
The Benefits of Arguing in a Team

Milind Tambe Hyuckchul Jung
Information Sciences Institute, University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292�
tambe, jungh � @isi.edu

July 16, 1999

Abstract

In a complex, dynamic multi-agent setting, coherent team actions are often jeopardized by conflicts in
agents’ beliefs, plans and actions. Despite the considerable progress in teamwork research, the challenge
of intra-team conflict resolutionhas remained largely unaddressed. This paper presents CONSA, a system
we are developing to resolve conflicts using argumentation-based negotiations. CONSA is focused on
exploiting the benefits of argumentation in a team setting. Thus, CONSA casts conflict resolution as a
team problem, so that the recent advances in teamwork can be brought to bear during conflict resolution
to improve argumentation flexibility. Furthermore, since teamwork conflicts sometimes involve past
teamwork, teamwork models can be exploited to provide agents with reusable argumentation knowledge.
Additionally, CONSA also includes argumentation strategies geared towards benefiting the team rather
than the individual, and techniques to reduce argumentation overhead.

1

1 Introduction

Teamwork is a critical capability in a large number of multi-agent applications, such as virtual environments
for education and training [Tambe 1997], robotic teams [Kitano et al. 1997] and teams on the Internet. In
these applications, agents must act together despite the uncertainties of their complex dynamic environ-
ment. Considerable progress has indeed been made in teamwork research. For instance, recent advances in
teamwork models [Jennings 1995, Tambe 1997], which explicitly outline agents’ commitments and respon-
sibilities in teamwork, have significantly improved flexibility in teamwork coordination and communication.
However, this research has so far not addressed the challenge of resolving conflicts within a team.

Yet, as agent applications advance to meet the requirements of scale and autonomy, inter-agent conflicts
become increasingly inevitable. For instance, while autonomously reacting to dynamic events, agents may
unintentionally interfere in others’ actions, or faulty sensors may provide them with conflicting information
or lead them to conflicting inferences. While such conflict resolution is difficult in general, it is even more
problematic in teams if intra-team conflicts are not anticipated.

To address the problem of conflict resolution in team settings, we are building a system called CONSA:
COllaborative Negotiation System based on Argumentation. In argumentation, agents negotiate by providing
arguments (which may be justifications or elaborations) in support of their proposals to one another.
CONSA builds on past work in argumentation [Parsons & Jennings 1996, Kraus, Sycara, & Evenchik 1998,
Chu-Carroll & Carberry 1995], but our focus here is to exploit the benefits of argumentation in a team setting.
Thus, given CONSA’s roots in past teamwork research [Tambe 1997], a key idea is to cast conflict resolution
as an explicit common team goal. As a result, the recent advances in teamwork models are brought to bear
during conflict resolution, improving flexibility of agent behaviors during negotiations. For instance, if a
team member privately discovers an event that renders the current team conflict irrelevant, it will inform
its team members — it will not just withdraw privately from negotiations. Additionally, with an explicit
common team goal, novel argumentation strategies emerge, e.g., agents may attempt to improve the quality
of teammates’ arguments. Furthermore, since team conflicts may be rooted in past teamwork, CONSA
enables agents to argue effectively about teamwork, by exploiting the teamwork models in a novel way, i.e.,
not only as a guide to agent behavior during conflict resolution, but as a source for reusable argumentation
knowledge. Finally, CONSA is being built within existing agent teams in complex environments, and has
focused on practical issues, such as minimizing the resources consumed in negotiations.

2 Domains and Motivations

The motivation for current research on negotiation is based on our previous work in complex, multi-agent
domains such as real-world battlefield simulations [Tambe 1997]. We have built different teams of synthetic
pilot agents that participate in combat simulations in these environments. These pilot agent teams include
companies of attack helicopter pilots and divisions of transport and escort helicopter pilots. A second
domain for our work is Robocup [Kitano et al. 1997] where we have twice successfully participated in
the RoboCup tournaments. These agent teams have been developed based on a teamwork model called
STEAM [Tambe 1997]. STEAM is based on the joint intentions [Cohen & Levesque 1991] and SharedPlans
[Grosz 1996] theories of teamwork, but with practical extensions for monitoring and replanning as well as
decision-theoretic communication selectivity. STEAM has provided significant teamwork flexibility in all
of these applications. Yet, STEAM does not address the problem of conflicts in agents’ beliefs and relevant
negotiations to resolve such conflicts, limiting teamwork flexibility in key instances.

