
Towards Automated Team Analysis:
A Machine Learning Approach

Taylor Raines, Milind Tambe, Stacy Marsella
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292, USA

{Raines, Tambe, Marsella}@isi.edu

Abstract

Teamwork is becoming increasingly
important in a large number of multi-
agent applications.  With the growing
importance of teamwork, there is now an
increasing need for tools for analysis and
evaluation of such teams.  We are
developing automated techniques for
analyzing agent teams.  In this paper we
present ISAAC, an automated assistant
that uses these techniques to perform
post-hoc analysis of RoboCup teams.
ISAAC requires little domain knowledge,
instead using data mining and inductive
learning tools to produce the analysis.
ISAAC has been applied to all of the
teams from RoboCup’97, RoboCup’98,
and Pricai’98 in a fully automated
fashion.  Furthermore, ISAAC is
available online for use by developers of
RoboCup teams.

Introduction

Teamwork is becoming increasingly important in
a large number of multi-agent applications,
including virtual environments for training
[Tambe et al. 1995] and education [Kitano
1997], multi-robotic space missions, and
software agents on the Internet [Williamson et al.
96].  With the growing importance of teamwork,
there is now an increasing need for tools for
analysis and evaluation of such teams.  Indeed,
in multi-agent domains with tens or even
hundreds of agents in teams, agent interactions
are often highly complex and dynamic, making it
difficult for human developers to analyze agent
and agent-team behaviors. The problem is further
exacerbated in environments where agents are
developed by different developers, where even
the intended interactions are unpredictable.
Automated assistants may aid human developers
in analyzing agent teams in such situations,

locating problematic team behaviors, diagnosing
causes of such problems, and suggesting
alternative courses of action.

This paper focuses on such an automated
assistant for analyzing agent teams. Previous
work in flexible teamwork (e.g., [Jennings 1995,
Tambe 1997]) has largely focused on guiding
autonomous agents in their teamwork.  However,
the problem of analyzing the behavior of such
teams from a global perspective to aid human
developers in improving team performance has
been largely unaddressed.  To remedy this
situation, we are developing an automated
assistant, itself an agent called ISAAC. ISAAC
(ISI Soccer Automated Assistant Coach)
analyzes agent-teamwork in the domain of
RoboCup soccer [Kitano 1997]. While RoboCup
is used since it poses agent-team analysis as a
fundamental challenge, ISAAC’s techniques are
intended for applications in other domains, such
as agent-teams in battlefield simulations [Tambe
et al. 1995].

ISAAC performs post-hoc, off-line analysis of
teams using agent-behavior traces in the domain.
This analysis is performed bottom-up, using data
mining and inductive learning techniques. By
mining large numbers of behavior traces, ISAAC
attempts to isolate the key factors determining
the successes or failures of these teams.  The
developer provides ISAAC only with the
knowledge of the features to be analyzed in a
domain and the moments in time to analyze them
(typically based on intermediate successes or
failures), but not any information as to how these
features should be used. ISAAC looks for
interesting patterns based on user provided
features, thus combining the analytical
capabilities of the machine with the domain
knowledge of the user.

ISAAC’s patterns can also be parameterized in
terms of tolerance for different error types.  For



instance, ISAAC many be parameterized to
ensure it finds patterns covering every
intermediate failure, although this may introduce
errors in that the patterns may cover success
cases also.

In addition to discovering interesting patterns of
behavior that contribute to intermediate
successes and failures, ISAAC also supports
hypothetical reasoning via its perturbation
analysis.  In particular, by perturbing patterns
that led to failures, developers can discover
changes to agent behaviors that can avoid such
failures.  As shown later, perturbation analysis
generates suggestions to improve team behavior
without demanding a radical change in agent
skill set.

ISAAC has been applied to all of the teams from
RoboCup ’97, RoboCup ’98, and Pricai ’98 in a
fully automated fashion.  Looking at
intermediate successes and failures of these
teams (goals scored by and against these teams),
this analysis has revealed many interesting
results including surprising weaknesses of the
leading teams in both the RoboCup ’97 and
RoboCup ’98 tournaments.  ISAAC has also
received a highly enthusiastic response from the
RoboCup community. (ISAAC is available
online at http://coach.isi.edu, see Figure 1.)

Figure 1: ISAAC exists on the web.

