Routes

Process-Routes

(Route-Planner)

Execute-Mission

Fly-Flight-Plan

Fly-Control-Route

(Big-Team)

(Big-Team)

(Big-Team)

Landing-Maneuvers
(Big-Team)

(Escort)
Mask-Observe Pickup

(Transport)

Fig. 4. Partial reactive plan hierarchy for evacuation scenario.

With respect to the actions of the reactive team plans, Evacuate decomposes into a
sequence of subgoals beginning with Process-Orders, where the agents of Big-Team
must interpret orders provided by a human commander. The team achieves Process-
Orders by having the agent or subteam labeled “Orders-Obtainer” achieve the Obtain-
Orders goal. The programmer does not specify the actions of the Obtain-Orders plan,
instead assuming that the Orders-Obtainer agent/subteam knows how to achieve the
Obtain-Orders goal. This level of abstraction allows the team-oriented programmer
to ignore the inner workings of the member agents, thus simplifying the specification
task while also allowing for the reuse of team-oriented programs with different collec-
tions of agents. The abstraction also allows the programmer to omit explicit tasking
of the domain-level agents. Instead, the TOP architecture automatically generates the
appropriate tasking messages at run time.



The programmer must also specify any coordination constraints in the execution of
team goals. In the example program, the goal Landing-Maneuvers leads to two parallel
subgoals: Mask-Observe performed by the Escort subteam and Pickup performed by
the Transport subteam. The programmer must represent the domain-specific constraint
that the Transport subteam cannot perform Pickup until the the Escort subteam has
reached its masking locations and begun observing. Again, once the programmer has
specified the high-level constraint, the TOP infrastructure handles the generation of any
communication necessary for the proper synchronization.

3 TOP Implementation: TEAMCORE

Our current TEAMCORE system uses distributed TEAMCORE wrapper agents, based
on the Soar [17] integrated agent architecture, to support many of the features re-
quired by our team-oriented programming framework through. We can categorize each
TEAMCORE wrapper agent’s teamwork expertise as containing the domain-specific
team-oriented program and a reusable domain-independent component.

3.1 STEAM Component of TEAMCORE

Our previous work on STEAM [20] provides a significant component of TEAMCORE’s
general-purpose teamwork model. This model encodes domain-independent rules that
explicitly outline team members’ responsibilities and commitments in teamwork.
STEAM uses joint intentions theory [14] as the basic building block of teamwork, but
SharedPlans theory [9] has also strongly influenced it. STEAM’s teamwork knowledge
consists of three classes of domain-independent axioms: (i) Coherence preserving rules
require team members to communicate to ensure coherent initiation and termination
of team plans, e.g., a team member must inform others if it uncovers crucial informa-
tion that would render a team plan unachievable; (ii) Monitor and repair rules ensure
that team members will substitute for other critical team members who have failed in
their roles; (iii) Selectivity-in-communication rules use decision theory to weigh com-
munication costs and benefits to avoid excessive communication in the team. STEAM’s
300 Soar rules are available in public domain and have been used in several different
domains reported in the literature [21].

3.2 TEAMCORE Extensions to STEAM

The TEAMCORE system extends the original STEAM model to support the following
features desired for full TOP functionality:

– Teamwork knowledge encapsulated within wrapper agents to support heteroge-
neous domain-level agents

– KQML point-to-point and multicast communication
– Automatic generation of task requests to domain-level agents
– Automatic generation of monitoring requests to domain-level agents
– TOP Interface: a GUI to facilitate specification of organizations and team plans



In the original STEAM implementation, the teamwork knowledge resided directly in the
domain-level agent’s knowledge base. TEAMCORE places this knowledge in a separate
wrapper agent, so that we no longer rely on an ability to modify code in the domain-
level agent. The TEAMCORE system supports the use of KQML for all inter-agent
communication. The wrapper agents have automatic procedures for sending/receiving
the KQML messages appropriate for tasking the domain-level agent in service of the
current team goals. Figure 5 represents the system structure of the TEAMCORE imple-
mentation of the evacuation scenario. For simplicity, we illustrate only point-to-point
communication among TEAMCORE agents, but in reality, they broadcast messages
to the other TEAMCORE members of the relevant team. In addition, this illustration
depicts only three of the sixteen helicopter agents in the full implementation.

