
Adaptive Agent Integration Architectures
for Heterogeneous Team Members

Milind Tambe, David V. Pynadath, Nicolas Chauvat
Abhimanyu Das, Gal A. Kaminka

Information Sciences Institute and Computer Science Department
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292�
tambe,pynadath,nico,das,galk � @isi.edu

Abstract

With the proliferation of software agents and smart hard-
ware devices there is a growing realization that large-scale
problems can be addressed by integration of such stand-
alone systems. This has led to an increasing interest in
integration architectures that enable a heterogeneous vari-
ety of agents and humans to work together. These agents and
humans differ in their capabilities, preferences, the level of
autonomy they are willing to grant the integration architec-
ture and their information requirements and performance.
The challenge in coordinating such a diverse agent set is that
potentially a large number of domain-specific and agent-
specific coordination plans may be required. We present
a novel two-tiered approach to address this coordination
problem. We first provide the integration architecture with
general purpose teamwork coordination capabilities, but
then enable adaptation of such capabilities for the needs
or requirements of specific individuals. A key novel aspect
of this adaptation is that it takes place in the context of
other heterogeneous team members. We are realizing this
approach in an implemented distributed agent integration
architecture called Teamcore. Experimental results from
two different domains are presented.

1 Introduction

With the ever increasing number of information-
gathering agents, user agents, agents in virtual environ-
ments, smart hardware devices and robotic agents, there is
a growing interest in agent integration architectures. Such
architectures enable a heterogeneous set of agents and hu-
mans to work together to address large-scale problems not
solvable by any particular individual[3, 2, 5].

Such agent integration architecture must address several

important issues, such as locating relevant agents (or hu-
mans) for a task, facilitating their collaboration and moni-
toring their performance. This paper focuses on the chal-
lenge of facilitating agent collaboration in the context of
heterogeneous agents, which have different capabilities, de-
velopers, and preferences. For instance, humans may differ
in their requirements for obtainingcoordination information
and the cost they are willing to pay to obtain such informa-
tion. Humans may also differ in the types of coordination
decisions they will allow (or want) automated in the agent
integration architecture. Software agents have still differing
requirements for information and automated coordination.
Such heterogeneity leads to the difficulty of encoding large
numbers of special purpose coordination plans, specialized
not only for each new domain, but also tailored for each in-
dividual agent requirements. Furthermore, given that these
requirements may vary over time, these plans would need
to be modified frequently.

Our approach to addressing the above challenge is to first
provide the integration architecture with general-purpose
teamwork coordination capabilities, and then to adapt such
capabilities (via machine learning) for the needs and perfor-
mance of specific individuals. General teamwork knowl-
edge avoids the need to write large numbers of coordination
plans for each new domain and agent. Adaptation based
on this foundation enables the integration architecture to
cater to individual coordination needs and performance. The
foundation of the teamwork knowledge is critical for adap-
tation here, since learning all of the coordination knowledge
from scratch for each case would be very expensive.

We are building a distributed agent integration architec-
ture called Teamcore. Here, the agents or humans to be
coordinated are each assigned Teamcore proxies, where the
proxies work as a team. Each proxy contains Steam[11, 12],
a general teamwork model that automates its coordination
with other proxies in its team. Starting with this teamwork

model, the proxies currently adapt via four different meth-
ods to the agents they represent, where each method covers
a different aspect of a proxy’s participation in the team ac-
tivity. More specifically: (1) A proxy’s adaptive autonomy
refers to its adapting its level of decision-making autonomy
in its team activities, so that it defers some/many decisions
to the human or agent it represents; (2) The proxies’ adap-
tive execution refers to their collectively adapting their plans
at execution-time in response to an agent’s varying perfor-
mance; (3) The proxies’ adaptive monitoring refers to their
collectively adapting their communication patterns in re-
sponse to an agent’s differing requirements for execution
monitoring; (4) A proxy’s adaptive information delivery
refers to its adapting to an agent’s communication costs and
reliabilities when delivering relevant coordination informa-
tion. A key novelty in our approach is that adaptation is
done in the context of a team, not necessarily just an indi-
vidual proxy. For instance, the proxies may cause the team
to communicate more to improve monitoring.