While this paper describes the current state of
ISAAC, by the time of the RoboCup’99
competitions, we plan to have several
enhancements available, including capabilities to
analyze long sequences of team behaviors and
evaluations by teams that used ISAAC in
preparing for RoboCup’99.

Overview of Automated Analysis

Our approach to the team analysis problem is
based on a bottom-up analysis of the team’s
behavior traces.  Patterns of successful or
unsuccessful behavior are first derived from the
team’s behavior traces via a data-driven
inductive learning step.  Based on those patterns,
the analysis suggests possible improvements to
the team’s behavior via a process of perturbing
the patterns.  Again this phase is data-driven.
Each suggested improvement is matched against
the team’s existing behavior traces to test the
likely consequences of the improvement.

A preliminary issue for this approach is how to
focus the analysis on those parts of team’s
behavior history relevant to the team’s success.
There may be many critical events along the path
to the team’s eventual success or failure that are
widely separated in time, only loosely coupled to
each other, but nevertheless critical to the team’s
success.  For instance, in a team sport, there are
many distinct scoring opportunities embedded in
a larger history which may contain much that is
irrelevant to the team’s success.

This issue of focus is addressed by characterizing
points in the history where there are intermediate
successes or failures.  When something is
occurring that can directly influence the eventual
success or failure of the team’s performance
outcome, this is considered to be an intermediate
success or failure case. At present, we assume
the identification of these intermediate points is
part of the domain specific knowledge available
to the automated analysis technique. Automated
analysis is focused on these event subsequences
or points in the history.

Having isolated cases of intermediate success or
failure, there remains the question of how to
analyze them.  We approach the analysis as a
problem of classification, of forming classes over
the cases of success and failure based on a set of
potentially relevant features in these cases.
These features, along with the decision on what
are the cases of intermediate success, are the
only background information or bias given to our
analysis agent.  The features chosen must have
the breadth to cover all information necessary for
the analysis, but should also be independent of
each other if at all possible.  Another possibility
here would be to provide all available attributes
and then use an attribute selection method to



prune out less helpful attributes [Caruana et al.
1994].

Currently, an inductive learning mechanism is
used to form the classes of success and failure.
Each class is a similar kind of success or failure,
based on its feature description. The inductive
learning mechanism isolates the specific features
that are most important in this determination.
These classes and the cases they govern are
displayed to the user who is free to make the
final determination about the validity of the
analysis.  By themselves, the features that
describe a class provide implicit advice for
improving the team.

More explicit exploration of this advice is
performed using an automated perturbation
analysis.  Particular features are modified and
the cases in the history that are consistent with
this derived class are identified, allowing them to
be explored. This makes it possible to assess
which changes would have the greatest impact
on the team.

ISAAC Analysis as applied to
RoboCup Teams

In applying the approach to a domain, the
domain specific information has to be identified
that would be used by ISAAC as bias in its
analysis.  In the RoboCup domain, success
means outscoring the opponent.  Shots on goal
are therefore key points of intermediate success
or failure as these are situations that can directly
affect the outcome of the game.  Thus, the
current focus of ISAAC’s analysis in RoboCup
is shots on a team’s goal as well as shots by the
team on an opponent’s goal.  In the future
ISAAC’s analysis will be extended to cover
other critical situations.

Having defined shots on goal as a revealing
portion of the overall history to analyze, we need
to determine which features might be useful in
classifying the success or failure of a shot on
goal.  After an initial set of experiments with a
relatively large feature set, ISAAC currently
relies on the following feature set to characterize
successes and failures:
• Ball Velocity
• Distance to Goal (of shooter)
• Angle from Center Line (of shooter)
• Distance of Closest Defender (closest to

shooter)

• Angle of Closest Defender from Center of
Goal

• Extrapolated Goal Line Position (where the
ball would pass the goal line based on initial
trajectory, measured as distance from goal
center)

• Number of Defenders (between shooter and
goal)

In this set of features, only 2 attributes are used
to characterize the shooter, ball velocity and
extrapolated goal line position, since the shooter
can only choose where to shoot and how hard to
shoot.  Thus, the analysis deliberately abstracts
over player identity, player motion and facing
direction.