We describe here just a few key examples that outline some of the basic issues for collaborative
negotiations:

� The firing position case: Individual pilots in a helicopter team typically attack the enemy from firing positions.

2

These positions are planned by a commander agent, who ensures that they do not conflict, i.e., the positions
are planned to be at least one kilometer apart from each other. However, despite careful planning, individual
pilots may autonomously react to unexpected enemy vehicles, and end up in conflicting positions (e.g., much
less than 1 km apart).

� The proceed case: In planning the positions described above, the commander pilot plans one position(e.g.
position to hide behind a small hill) per team member, and communicates it to the relevant team member via
radio. In one run, a message was lost due to radio interference, i.e., the commander thought the position was
communicated, but a team member M1 never received it. Thus, when the commander asked the team to proceed
because it believed all of the positions were successfully communicated, there was a conflict with M1.

� The enemy position case: Two scout helicopter agents may have conflicting beliefs about the closest enemy
unit seen. For instance, one scout may report completion of scouting and the closest enemy unit seen as part of
this report, while the second scout may see an even closer enemy unit than the one reported.

� The ball position case: In our player team in RoboCup soccer simulation, defenders inform each other if the
ball is close by and hence a threat. However, the players’ belief of the ball’s threat may differ, leading them to
have conflicting beliefs about whether the ball is a threat.

These examples illustrate some of the key issues we are investigating in team negotiations. First,
conflicts may arise between two team members’ local actions, as in the firing position case, where an agent’s
local reaction has led to conflicts with another agent’s local actions. In contrast, in the remaining three
cases above, conflicts in agents’ beliefs impact the team’s joint action, to proceed, to report enemy location
or to defend against the opponent team. Second, conflicts may or may not be related to past teamwork.
Thus, while in the proceed case, conflicts are related to team members’ past actions in teamwork, this
is not true of the enemy position and ball position cases. Third, negotiations may need to be performed
under real-time pressure, as in the ball position case, where negotiation delays are highly detrimental to
team performance. These and other issues in negotiations are highlighted in further detail in the following
sections. In addressing these issues, we aim to avoid any specialized solutions, and focus instead on a
general approach that would be applicable to a wide variety of conflicts.

3 Teamwork Model: A Brief Overview

Before we discuss CONSA, it is useful to briefly overview teamwork models, particularly the STEAM
[Tambe 1997] model, since it is the basis of our team implementations. STEAM consists of two components,
both currently realized in the Soar [Newell 1990] architecture. The first is an enhanced agent architecture
with explicit representation of team’s joint intentions, mutual beliefs and team goals. Figure 1 shows an
operator hierarchy (i.e., a reactive plan hierarchy) for a synthetic helicopter pilot developed using STEAM.
Team operators (reactive team plans), which explicitly express a team’s joint activities, are shown in [],
such as [Engage]. At any time, one path through this hierarchy is active. This active hierarchy of operators
is the team’s joint intentions (team operators) and individual intentions (individual operators).

The second component of STEAM is the domain-independent teamwork knowledge to enable in-
dividual agents’ flexible teamwork. Of particular importance here are two of the classes of domain-
independent actions. The first is coherence-preserving actions, derived from the joint intention theory
[Cohen & Levesque 1991]. These require agents to jointly activate and terminate team operators, by es-
tablishing mutual beliefs in their initiation and termination; individual operators are executed without such
mutual beliefs. The second class of domain-independent actions is maintenance and repair actions, for
re-planning and team reorganization. These actions require an explicit specification of the dependency
relationship of the joint intention on individual team members’ activities, based on the notion of a role. A
role constrains a team member Mi to some suboperator op ��� of the team operator [OP]. Three primitive
role-relationships (and their combinations) can currently be specified in STEAM. An AND-combination

3

High
level

Low
level

Contour NOE

Mask

Select−
Mask

Unmask

Dip

Engage

Employ
weapons

Fly−flight−plan

EXECUTE−MISSION

............Travelling

Fly−control
route

[]

[]

][[
[]

][

Initialize
hover

Maintain
position

Goto−new
mask−location

Prepare−to
return−to−base

............