We begin this paper by presenting the Teamcore archi-
tecture, and its application in two complex domains. These
applications motivate the need for Teamcore’s adaptation,
which is discussed next.

2 Teamcore Framework

Figure 1 shows the overall Teamcore agent integration
framework. The numbered arrows show the stages of inter-
actions in this system. In stage 1, human developers interact
with TOPI (team-oriented programming interface) to spec-
ify a team-oriented program, consisting of an organization
hierarchy and hierarchical team plans. As an example, Fig-
ure 2 shows an abbreviated team-oriented program for the
evacuation domain. Figure 2-a shows the organization hi-
erarchy and Figure 2-b shows the plan hierarchy. Here,
high-level team plans, such as Evacuate, typically decom-
pose into other team plans and, ultimately, into leaf-level
plans, that are executed by individuals. There are teams
assigned to execute the plans, e.g., Task Force team is as-
signed to jointly execute Evacuate, while Escort subteam
is assigned to the Escort-operations plan. These teams or
individual roles are as yet not matched with actual agents.

TOPI in turn communicates the team-oriented program
to Karma (stage 2). Karma is an agent resources manager
— it queries (stage 3) different middle agents and ANS ser-
vices for the “domain agents” (which may include diverse
software agents or humans) with expertise relevant to the
team-oriented program specified in stage 1. Located domain
agents are matched to specific roles in the team plans (by
Karma or developer or both). In stage 4, the Teamcore prox-
ies jointly execute the team-oriented program. Here, each
domain agent is assigned a Teamcore proxy. The proxies
work as a team in executing the team plans, autonomously

Figure 1. The overall Karma-TEAMCORE frame-
work.

TASK FORCE

FLIGHT
TEAM

TRANSPORTESCORT

(a)

SAFETY INFO
OBTAINER

ROUTE
PLANNER

ESCORT

FOLLOW

TRANSPORT

DIVISION 1

...

.....

ESCORT

LEAD

EVACUATE

(b)

.....

[TASK FORCE]

EXECUTE
MISSION

[TASK FORCE]

PROCESS
ORDERS
[TASK FORCE]

[TASK FORCE]

MANEUVERS
ZONE
LANDING

......

TRANSPORT

[TRANSPORT].......

OPERATIONS
ESCORT
OPS
[ESCORT]

....

...... FLY-FLIGHT
PLAN

[TASK FORCE]

FLY-CONTROL
ROUTE....
[TASK FORCE]

Figure 2. A team-oriented program.

coordinating among themselves by broadcasting informa-
tion via multiple broadcast nets (stage 4). Teamcores also
communicate with the domain agents (stage 5). Karma
monitors and records information about agent performance
(stage 6). All communications occur in KQML.

A key feature of our framework is the proxies’ in-built
Steam domain-independent teamwork model. Steam pro-
vides a Teamcore with three sets of domain-independent
teamwork reasoning rules: (i) Coherence preserving rules
require team members to communicate with others for co-
herent initiation and termination of team plans; (ii) Mon-
itor and repair rules ensure that team members substitute
for other critical team members who may have failed in
their roles; (iii) Selectivity-in-communication rules use de-
cision theory to weigh communication costs and benefits to
avoid excessive communication. Armed with these rules,
the proxies automatically execute much of the required co-
ordination, without it being explicitly included in the team
oriented program. For instance, if a domain agent in Task
Force executing Evacuate in Fig 1 were to fail, Teamcore
proxies will automatically ensure that another team mem-
ber (domain agent) with similar capabilities will substitute
in the relevant role — such coordination is not explicitly

programmed in the team-oriented program. Please see [13]
for more details on the Teamcore framework.