Characterizing the rest of the context is more
difficult since there is no easy manner in which
to characterize abstract positional information
such as the other players’ locations.  In the above
feature set, information is provided about how
many defenders are between the shooter and the
goal, but additional positional information is
only provided for the closest defender.  In
general, more features may produce a more
accurate analysis if those features are important
in the decision making process but there is an
additional cost in processing more features.
Also, as confirmed by our initial set of
experiments, irrelevant features may actually
decrease accuracy of the rules produced by the
inductive learning mechanism [Caruana et al.
1994].

Having determined which features to use in the
analysis and the points in the history (the cases)
to examine, the task is transformed to mining the
data by feeding it into an inductive learning
algorithm. A decision tree induction algorithm
[Russell, Norvig 1994] is used for this analysis.
Currently, we use C5.0, an updated version of
the C4.5 system [Quinlan 1994]. From the
resulting decision tree, C5.0 forms rules
representing distinct paths in the tree from the
root of the tree to a leaf classification of success
(goal-score) or failure (goal not scored).  As a
whole, the set of rules describes classes of
similar successes and classes of similar failures.

Figure 2 shows an example success rule,
describing a pattern where shots taken on the
Windmill Wanderer team will fail to score (No
Goal).  It is important to keep the distinction
between a shot failure and a team failure, since
when we analyze shots on a team, a shot failure



is a team success.  This rule states that when the
closest defender is sufficiently far away and
sufficiently close to the shooter’s path to the
center of the goal, and the shooter is towards the
edges of the field, this shot on the Windmill
Wanderer team will fail to score.  When viewed
using ISAAC, the user can see that the defender
is far enough away to have sufficient time to
adjust and intercept the ball in most of these
cases.  Thus the user is able to validate ISAAC’s
analysis.

Distance of Closest Defender > 218
Angle of Closest Defender

wrt Center of Goal <= 8.981711
Angle from Center of Field > 40.77474

� class No Goal
Figure 2: Sample Rule from shots on

Windmill Wanderer team of RoboCup’98

The application of a decision tree induction
algorithm to this analysis problem must address
some special concerns. The goal-shot data has
many more failure cases (failed goal shots) than
success cases (goals scored).  However,
analyzing such data using a traditional decision
tree induction algorithm such as C4.5 gives equal
weight to the cost of misclassifying successes
and failures.  This usually yields more
misclassified success cases than misclassified
failure cases.  For example, in our analysis of
Andhill from the RoboCup’97 tournament, our
original analysis misclassified 3 of 306 ‘no goal’
cases, but misclassified 18 of 68 ‘goal’ cases.
Since an even smaller portion of the success
cases is correctly classified, this produces
perhaps overly specific rules that govern success
cases.  To compensate for this lopsided data set,
the ability of C5.0 to weight the cost of
misclassification is used.  Specifically, the cost
of misclassifying a success case is set to be
greater than the cost of misclassifying a failure
case [Ting 1998].

More generally, differential weighting of
misclassification cost provides a mechanism for
tailoring the classes and therefore the advice
ISAAC implicitly provides. Consider shots on
goal against a team.  If a very high cost is
assigned to misclassifying a successful shot on
goal, the rules produced will cover almost all
cases of successful shots, and likely quite a few
misclassified failure cases.  In this case,
ISAAC’s analysis will broaden the conditions
under which a shot is considered to be
potentially successful and as such is implicitly
advising to make the team very defensive.  On

the other hand, if a low cost is assigned, the rules
may not cover all of the successful cases.
Therefore, ISAAC would only give “advice”
relevant to stopping the majority of shots on
goal.  This may not be appropriate if we consider
any goal to be a serious failure.  Therefore, we
give the user a choice as to how to set the level
of defensiveness or aggressiveness of ISAAC’s
analysis through the weight on success case
misclassifications.

This is all of the background information that
ISAAC needs for the RoboCup domain. With
this information, ISAAC can be applied to logs
to form failure and success rules for both shots
by the team on the opponent’s goal and shots on
the team’s goal by other opponents.

Perturbation Analysis –
recommending changes

After ISAAC has produced rules determining
which circumstances govern success and failure
classifications, ISAAC uses a perturbation
analysis to determine which changes would
produce the most benefit.  Each rule consists of a
number of conditions that must be satisfied for
the rule to be valid.  We define a perturbation to
be the rule that results from reversing one
condition.  Thus a rule with N conditions will
have N perturbations.  The successes and failures
governed by the perturbations of a rule are mined
from the data and examined to determine which
conditions have the most effect in changing the
outcome of the original rule, turning a failure
into a success.