KQML KQML
TEAMCORE agents

Domain level agents

Tasking & Monitoring

KQML

Team Oriented Program

executed by

QuickSet Route Planner Ariadne Helicopters

KQML KQML KQML KQML

Fig. 5. Agent structure and communication in TEAMCORE evacuation scenario implementation.

Although the STEAM rules provide TEAMCORE agents with an automatic proce-
dure for communicating private beliefs amongst themselves, they do not provide a pro-
cedure for communicating beliefs between a TEAMCORE agent and its domain-level
agent. However, it is the domain-level agent, and not the TEAMCORE agent itself, that
has access to most observations relevant to the termination conditions of the team plans
(e.g., a pilot agent can observe that another helicopter has crashed). On the other hand,
knowledge of the current team plans resides in the TEAMCORE agent, so the domain-
level agent may not know what observations are relevant (e.g., a pilot agent may not
know which other helicopters are in its team).

We have extended the TEAMCORE agents’ domain-independent knowledge to
include the generation of appropriate monitoring requests. STEAM already requires
models of the conditions under which team goals become achieved, irrelevant, or un-
achievable. The TEAMCORE agent also has a capability specification describing the
conditions that its domain-level agent can observe. From this model of monitoring ca-
pabilities, we derive our automatic procedure for generating monitoring requests. The
capability specification also specifies how to translate monitoring responses into pri-
vate beliefs of the TEAMCORE agent, who may ultimately communicate them to other
TEAMCORE agents according to the standard STEAM procedures.

We have also created a TOP Interface (TOPI) to facilitate the programmer’s effort
in specifying the team organization and plans. Figure 6 shows a sample screen shot in
programming the evacuation scenario, where the three panes correspond to the plans,
organization, and domain-level agents, from left to right. The programmer can specify
operators and requirements in the left pane and then assign roles from the organiza-



tion in the middle pane to these operators. The roles and teams in the organization
inherit the requirements from their assigned operators, and the programmer can assign
domain-level agents from the rightmost pane to these roles. In Figure 6, the program-
mer has attempted to assign the agent “RPlan” from the rightmost pane to the “Obtain
orders” role in the middle pane. TOPI notices the capability mismatch and notifies the
programmer with the crossed-out icon. TOPI uses the specifications and assignments to
generate a Soar file used by the wrapper agents in running the scenario.

Fig. 6. Screenshot of sample organization and operator specification using TOPI.

3.3 Evacuation Scenario

In applying TEAMCORE to our evacuation scenario, the team programmer could use
the following agents (as in Figure 1):

– Quickset: (from P. Cohen et al., OGI) Multimodal input agents [C++, Windows NT]
– Route planner: (from Sycara et al., CMU) Path planner for aircraft [C++, Windows NT]
– Ariadne: (from Minton et al., USC ISI) Database engine for dynamic threats [Lisp, Unix]
– Helicopter pilots: (from Tambe, USC ISI) Agents flying simulated helicopters [Soar, Unix]

The agents provided a fixed specification of possible communication and task capa-
bilities. None of the agents had pre-existing social capabilities, so the TEAMCORE
wrapper agents are responsible for all teamwork behavior. The wrapper agents also
have knowledge of the domain-specific team plans, containing a hierarchy of 18 joint
goals (Figure 4 represents part of this hierarchy).

3.4 Evaluation of Evacuation Scenario

The TEAMCORE-based teams have so far successfully met the initial challenge by
generating correct task and monitoring requests, coordinating the domain-level agents’
behavior to successfully accomplish the evacuation scenario. However, we are also in-
terested in the effort involved in encoding and modifying agents’ teamwork capabilities



— comparing the effort with TEAMCORE against the alternatives. If we reproduced all
of TEAMCORE’s capabilities by providing the domain-level agents with special-case
coordination plans, we would then require an ability to modify the code of the domain-
level agents. In addition, we would also have to re-code the coordination plans in the
languages used by each of the domain-level agents.