����� �����
	���������������������������������� �"!$#&%'#(��)�*+��	

We have applied the Teamcore framework to the problem
of rehearsing the evacuation of civilians from a threatened
location. Here, an integrated system must enable a human
commander (the user) to interactively provide locations of
the stranded civilians, safe areas for evacuation and other
key points. A set of simulated helicopters should fly a co-
ordinated mission to evacuate the civilians. The integrated
system must itself plan routes to avoid known obstacles,
dynamically obtain information about enemy threats, and
change routes when needed. The software developer was
able to create a team-oriented program for this problem,
using the following agents:
Quickset: (from P. Cohen et al., Oregon Graduate Institute) Mul-
timodal command input agents [C++, Windows NT]
Route planner: (from Sycara et al., Carnegie-Mellon University)
Path planner for aircraft [C++, Windows NT]
Ariadne: (from Minton et al., USC Information SciencesInstitute)
Database engine for dynamic threats [Lisp, Unix]
Helicopter pilots: (from Tambe, USC Information Sciences Insti-
tute) Pilot agents for simulated helicopters [Soar, Unix]

As seen above, these agents have different developers,
they are written in different languages for different oper-
ating systems, they may be distributed geographically and
have no pre-existing teamwork capabilities. There are actu-
ally 11 agents overall, including the Ariadne, route-planner,
Quickset, and eight different helicopters (some for transport,
some for escort).

We successfully used the Teamcore framework to build
and execute a team-oriented program for evacuation mission
rehearsal from these agents. An abbreviated portion of the
program is seen in Fig 2. This program has about 40 team
plans. There are 11 Teamcore proxies for the 11 agents,
which execute this program by automatically communicat-
ing with each other (exchanging about 100 messages), while
also correctly communicating with the domain agents.

����� �����
	�������������,������*�*-�.*/�����'0213�
45�'�768�'	�9
	���:���)-������� �

We are also using Teamcore to build an application to
assist human teams in routine coordination activities in in-
dustrial or research organizations, using our own research
team as a testbed. In this application, each human user has a
Teamcore proxy that coordinates with other proxies on be-
half of its user. These proxies communicate with the users
using their workstation screens or their hand-held wireless
personal digital assistants (PDAs). The distributed Team-
core architecture is well-suited in this domain, since each

human maintains control on its own Teamcore and its infor-
mation, rather than centralizing it.

Our current focus is facilitating coordination of meetings
within our team or with visitors, at our institute or outside.
For instance if currently an individual gets delayed (e.g.,
because she is finishing up results), other meeting attendees
end up wasting time waiting or attempting to reach those
missing. To help avoid such miscoordination, a Teamcore
proxy keeps track of its user’s scheduled meetings (by mon-
itoring his/her calendar). These meetings are essentially the
team plans to be executed jointlyby the different Teamcores.
Using Steam rules, the Teamcore proxies ensure coherent
beliefs about the current state of the meeting. In particular,
the proxies track the user’s whereabouts (e.g., by using idle
time on the user’s workstations), and automatically inform
other meeting attendees about meeting delays or about ab-
sentees. The proxies also automatically communicate with
user’s PDAs. Additionally, if an absent team member was
playing an important role at the meeting, such as leading a
discussion, Teamcore proxies attempt to get another person
with similar capabilities to take over.

3 Adapting to team member heterogeneity

While the promising results of the applications discussed
above indicate the benefits of founding the integrationarchi-
tecture on a proven model of teamwork, they also indicate
ways in which the architecture must adapt to agent hetero-
geneity. The following subsections present four different
methods of adaptation, each using a suitable technique. The
overall theme in these adaptations is that in interacting with
a heterogeneous team member (who may be human), the
Teamcore proxies either adapt together as a team, or a sin-
gle proxy adapts in the context of the team.