An interesting point about the perturbations is
that they will always have some cases, although
some perturbations will have many more than
others.  Take for instance a rule that governs
failure cases and has 3 conditions for the rule to
be valid.  Reversing each one of these conditions
will produce at least one success case.  Why?
Consider a condition that, when reversed, did not
produce a success case.  In this case, our
inductive learning algorithm would have pruned
this condition, determining it to be unnecessary,
and we would have had a rule with 2 conditions
[Quinlan 1994].

As shown using a detailed example in the
following section, perturbations of a failure rule
enable users to see what minimal modifications
could be made to agent behaviors to convert the



failures into success.  Perturbations of success
rules are also useful however.  There are two
reasons for this.  The first reason is that some
changes to the rule will take a team further from
success than another.  For example, a team may
succeed 95% of the time when all conditions are
met.  The percentage of success may drop to
50% if the first condition is changed and down to
5% if the second condition is changed.  In this
case, the developer may decide that making the
attempt even if the first condition is not met is
still the correct course of action while making
the attempt if the second condition is not met is a
bad decision.

The second reason we want to look at
perturbations of a successful rule is due to
ISAAC’s graphical nature.  Since we allow the
user to see how the team fails, more insight can
be drawn as to why these conditions are
important.  Human oversight is important at this
juncture to determine if the reasons ISAAC
comes up with are truly the reasons the team is
succeeding or failing.  Looking at the cases
makes it easy for a user to validate or refute the
analysis.

ISAAC in practice

In its current online implementation, ISAAC can
take log files of RoboCup games provided by
any user with WWW and FTP access.  ISAAC
mines the data from the logs, looking for shots
on goal and gathering the relevant features from
each shot.  This data is provided to our inductive
learning algorithm for rule generation.  ISAAC
then takes these rules and again mines the data
for those cases matching the rules and their
perturbations.  As a final step, ISAAC
dynamically produces the web pages for the
analysis to be viewed online, highlighting some
of the key features for better understandability by
the user.

Figure 3 shows ISAAC highlighting some key
portions of a rule.  The current rule only applies
when the shooter is in the highlighted area of the
field between the two lines, and is shooting to
the highlighted portion of the goal.  Showing the
features as highlights on the field allows the user
to easily delineate the portions of the field that
the rule is describing.  Let us consider a simple
example of ISAAC's analysis of Andhill97
against other teams in the RoboCup ‘97
tournament.  One of ISAAC's learned rules states
that taking shots on goal, the Andhill97 team

      Figure 3: ISAAC highlighting key features.

often fails to score when (i) ball velocity is less
than 2.37 meters per time step and  (ii) the shot is
aimed at greater than 6.7 meters from the center
of goal (which is barely
inside the goal).   ISAAC reveals that shots
governed by this fail to score 66 times without a
successful attempt.  That Andhill97, the 2nd
place winner of ‘97 had so many goal-shot
failures, and that poor aim was at least a factor
was a surprising revelation to the human
observers. The user can review the “video” of
these shots on goal in ISAAC's log monitor to
better appreciate what is occurring in these cases
(See Figure 4).

Figure 4: Analysis of Andhill97

Now consider the perturbations of this rule.  In
cases where the rule is perturbed such that ball
velocity is greater than 2.37 m/t and the shot aim
is still greater than 6.7m, Andhill scores twice
and fails to score 7 times.  In another
perturbation, where ball velocity is again less
than 2.37 m/t but now shot aim is equal to or less
than 6.7m, Andhill is now scoring 51 times and
failing to score 96 times.  These perturbations
suggest that improving Andhill97's shot aiming



capabilities can significantly improve
performance.

Experimental Observation

Tables 1 and 2 show some results from ISAAC’s
analysis of the top four teams from both
RoboCup’97 and RoboCup’98.  Results show that
on average there are 10-15 rules formed by
ISAAC’s analysis per team for analysis of
offense, and 5-10 rules formed per team for
analysis of defense.