]

Return−to
control−point

............

Figure 1: Portion of pilot operator hierarchy.

implies that the achievement of team operator requires achievement of each one of the roles. An OR-
combination requires success in at least one role for the team operator to be achieved. The role-dependency
relationship states that an op � � depends on op ��� .

4 Argument Representation & Evaluation

This section describes CONSA’s underlying representation and algorithms to evaluate arguments, which are
embedded in a larger CONSA process, discussed in the next section. CONSA’s representation of arguments
is based on Toulmin’s [Toulmin 1958] argumentation pattern (henceforth TAP), chosen for its generality. In
a TAP, an argument consists of the following elements: (i) claim: a conclusion whose merit an agent seeks
to establish. (ii) data: the facts that are a foundation for the claim. (iii) warrants: the authority (e.g., a rule)
for taking the step from the data to the claim. (iv) qualifications: degree of force which conferred on the
claim based on the data and warrant.

In CONSA, claims are agents’ individual or mutual beliefs. During argumentation, these claims form
the proposals, with the supporting TAP as the argument for the proposal. For example, in RoboCup soccer,
a claim (proposal) may be that “the ball is a threat,” supported by data that “the ball is 30 meters from own
goal,” and a warrant that “if the soccer ball is within 35 meters of own goal, then it is very likely a threat.”
In CONSA, the data may itself be another claim (belief), with its own supporting TAP, so that a recursive
tree of TAP structure may emerge in support of a claim. Finally, in CONSA, the qualifications on claims
determine the strengths of arguments. Currently, claims have qualitative strengths: high, medium and low.
Thus, a strong warrant and data will lead to a “high” strength for the claim.

When an agent sends a proposal to its team, team members must determine if their own beliefs conflict
with the proposal. Figure 2 presents a simplified version of CONSA’s algorithm to make this determination.
The input is a proposed TAP tree Θ, which forms the proposal (claim), with supporting arguments. The
output is a set Ωof tuples (� reject(claim �) or accept(claim �) � , justification). Here, a reject tuple implies an
agent’s conflict with the claim ��� Θ, while an accept tuple implies an improved justification in support of
the claim. The justifications consist of TAPs. If Ωis empty, then no conflicts or improvements are found.

In the algorithm, step 1-a checks the input TAP tree Θ for conflicts with the agent’s own claims. If a
conflict is found, strengths of the conflicting claims are compared and the other agent’s claim is rejected if
own claim is found stronger. Step 1-b now compares the input claims from Θ for coincidence or agreement.
If coincidence is found, then the supports of coincident claims are compared, to determine the stronger
support. If one is found, it is added to Ω. For expository purpose, two complicating factors addressed in
CONSA are not shown here. First, CONSA can address the presence of multiple conflicts and coincidences.
Second, when no coincidence or conflict is found in Θ itself, CONSA will not immediately accept Θ. Since
leaf nodes in Θ may hold undesirable implications, CONSA derives implications from Θ. While in general
checking undesirable implications is difficult, CONSA currently executes one iteration of such derivations,
checking for conflict or coincidence and adding the result to Ω.

4

Evaluate-proposal(Input: TAP-tree Θ; Output: Ω)

1. In parallel, for all claims ��� in TAP-tree Θ do:

(a)
�

Check ��� for conflict with own claims;
If ��� conflicts with own claim ��� , Compare-strengths(��� , ���);
If ��� is stronger, add (reject(���), ���) to Ω; 	

(b)
�

Check � � for coincidence with own beliefs; If coincidence with own claim � � ,�
Compare-strengths(support(� �), support(� �));
If support(� �) is stronger, add (accept(� �),support(� �)) to Ω; 	
	

2. Output Ω; if Ωis empty, no conflicts or coincidence found.

Figure 2: A simplified version of CONSA’s algorithm for evaluating proposal.