A better alternative would use domain-specific wrapper agents, but each of the
18 team operators in TEAMCORE would still require separate domain-specific com-
munication plans for coordination — two plans each to signal commitments (request
and confirm) and one to signal termination of commitments. Furthermore, reproducing
TEAMCORE’s selective communication would require additional special cases. In the
extreme case, each combination of values for communication costs and rewards could
require a separate special case operator (�� � �� total combinations, already more
than a hundred). Of course, we could economize all such special cases by discovering
generalizations, but TEAMCORE already encodes such generalizations.

The TEAMCORE specification greatly facilitated modifications to the team as well.
For instance, the route planner was the last addition to the team. To extend the organi-
zational hierarchy, we simply added the route planner as a member of Big-Team and
added the Process-Routes branch of the goal hierarchy. This branch involves very sim-
ple goals where the TEAMCORE agent submits a request for planning a particular
route, waits for the reply by the route planner, and then communicates the new route to
the other team members. The TEAMCORE teamwork model already supported most
of this communication. Thus, the bulk of the coding effort for adding the route planner
came in the specification of its message formats and task constraints.

3.5 Research Issues for the Current Implementation

The TEAMCORE system marks a significant stepping stone along the path to our ul-
timate goal of team-oriented programming. Previous research into the integration of
heterogeneous research has focused on the problem of syntactic/semantic interoper-
ability among agents [6]. However, our work in solving the problems addressed by
TEAMCORE has unearthed novel challenges in guaranteeing flexible team behavior.

One key issue is the proper generation of monitoring and tasking requests. TEAM-
CORE’s current mechanism automatically generates a monitoring request for all agents
capable of monitoring a condition, which can lead to multiple agents monitoring for
the same event. Although such redundancy can provide robustness in certain situations,
it can also waste agent resources in others. We must explore such issues more fully in
order to design a correct mechanism for monitoring and tasking.

The lack of general capability descriptions is another obstacle to the current TEAM-
CORE system’s achievement of full TOP functionality. Once we implement the full
capability language described in Section 2, then we could use specifications of plan
requirements and agent capabilities to create the team membership and structure at
run time. The current TEAMCORE implementation also assumes that there are agents
currently available that meet each plan’s exact requirements, but it is sometimes the
case that no agent meets the exact requirements. However, there might be agents that
can perform “capability transformation” to mediate an inexact match. For instance, in



the evacuation scenario, Quickset and the route planner represent points as latitude-
longitude pairs, whereas the helicopter pilot agents use a different coordinate system,
x-y-cell. In this case, we changed the pilot code to translate the coordinates, but we
may not always have the ability to change the domain-level agents’ code. In addition,
the original route planner code provided routes for tanks. A route with points less than
10m apart may be suitable for tanks, but it produces undesirably jerky flight patterns in
helicopters. In this case, the designers of the route planner modified its behavior to pro-
vide fewer intermediate points. However, a more general approach would recognize the
mismatch at run time and invoke a translator agent capable of the appropriate mediation.

There are also limitations in the TEAMCORE wrapper agents’ representation of
their domain-level agents. In the current implementation, the TEAMCOREs autono-
mously make commitments and assign tasks for the domain-level agents, who may
have their own tasks, goals, and preferences to consider before taking on any new com-
mitments for our organization. Many researchers have investigated various methods for
allowing agents to balance these competing demands [3, 4, 10, 27]. We could potentially
extend our architecture to incorporate such methods in reasoning about what commit-
ments a TEAMCORE can make on behalf of its individual agent.