Analysis of Shots by this team

RoboCup ’97 Cases Success Rules

Andhill 269 84 19

AT_Humboldt 336 91 15

CMUnited 213 58 9

ISIS 190 31 16

Average 252 66 14.75

Analysis of Shots on this team

Andhill 131 16 12

AT_Humboldt 117 13 3

CMUnited 193 12 10

ISIS 123 19 6

Average 141 15 7.75

Table 1: Analysis of RoboCup ’97

Analysis of Shots by this team

RoboCup ’98 Cases Success Rules

AT_Hum98 367 95 8

CMUnited 171 64 8

WW 127 38 11

ISIS 173 37 12

Average 209 58.5 9.75

Analysis of Shots on this team

Cases Success Rules

AT_Hum98 151 6 4

CMUnited Not Available

WW 133 3 5

ISIS 189 30 8

Average 157.7 13 5.7

Table 2: Analysis of RoboCup ’98

Furthermore, for analysis of offense (shots on
opponents' goals) the average number of rules
for RoboCup'97 for top the 4 teams is 14.75,
while it is 9.75 for RoboCup'98 teams.  For
defense, the average is 7.75 for RoboCup’97,
and it goes down to 5.66 in RoboCup'98.  Thus,

the average number of rules formed has
decreased from RoboCup'97 to RoboCup'98 for
the top four teams.  This decrease is most starkly
observed in the case of AT_Humboldt. ISAAC
derives 15 rules from 336 cases in RoboCup’97
and 8 rules from 367 cases in RoboCup’98 for its
offense.  While we are currently investigating the
reason for this decrease in rules, and the
significance of such a decrease, the key here is
that ISAAC opens up the possibility of such a
global tournament-wide analysis of agent-team
behaviors.  Note that no analysis was possible of
the CMUnited defense in RoboCup’98 because
no goals were scored against them in the
tournament.

We also performed experiments to determine the
optimal weight for success misclassification for
RoboCup teams.  When we originally used
ISAAC to analyze the RoboCup ’97 tournament,
ISAAC returned a rather poor result for the
analysis of many of the teams.  Specifically,
ISAAC was not identifying many of the success
cases.  For example, the CMUnited team had 12
goals scored against them in the tournament, but
using the inductive learning algorithm with no
weight for success misclassification yielded rules
that only correctly identified 4 of these goals.
We therefore increased the misclassification cost
until more of the goals were correctly identified.

Increasing the cost of success misclassifications
yielded an increase in the number of success
cases correctly classified, but also increased the
number of failure cases misclassified.  Therefore
the issue arose as to how many failure
misclassifications were acceptable to correctly
identify one extra success case.

To explore this issue, the top 4 teams from
RoboCup ’97 were analyzed and weights were
used from the original 1:1 ratio to a
misclassification cost of 7:1 for failure
misclassifications to success misclassifications.
The optimal cost was determined in terms of
lowest total error.  Total error cost was
considered to be (Total Number of Failure Cases
Misclassified) + k*(Total Number of Success
Cases Misclassified) with values of k from one
to four.

Total error as stated above was plotted against
different success misclassification costs for
different values of k.  The results showed that the
optimal cost tended to be the same regardless of
the value of k.   For instance, Figure 5 shows that



Figure 5: Total Error for Differing k Values
For Shots by ISIS and Shots on CMUnited

the optimal cost for misclassified success cases
for shots by ISIS was 4, and the optimal cost for
shots on CMUnited was 3, both regardless of the
value of k.  And for the different values of k,
none of the teams varied in their optimal values
by more than 1.  Using this optimal cost, ISAAC
now produces rules to govern 11 of the 12
success cases for the shots on CMUnited.  The
current version of ISAAC uses a weight of 3
which was found to be optimal or near optimal in
all cases, but future versions may run this
experiment to tailor the optimal weight to each
specific team, while the current system allows
users to change this weight manually.

Related Work

Knowledge Base Refinement

SEEK, and its progeny, SEEK2, is an approach
to knowledge base refinement, an important
aspect of knowledge acquisition [Ginsberg et al.
1985].  Knowledge base refinement is
characterized by the addition, deletion, and
alteration of rule-components in an existing
knowledge base, in an attempt to improve an
expert system’s performance.  While the
alteration of a rule may seem comparable to
ISAAC’s perturbation analysis, the goals are
varied.  The refinement done by systems such as
SEEK are used to increase performance of the

system to correctly classify future cases.
ISAAC’s goal is not that of increased
performance in terms of cases classified but that
of increased understandability of the rules
produced.  By looking at changes to the
automatically produced rules, the user gains
insight as to the effects of each component of a
rule.