; ��� ��< ���=���>��0?��%'#@	�#A�'#�	B��CD�'�'�+� �'� 4@E

A key challenge in integrating heterogeneous agents is
that they may have differing requirements with respect to the
autonomy of the integration architecture to make decisions
on their behalf. For instance, in the human collaboration
application discussed in Section 2.2, a Teamcore proxy may
commit its human user to substitute for a missing discussion
leader, knowing that its user is proficient in the discussion
topics. However, the human may or may not want the proxy
to autonomously make this commitment. The decision may
vary from person to person, and may depend on many di-
verse factors. Conversely, though, restricting the proxy to
always confirm its decision with the user is also undesir-
able, since it would then often overwhelm the user with
confirmation requests for trivial decisions.

Thus, it is important that a proxy have the right level of
autonomy. Yet, to avoid hand-tuning such autonomy for

each human (or agent), it is critical for a proxy to automat-
ically adapt its autonomy to a suitable level. We rely on a
supervised learning approach based on user feedback. Here,
a key issue that contrasts our work with previous work on au-
tonomy adaptation (e.g., [8]) is that the the level of autonomy
is not only dependent on the individual but also on the the
other agents being integrated. For instance, in the discussion
leader example above, the number of other attendees and
their state might be factors in the autonomy decision. Thus,
in our approach we emphasize the use of knowledge about
other team members (in addition to the preferences of the
integrated agent) in using supervised learning techniques.
Each proxy learns what decisions it can take autonomously,
and what decision need be confirmed with the agent—in the
context of particular scenarios involving other agents.

Specifically, the Teamcore proxies for humans can make
coordination and repair decisions autonomously to aid in
team activities like meetings (e.g., the human-collaboration
domain). Eleven attributes are used in learning, some of
which have been inspired by existing meeting scheduling
systems, such as “MeetingMaker”, which include meeting
location, time, resources reserved etc. However, other at-
tributes describe the state of the other agents participating
in the meeting—e.g., the number of persons attending and
the most important member attending (in terms of the or-
ganizational hierarchy). These attributes are extracted from
the user’s schedule files, organizational charts, etc. In the
training phase, a proxy suggests a coordination decision and
a query as to whether the user would wish it to make such a
decision autonomously. C4.5[7] is used to learn a decision
tree from the interactions with the user.

; ��� ��<=��� �����'#@# � #��������� �

A proxy’s decision, whether autonomous or after con-
sultation with its domain agent, is focused on executing a
team activity. Here, the proxies may dynamically adapt their
team plans at execution time, based on the performance of
member agents. In particular, performance of complex do-
main agents is likely to vary during the lifetime of the proxy
organization. It is thus important that the Teamcore prox-
ies be able to make runtime decisions about plan execution
based on the performance of the domain agents. Indeed, the
Teamcores can (as a team) dynamically decide whether or
not to execute any plans the team programmer marks as op-
tional. Karma gives each Teamcore an initial specification
of its domain agent’s capabilities, includingparameters such
as response time (e.g., average, min/max response times are
recorded from past runs). However, if the actual runtime
performance of a domain agent greatly differs from expec-
tations (e.g., so that the cost in agent response time greatly
exceeds the benefits from its results), the Teamcore prox-
ies together modify the optional plans and avoid using this

particular domain agent.

Teamcores’ plan representation for this decision-making
is similar to that used by existing approaches to decision-
theoretic planning [1]. The Teamcores begin executing an
initial plan sequence that they determine to be optimal given
costs and benefits of including the optional plans in the se-
quence. However, they can dynamically choose to omit
optional plans if a particular domain agent’s response time
should deviate from the expected time cost. For instance, if
they had initially decided to include the route planning plan,
but the route planner is taking longer than expected, the
Teamcores can compare their current plan sequence against
alternate candidates, taking into account the increased cost
of the current response time. If the time cost outweighs
the value of route planning, the Teamcores can change se-
quences and skip the route-planning step, knowing that they
are saving in the overall value of their execution.