4 Related Work

Many of the issues that need to be addressed in a team-oriented programming envi-
ronment have been raised in various designs and implementations of teamwork, and
have been influential in shaping our ideas. However, as outlined below, TEAMCORE
is unique in synthesizing many of these ideas and realizing them via a distributed set of
agents that integrate a heterogeneous set of existing agents.

Tidhar [23, 24] used the term “team-oriented programming” to describe a concep-
tual framework for specifying team behaviors based on mutual beliefs and joint plans,
coupled with organizational structures. This framework forms the basis of an implemen-
tation based on the dMars agent architecture [25]. In Tidhar’s framework, the organi-
zational hierarchy ensures that only appropriate agents (e.g., team leaders) fill specific
roles offering certain authority or privilege. Tidhar describes how one can (automati-
cally) unfold team plans into plans for individual agents containing communicative acts
that ensure rudimentary coordination. His framework also addressed the issue of team
selection [26] — team selection matches the “skills” required for executing a team plan
against agents that have those skills.

While many of the features of Tidhar et al.’s conceptual and implemented frame-
works are important in the context of TEAMCORE, the critical issue of agent reuse,
particularly involving heterogeneous (non-dMars) agents, is not given much attention.
As seen in Section 3.2, reusing existing agents by wrapping them requires, at the very
least, the addition of tasking and monitoring capabilities, as well as a communication
infrastructure, to the teamwork layer. Furthermore, TEAMCORE’s flexibility of reor-
ganization and communication selectivity available through STEAM does not seem to
be part of the abstract team-layer of SWARMM.

Other implementations of model-based teamwork reasoning relevant to the current
work include GRATE* [11] and COLLAGEN [18]. GRATE* implements a model of



cooperation based on the joint intentions framework, similarly used by STEAM. Each
agent has its own cooperation level module, which handles negotiating involvement in
a joint task and maintaining information about its own and other agents’ involvement
in joint goals. COLLAGEN models dialogue between a user and an agent — a form
of joint activity — based on the SharedPlans [9] model of joint action. Both these
models of collaboration have been compared to that implemented in STEAM in [20]; in
particular, TEAMCORE’s STEAM module allows teamwork to a deeper level than the
single joint goal/plan allowed in GRATE*, and also provides capabilities for monitoring
role performance and role substitution in repairing team activity.

Regarding the specific issue of agent reuse, both GRATE* and COLLAGEN have
a fairly clean separation of the teamwork layer from the individual problem-solving
layer of an agent. However, these systems have not explicitly focused on team-oriented
programming as outlined in this article. COLLAGEN in particular targets wrapping a
single agent for collaboration with a human user, so that the issue of programming a
team of agents is not particularly relevant. In this context, GRATE* is more similar to
the TEAMCORE effort, but the more complex nature of the teams and team tasks in
TEAMCORE has led us to explicitly focus on TOP and to explore several novel issues
(e.g., automatic generation of monitoring conditions) that GRATE* does not address.

The ADEPT architecture for modeling business processes [12] allows a more flex-
ible, hierarchical team organization than GRATE*. ADEPT consists of multiple agen-
cies, each containing a responsible agent, which handles communication and interaction
with other agencies. Each agency’s “capabilities” are maintained by the various respon-
sible agents, avoiding the use of a central facilitator or broker. A task is “contracted out”
to an agency which has the capabilities to perform that task. As with GRATE*, ADEPT
provides a fairly clean interface between the individual task-achieving agents and the
social level. However, the ADEPT framework does not seem to address the issue of
agent reuse directly, although the architecture itself could potentially incorporate het-
erogeneous agents. Also, ADEPT does not provide an explicit model of teamwork, such
as that based on joint plans/intentions (the basis of collaboration seems more closely re-
lated to Castelfranchi’s notion of social commitment [5]).