To determine the strengths of the claims in the compare-strengths procedure in Figure 2, CONSA relies
on the supporting TAP structure. Given that the TAP structure can itself be recursive, claim strengths are
evaluated recursively. For leaf-level claims, evidential rules are used. Here, CONSA exploits the benefits
of argumentation in a team setting, by relying on the following rules of evidence: assertions from a team
member regarding its own role and capability are judged to provide high-strength claims.

5 CONSA Approach

Figure 3 presents the overall CONSA negotiation process. Step 1 is a proposal generated by a team member.
Steps 2, 3 and 4 are the opening, argumentation and termination stages of CONSA’s negotiation. In the
opening stage, agents agree to jointly resolve the current conflict. In the argumentation stage, they cycle
through proposals and counter-proposals, terminating arguments in the termination phase.

1. A team member Mi generates a proposal � .

2. Opening stage:

(a) A team member Mj detects a conflict with � .

(b) If Mj believes joint action not beneficial to resolving conflict, terminate, return;

(c) Else Mj communicates with team members to establish team operator to resolve current conflict.

3. Argumentation stage

(a) Any member Mk in the current team operator may generate proposal to resolve conflict;

(b) Other team members evaluate-proposal (see Figure 2).

(c) If no conflict/coincidence found, accept the proposal and go to step 4;

(d) Else if proposal found to conflict/coincide; continue argument if cost-benefit-wise useful, else accept the
proposal and goto step 4;

4. Closing stage

(a) If suggested proposal accepted, then terminate conflict-resolution team operator;

(b) Else if the conflict resolution found unachievable or irrelevant, terminate conflict-resolutionteam operator;

Figure 3: Three stages of argumentation in CONSA.

5

Opening and Closing Stages: In CONSA’s opening stage, the conflict detection step (2-a) requires it
to address two different types of conflicts. In particular, based on the description of the teamwork model
(Section 3), conflicts can be of two types: (1) Team members may have conflicting beliefs about jointly
initiating or terminating a team operator, e.g., one agent believes the team operator must be terminated, while
the other believes it cannot be terminated; or (2) Agents executing individual operators may unintentionally
conflict with each other’s role performance. Thus, in the examples from Section 2, the “firing position case”
is a type 2 conflict, but the rest are type 1 conflicts. To detect a type 1 conflict, an agent must evaluate
proposals sent by their teammates to jointly initiate or terminate team activities, detected via the Evaluate-
proposal algorithm in Figure 2. In contrast, to detect type 2 conflicts, CONSA uses role constraints, that
explicitly specify the maintenance goals for the successful performance of the role. For instance, in the
firing position case, the lateral-range (distance) between Mj (the agent performing this role) and any other
teammate must be at least one kilometer.

Having detected a conflict in Step 2-a, we temporarily skip over step 2-b to focus on step 2-c. Here,
a team member Mj, who has detected a conflict, initiates establishment of a team operator to resolve the
current conflict. If the conflict is of type 1, Mj initiates the establishment of resolve-joint-conflict as a team
operator, involving the entire team from the original joint activity. If the conflict is of type 2, Mj initiates
the establishment of resolve-role-conflict as a team operator, but the involved team here is only Mj and the
agent that caused a conflict for Mj’s role. For instance, in the firing position case, resolve-role-conflict is
established as a team operator between Mj and Mk(the agent that caused the role conflict).

By casting conflict-resolution itself as a team operator, all of STEAM’s flexible teamwork capabilities
are brought to bear, to guide agents’ behavior during conflict resolution. For instance, agents jointly establish
the conflict-resolution team operators, using protocols that ensure synchronization and agreement among
team members. In particular, teammates may disagree about the existence of the conflict, or they may be
unable to negotiate if they are performing another higher priority task. However, by using a team operator
for conflict resolution, an agent Mj begins negotiations only after ensuring its teammates agree to and are
able to engage in negotiations. Furthermore, STEAM’s reasoning about commitments leads team members
to behave responsibly towards each other. If a dynamic event causes a team member to privately discover
that their conflict is resolved or unresolvable or irrelevant, it will be committed to make this mutually
believed in the team. A team member cannot just on its own drop out from participation in the conflict
resolution. The utility of such flexibility can be seen in the firing position case. If a team member sees
enemy vehicles approaching, it will terminate the current on-going negotiations, but do so responsibly while
informing teammates of the situation.