Decision Tree Confidence Factors for
Multiagent Control

Peter Stone and Manuela Veloso have
incorporated a previously trained decision tree
into a full multiagent behavior that is capable of
controlling agents throughout an entire game,
also using RoboCup as their domain [Stone et al.
1998].  In their work, they created artificial
situations to train their decision tree, and then
used the learned behaviors from this tree in game
situations.  In contrast, ISAAC looks at game
situations to produce its decision tree and
subsequent rules, and then makes suggestions
based on actual game play.  However, ISAAC
need not reason about execution time, a rather
large sub-problem stemming from their work.

Inductive Verification and Validation

The designers of the KULRoT RoboCup team
used inductive logic programming to validate
their multi-agent system [Driessens et al. 1998].
They induced rules intended to verify the
programming that their agents were supposed to
follow.  The major difference between this and
our work is that since they were attempting to
validate their programming, they knew what they
were looking for in their agents and could
therefore incorporate all of the background
knowledge that the agents were using.  We use
little of this background knowledge but
generalize our work such that it is capable of
analyzing any RoboCup team.

Comprehensible Knowledge Discovery

Pazzani uses an inductive learning algorithm
called FOCL [Pazzani 1997], an extension to
FOIL [Quinlan 1990], that uses expert rules in
combination with inductive learning techniques.
FOCL adds predicates to rules using either the
expert rules or an inductive method, depending
on which is more informative.  FOCL also uses
monotonicity constraints to produce rules that
are more intuitive with human observations.

Shots on CMUnited

0

10

20

30

40

1 2 3 4 5 6 7

C o st  o f  Success 
M isclassificat io n

k = 1

k = 2

k = 3

k = 4

Shots by ISIS

0

20

40

60

80

1 2 3 4 5 6 7

C o st o f  Success  
M isc lass if icat io n

k=1

k=2

k=3

k=4



ISAAC currently does not use expert knowledge
of this type in the analysis, but there is the
possibility to do so in the future if this
knowledge is available, perhaps even using the
FOCL algorithm.  ISAAC does, however, allow
the use of biased weighting of classes and
performs further analysis on the rules through its
perturbation analysis.

Summary

Multi-agent teamwork is a critical capability in a
large number of applications including training,
education, entertainment, design, and robotics.
The complex interactions of agents in a team
with their teammates as well as with other
agents, and with other dynamic events in the
environment, makes it extremely difficult for
human developers to understand and analyze
agent-team behavior.  It is thus increasingly
critical to build automated assistants to aid
human developers in analyzing agent team
behaviors.  While previous research has begun to
address the problem of guiding agent behavior
for flexible teamwork, the problem of automated
analysts to aid developers is largely unaddressed.

We have taken a step towards these automated
analysts by building an agent called ISAAC for
post-hoc, off-line agent-team analysis. ISAAC
uses inductive learning techniques to discover
patterns (in the form of rules) in agent team
behavior that contribute to successes or failures
of a team, and presents these to a user.  It also
allows a user to examine the domain situations
that led to the generation of the rules. ISAAC
also supports perturbations of rules, to enable
users to engage in "what-if" reasoning.  ISAAC
has currently been applied in the context of the
RoboCup soccer simulation. ISAAC is available
on the web, and it enables the RoboCup
community to see the analysis of their teams that
participated in RoboCup’97, RoboCup’98, and
Pricai’98 competitions. Users can also analyze
the teams they are developing towards
RoboCup’99 competitions.

So far, the feedback from the user community
has been highly enthusiastic.  We have also
received feedback for improvements in ISAAC.
The suggestions range from details of units used
in ISAAC’s measurements to suggestions about
the next step to go beyond analysis of individual
intermediate successes and failures (to sequences
of behaviors).  We continue to encourage user
participation in ISAAC and feedback and hope it

will contribute to an improvement of team
performance in RoboCup’99.

Future Work

We plan to extend our idea of intermediate
successes or failures into a “points of flux”
analysis where we consider any time in a
dynamic domain where an event is occurring that
could affect the outcome.  While this type of
analysis would not have rigidly defined success
and failure cases, we may be able to overcome
this problem by using gradations of success,
whereby we include some extra domain
knowledge to determine how well the agents are
performing at these points.