Singh [19] has recently proposed an abstract framework for coordinating heteroge-
neous agents. Singh’s model represents planned activity via finite-state automata (ab-
stracting away the internal workings of the agents), where transitions represent external
actions or events. The coordination service maintains knowledge of individual agents’
actions as well as the overall joint plan and, upon receiving a request to perform an
action, informs the appropriate agents as to whether an intended action should be ex-
ecuted, delayed, or omitted so as to fit with the joint activity of other agents. Singh’s
model does not address many of the issues of teamwork; however, it provides a poten-
tially useful tool which could augment the joint plan framework of TEAMCORE with
a language for specifying flexible, coordinated interactions at an abstract level.

Like the STEAM rule module within TEAMCORE, the COOL coordination frame-
work [1] also focuses on general-purpose coordination by relying on obligations among
agents. However, it explicitly rejects the notion of joint goals and joint commitments. It
would appear that individual commitments in COOL would be inadequate in address-



ing some teamwork phenomena, but further work is necessary in understanding the
relationship between COOL and TEAMCORE.

Code reuse and its automated support are important issues in software engineering.
Meyer’s notion of design by contract [16] involves the use of functional abstractions of
software modules (i.e., preconditions and postconditions) to safely allow the incorpo-
ration of third-party software, analogous to defining agents’ capabilities. The CHAIMS
system [2] uses megaprograms to perform operations across large heterogeneous multi-
site software systems—such megaprograms reuse existing software by wrapping them
with a small program that manages their execution and handles communication with
the central megaprogram. While such concerns are obviously related to our focus on
agent reuse, the components are not assumed to behave autonomously, and tasks and
organizations do not change dynamically. Hence, many of the issues of concern to us
do not arise. Furthermore, by exploiting notions of teamwork, we are able to provide
many of the same coordination and communication services automatically.

5 Conclusion and Future Work

Our team-oriented programming (TOP) effort is motivated by the need for rapid devel-
opment of agent teams from existing, heterogeneous, distributed sets of agents. To this
end, we are developing TEAMCORE, a reusable, domain-independent infrastructure to
support TOP. The TEAMCORE wrapper agents form a distributed team-readiness layer
for augmenting domain-level agents with the following social capabilities:

– Coherent commitment and termination of joint goals
– Team reorganization in response to member failure
– Selective communication
– Incorporation of heterogeneous agents
– KQML communication infrastructure
– Automatic generation of tasking and monitoring requests

We believe that the distributed TEAMCORE agents represent a significant advance
toward TOP. Indeed, TEAMCORE greatly simplified our efforts to render agents team-
ready and enable them to function coherently towards the joint goal of evacuation. We
completely reused the social capabilities listed above, so that our only remaining task
was to specify the team program. We successfully generated a correct team program
using the goal hierarchy of Figure 4 and the organization hierarchy of Figure 3.

Our initial success in developing a team-oriented program for the evacuation sce-
nario and its (at least current) ease of modification indicates the utility of our TOP
framework. More rigorous experiments are clearly necessary to validate these claims.
By comparing the programming effort needed to construct teams with TEAMCORE
against the effort required when using other techniques, we hope to provide some quan-
tification of TEAMCORE’s benefit. We could also quantify the robustness of the orga-
nizations constructed with TEAMCORE by evaluating the system performance under
various numbers and types of failures during the execution.

The implementation of the TOP framework via TEAMCORE wrapper agents has
identified several key research issues, as Section 3.5 illustrates. However, there are



other novel issues on our agenda as well. In our current implementation, there is a one
TEAMCORE wrapper for each domain-level agent. However, a single TEAMCORE
agent could potentially wrap multiple domain-level agents, reducing team communi-
cation. However, the increased centralization could cause greater computational loads,
while also rendering failure of a TEAMCORE agent more catastrophic. A more thor-
ough analysis of these tradeoffs should support an automatic procedure for generating
optimal structures of TEAMCORE agents.

We are also investigating the use of machine learning in TEAMCORE. In particular,
learning from team failures would enable TEAMCORE agents to correct missing (or
incorrectly specified) coordination constraints, or modify the existing organization hier-
archy to more appropriately match the task at hand. Again, the key is that this learning
improves the team-level interactions, rather than the skills of the individuals.
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