Argumentation Stage: The argumentation stage involves an agent (sender) making a proposal to the
agent-team (receiver) with an attached justification (argument). The receivers evaluate the proposal taking
the justification into account, and either accept or refute it. If refuting the proposal, a receiver may send
back a counter-proposal to the team, who may continue this cycle of proposals and counter-proposals.
Refutation may be done via rebutting or undercutting [Parsons & Jennings 1996]. Briefly, rebutting refutes
the teammate’s claim (proposal) directly, with some justifications. In contrast, undercutting attacks the
justification provided with the proposal, rather than the proposal itself.

In this argumentation stage, the teamwork setting provides two key novel ideas. First, it enables and
requires a third strategy in addition to rebutting and undercutting, which we call “improve support.” In
particular, an agent receiving a proposal from its team member may accept the proposal, but may have a
better justification for the proposal than the one offered by the sender. For instance, in the “enemy position”
case from Section 2, the second scout detected a closer enemy unit. The second scout agrees with the
top-level claim that the scouting is completed, but it offers a higher quality solution about the closer enemy
unit, which allows the helicopter team’s performance to improve. It is to enable this “improve-support”
strategy that the Evaluate-proposal algorithm (Fig 2) checks for claim coincidence.

6

Second, teamwork models provide reusable argumentation knowledge. In particular, team conflicts
are sometimes rooted in past teamwork, as for instance in the proceed case. To argue effectively about
teamwork, agents must be knowledgeable about teamwork. Here, STEAM provides general, reusable
warrants for constructing TAPs. For instance, the warrants shown below, extracted from STEAM’s role
relationships, are employed in CONSA. Here, warrant � 1 states that if a team operator � is an AND-
combination, and all of its roles are not achieved, then the team operator is not achieved. � 2 is a variation
for an OR-combination and � 3 is that for an AND-combination.

��� 1: Team-Operator(�) � AND-combination(�) ��� All-roles-fulfilled(�) �	� achieved(�)
��� 2: Team-Operator(�) � OR-combination(�) ��� All-roles-unachievable(�) �	� unachievable(�)
��� 3: Team-Operator(�) � AND-combination(�) � All-roles-fulfilled(�) � achieved(�)

Real-time, Efficient Argumentation: There are three techniques used in CONSA to reduce resources
utilized in argumentation and enhance its real-time performance (shown in steps 2-b and 3-d of Figure 3).
One technique is decision-theoretic reasoning of the cost-benefit analysis of argumentation. For instance,
in the “ball position case” in Section 2, the cost of arguing may outweigh the benefits (e.g., the ball may
be shot into the goal by the time the defenders complete their negotiations). Therefore, an agent will
not negotiate with teammates even though it detects a conflict in the teammates’ proposal. The second
technique is ordering of arguments. If there are multiple arguments applicable, CONSA will communicate
the strongest first, in order to speed up the argumentation process. CONSA also uses pruning (see below)
to avoid communication of commonly held warrants.

Detailed Example of CONSA application: For a detailed example of CONSA’s application, we take
the simple “proceed case” from Section 2. Figure 4 shows the initial warrants and claims that are mutually
known by the pilot agent team (of five agents). � is the current team operator, an AND-combination. The
initial proposal is generated by the commander agent (Step 1 of Figure 3) to suggest termination of the team
operator � . This proposal is
 3 ��
 2, where
 3 is the claim “achieved(�)” and � stands for a justification.

 Mutually believed warrants: � 1, � 2, � 3 and � 4: � Role-fulfilled(self) �	� All-roles-fulfilled(�)
 Commander pilot agent’s initial claims: claim � 2: All-roles-fulfilled(�), claim � 1: AND-combination(�)
 Pilot agent M1’s initial claims: claim � 4: � Role-fulfilled (self), claim � 1: AND-combination(�)

Figure 4: Initial state: Commander believes all-roles-fulfilled, M1 believes own role not fulfilled.