More recently, ISAAC has been extended to
analyze sequences of behaviors (again using
C5.0), such as sequences of actions (e.g., passes)
that lead up to successes or failures [Lesh et al.
1998].  In the RoboCup scenario, we consider
each time a player successfully kicks the ball to
be a point of flux.  We hope to use this research
as an extension to our shots on goal analysis to
then analyze decisions about passing or shooting.
This preliminary analysis has revealed that out of
the top four teams of RoboCup'97, ISIS is at one
extreme with little or no emergent pattern of
assists, while CMUnited shows deeper patterns
of assists and passing.  In analyzing agent
behavior in complex multi-agent dynamic
environments, the approach of using knowledge
poor data-driven analysis techniques combined
with human oversight has shown considerable
promise.

Acknowledgements

This research is supported by a gift from the Intel
Corporation and Microsoft Corporation.

References

[Atkins et al. 1997] Atkins, E., Durfee, E., Shin,
K. Detecting and Reacting to Unplanned-for
World States. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence
(AAAI-97), 1997.

[Caruana et al. 1994] Caruana, R., Freitag, D.
Greedy Attribute Selection. In 11th Proceedings
of the 11th International conference on Machine
Learning (ICML), 1994.



[Driessens et al. 1998] Driessens, K., Jacobs, N.,
Cossement, N., Monsieurs, P., DeRaedt, L.,
Inductive Verification and Validation of the
KULRoT RoboCup Team.  In Proceedings of the
Second RoboCup Workshop, 1998.

[Ginsberg et al. 1985]  Ginsberg, A., Weiss, S.,
Politakis, P., SEEK2: A Generalized Approach
to Automatic Knowledge Base Refinement.  In
Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI),
1985

[Jennings 1995]  Jennings, N. Controlling
Cooperative Problem Solving in Industrial
Multi-agent System Using Joint Intentions. In
Artificial Intelligence, Vol. 75, 1995.

[Kaminka, 1998]   Kaminka, G. A., and Tambe,
M.  What’s Wrong with Us?  Improving
Robustness through Social Diagnosis.  In
Proceedings of the Fifteenth National conference
on Artificial Intelligence (AAAI-98) Wisconsin,
July 26-30, 1998.

[Kitano et al. 1997]   Kitano, H., Tambe, M.,
Stone, P., Veloso, M., Noda, I., Osawa, E. &
Asada, M.  The RoboCup synthetic agent’s
challenge.  In Proceedings of the International
Joint Conference on Artificial Intelligence
(IJCAI), 1997.

[Lesh et al. 1998] Lesh, N., Martin, N., Allen, J.
Improving Big Plans In Proceedings of the
National Conference of Artificial Intelligence
(AAAI), 1998.

[Pazzani 1997] Pazzani, M. Comprehensible
Knowledge Discovery: Gaining Insight from
Data. In First Federal Data Mining Conference
and Exposition, 1997.

[Quinlan 1990] Quinlan, J. Learning Logical
Definitions from Relations. In Machine
Learning, 5, 1990.

[Quinlan 1994] Quinlan, J. C4.5: Programs for
Machine Learning.  Morgan Kaufmann, 1994.

[Russell, Norvig 1995]  Russell, S., Norvig, P.
Artificial Intelligence: A Modern Approach.
Prentice-Hall, Inc., 1995.

[Stone et al. 1998] Stone, P., Veloso, M. Using
Decision Tree Confidence Factors for Multiagent

Control. In Proceedings of the International
Conference on Autonomous Agents, 1998.

[Tambe et al. 1995]  Tambe, M. Johnson, W. L.,
Jones, R., Koss, F., Laird, J. E., Rosenbloom,
P.S., Schwamb, K. Intelligent Agents for
Interactive Simulation Environments. In AI
Magazine, 16(1) (Spring), 1995.

[Tambe 1996]  Tambe, M. Tracking Dynamic
Team Activity.  In Proceedings of the Thirteenth
National Conference on Artificial Intelligence
(AAAI-96), 1996.

[Tambe 1997] Tambe, M. Towards Flexible
Teamwork.  In Journal of Artificial Intelligence
Research, Vol. 7, 1997.

[Ting 1998] Ting, K. Inducing Cost-Sensitive
Trees via Instance Weighting.  In Principles of
Data Mining and Knowledge Discovery (PKDD
98), 1998.

[Williamson et al. 1996] Williamson, M. and
Sycara, K. and Decker, K. Executing Decision-
theoretic Plans in Multi-agent Environments.  In
Proceedings of the AAAI Fall Symposium on
Plan Execution: Problems and Issues, 1996.