M1 evaluates the proposal from the commander agent to detect conflicts (step 2-a of Figure 3). During
this evaluation, using the Evaluate-proposal algorithm from Figure 2, no direct conflict or coincidence is
found. However, deriving implication of
 2 leads to “Role-fulfilled(self)”, which conflicts with � 4, M1’s
own belief. However, � 4 is evaluated to be stronger, as M1 is an expert in its own role. M1 next uses � 4
and � 1 to construct an argument: ��
 3 ����
 2 ��� 4. (Warrants � 1 and � 4 are pruned.) Essentially, M1
informs the commander agent that it disagrees that the team operator is achieved, since its own role is not
fulfilled. Since this is a type 1 conflict, the argument from M1 is communicated to the entire team of pilot
agents. This causes all members (including M1) to establish a team operator (resolve-joint-conflict); the
team has thus entered the argumentation stage of CONSA. In this case, since � 4 is in the area of expertise
of M1, the commander (and other team members) evaluate � 4 to have a high strength and accept it. They
subsequently also accept ��
 3 and ��
 2 based on the support offered by � 4. Thus, the proceed case is
resolved by the commander accepting M1’s assertion, and it communicates this acceptance to teammates.

7

6 Applying CONSA

CONSA is currently realized in the Soar architecture in 109 rules. In the following we attempt a preliminary
qualitative evaluation of CONSA. Our implementation has enabled agents to negotiate to resolve conflicts
in the cases from Section 2, in the following manner:

� Firing position case: An agent detects a conflict in its firing position due to its role-constraint violation (one
kilometer lateral range). It then establishes a team operator (with the teammate that violates the role constraint)
to resolve role conflict. It generates a proposal to suggest an equidistant move by each agent (500 meters) to
meet the lateral range role constraint. This proposal is accepted by the second agent. (However, if the second
agent can not move, it rejects this proposal, causing the first agent to move 1 km on its own.)

� Proceed case: As discussed previously, M1 persuades teammates that the current team activity is not achieved.
� Enemy position case: The second scout finds an “improve-support” argument to inform the team that it has

better support (i.e., a higher quality solution), in the form of closer-range enemy that it spotted.
� Ball position case: As the cost of negotiation exceeds the likely benefits, agents avoid negotiations, and act

based on own (divergent) beliefs.

We also attempted a preliminary test CONSA’s flexibility by creating some surprise variations of the
above cases.

� proceed-1: The role relationship for the team operator � was changed from AND-combination to OR-
combination. Here, despite team member M1’s role not being fulfilled, M1 did not detect a conflict, and
no arguments were generated. This is correct, since an OR-combination does not require all roles to be fulfilled.

� proceed-2: We gave one pilot agent (M1), two arguments to attack the commander’s proposal, one based on
own role, and one based on another teammate M3’s role. Here, M1 correctly selected the stronger argument
based on own role to communicate first to the team.

� firing-position-1: When the pilots established the resolve-role-conflict team operator to resolve firing position
conflicts, enemy vehicles were suddenly placed close by to them. The pilot who noticed these vehicles first,
terminated the conflict-resolution team operator as it was irrelevant, and informed its teammate.

� firing-position-2: In a similar situation as above, we had one helicopter destroyed. The second terminated the
negotiation, as this team operator had become unachievable.

7 Related Work

Previous work in argumentation-based negotiation has often assumed non-cooperative agents. For instance,
[Kraus, Sycara, & Evenchik 1998] uses several argument types borrowed from human argumentation in
non-cooperative situations, e.g., threat, promise of a future reward, and appeal to self interest. An example
from [Kraus, Sycara, & Evenchik 1998] is negotiation among two robots on Mars. Here, to persuade a robot
R2, a robot R1 threatens it (R2) that R1 will break R2’s camera lens or antenna, if R2 does not comply.
Such arguments appear inappropriate in team settings, e.g., if R1 and R2 are a team, and if R1 carries out
its threat, then it will have a teammate (R2) without a lens or antenna. Other explicitly non-collaborative
argumentation work appears in the legal domain, e.g., DART [Freeman & Farley 1993], which is also based
on Toulmin’s representation schema. In contrast, [Parsons & Jennings 1996] does not explicitly assume
collaborativeness or non-collaborativeness in agents.

CONSA differs from this work in its explicit exploitation of the team setting in argumentation. As seen
earlier, it exploits teamwork models: (i) to guide flexible agent behavior in negotiation and (ii) as a source

8

of reusable argumentation knowledge. It also adds argumentation strategies so agents can collaboratively
improve each other’s arguments. Also, CONSA includes techniques to avoid high overheads of negotiations.

Chu-Carroll and Carberry’s work in argumentation does assume collaborativeness on part of the partic-
ipating agents [Chu-Carroll & Carberry 1995]. While they use SharedPlans [Grosz 1996] in negotiations,
they appear to treat SharedPlans as a data-structure, rather than a teamwork model. Thus, unlike CONSA,
they do not use SharedPlans either for prescribing agents’ behaviors in negotiations, or as source of reusable
argumentation knowledge.

8 Summary and Future Work

Multi-agent teamwork in diverse applications ranging from planning, design, education and training, faces
the problems of conflicts in agents’ beliefs, plans and actions. Collaborative negotiation is thus a fundamental
component of teamwork. We have begun to address this problem via an implemented system called CONSA
for collaborative negotiation via argumentation. While CONSA continues to build on previous work in
argumentation, it exploits the benefits of a team setting via the following key ideas: (i) CONSA casts conflict
resolution as a team problem, bringing to bear some of the recent advances in flexible teamwork to improve
the flexibility of agent behavior in conflict resolution; (ii) Since team conflicts are often about past teamwork,
CONSA exploits teamwork models to provide agents with reusable argumentation knowledge; (iii) CONSA
focuses on collaborative argumentation strategies such as improve-support; (iv) As an implemented system
in a dynamic environment, CONSA uses a decision theoretic approach, argument ordering and pruning
to reduce the cost of negotiation. Areas of future work include understanding CONSA’s implications for
argumentation in self-interested agents.

Acknowledgements

This research was sponsored in part by AFOSR contract no. F49620-97-1-0501, and in part by a subcontract
from the Boeing Corp. We thank Zhun Qiu who implemented portions of the CONSA system described in
this paper.

References

[Chu-Carroll & Carberry 1995] Chu-Carroll, J., and Carberry, S. 1995. Generating Information Sharing
Subdialogues in Expert-User Consultation. In Proceedings of International Joint Conference on Artificial
Intelligence, 1243–1250. Menlo Park, Calif.: International Joint Conference on Artificial Intelligence.

[Cohen & Levesque 1991] Cohen, P. R., and Levesque, H. J. 1991. Teamwork. Nous 25(4):487–512.

[Freeman & Farley 1993] Freeman, K., and Farley, A. 1993. Towards Formalizing Dialectical Argumen-
tation. In Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society, 440–445.
Saline, MI: Cognitive Science Society.

[Grosz 1996] Grosz, B. 1996. Collaborating Systems. AI Magazine 17(2):67–85.

[Jennings 1995] Jennings, N. 1995. Controlling Cooperative Problem Solving in Industrial Multi-Agent
Systems using Joint Intentions. Artificial Intelligence 75(2):195–240.

9

[Kitano et al. 1997] Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; and Osawa, E. 1997. RoboCup: The
Robot World Cup Initiative. In Proceedings of the First International Conference on Autonomous Agents,
340–347. New York, N.Y.: The Association for Computing Machinery.

[Kraus, Sycara, & Evenchik 1998] Kraus, S.; Sycara, K.; and Evenchik, A. 1998. Reaching Agreements
through Argumentation: a Logical Model and Implementation. Artificial Intelligence 104:1–70.

[Newell 1990] Newell, A. 1990. Unified Theories of Cognition. Cambridge, Mass.: Harvard Univ. Press.

[Parsons & Jennings 1996] Parsons, S., and Jennings, N. R. 1996. Negotiation through Argumentation —
a Preliminary Report. In Proceedings of the International Conference on Multi-agent Systems, 267–274.
Washington, D.C.: IEEE Computer Society.

[Tambe 1997] Tambe, M. 1997. Towards Flexible Teamwork. Journal of Artificial Intelligence Research
(JAIR) 7:83–124.

[Toulmin 1958] Toulmin, S. 1958. The Uses of Argument. London: Cambridge Univ Press.

10