In theory, to fully support such decision-theoretic eval-
uation, the developer must specify the value of executing
each team plan in terms of its time cost and possible out-
comes. We would then represent these as a probability
distribution and utility function over possible states, with
Pr

���
1 � � 0 ���	� representing the probability of reaching state

�
1

after executing plan � in state
�

0, and with
 ��� ���� repre-
senting the utility derived from executing plan � in state

�
.

However, to ensure that the decision-theoretic evaluation
remains practical, several approximations are used. First,
the states here are not complete representations of the team
state, but rather of only those features that are relevant to the
optional plans. For instance, when evaluating route plan-
ning, the Teamcores consider only the length of the route
and whether that route crosses a no-fly zone prior to route-
planning. Second, the decision-theoretic evaluation is only
done in terms of the more abstract plans in our team-plan
hierarchy, so developers need not provide detailed execution
information about all plans and Teamcores need not engage
in very detailed decision-theoretic evaluations. Third, for
most plans, the derived utility is simply taken as a negative
time cost. However, in the evacuation scenario, the team
plans corresponding to helicopter flight have a value that
increases when the helicopters reach their destination and
that decreases with any time spent within a no-fly zone.

The probability distribution over outcomes allows the
developer to capture the value of plans that have no inherent
utility, but only gather and modify the team’s information.
For instance, the mission begins either in state

���������
with

an overall route that does not cross any no-fly zones or in
state

����� �������
with a route that does. The developer also

specifies an initial distribution Pr
��� � for the likelihood of

these states. When executing the route-planning plan in
state

����� �������
, the route planner creates a route around no-fly

zones, so we enter state
� �������

with a very high probability.
The developer then provides the relative value of executing

the flight plan in the two states through the utility function
values
 ��� ������� � ��������� � and
 ������� ������� � ���	�
��� � .

The Teamcores use this probability and utility informa-
tion to select the sequence of plans � 0, � 1,. . . ,�� that maxi-
mizes their expected utility. In the evacuation scenario, there
are only four such sequences, because only two team plans
(out of the total of 40) are optional. They reevaluate their
choice only when conditions (i.e., agent response times)
have changed significantly. Thus, whenever a domain-level
agent associated with either of these plans takes longer than
usual to respond, its Teamcore proxy can find the optimal
time (with respect to the specified utility function) for ter-
minating the current information-gathering step and using a
different plan sequence for the rest of the team program.

; ��; ��<=��� �����'#?4 �=� ���+��)��>��0

In addition to executing team activities, Teamcore prox-
ies must also monitor these activities, to detect task ex-
ecution failures and to allow humans to track the team’s
progress. To this end, a Teamcore proxy relies on plan
recognition to infer the state of its team members from
the coordination messages normally transmitted during ex-
ecution. Such messages do not convey full information
about agent state, but can provide hints as to the senders’
state. This plan-recognition-based method is non-intrusive,
avoiding the overhead of the proxies having to continually
communicate their state to other proxies.

Teamcore proxies therefore monitor the communications
among themselves. Applying their knowledge of their own
communication protocols, the proxies identify exchanges of
messages such as those establishing or terminating a team
plan. When a plan is terminated/selected, the monitoring
Teamcore proxies can infer that execution has reached at
least the stage corresponding to the plan. However, in gen-
eral, every plan may not lead to communication, and hence
the plan-recognition process faces ambiguity. For instance,
in the evacuation scenario, the Teamcore proxies communi-
cate initially to jointly select the Obtain-orders plan. To a
monitoring proxy, until a second message is observed, any
of the following steps is a possibility. Unfortunately, such
ambiguity interferes with monitoring.

To reduce ambiguity in recognized plans, the monitoring
system utilizes two adaptation techniques. The first simple
technique is to use learning to predict when messages will
be exchanged. Such predictions can significantly reduce the
number of hypothesized states, since the system knows that
the monitored team will not get into certain states without
a message being received. At first, an inexperienced sys-
tem cannot make such predictions. However, as it observes
messages being sent, it can construct a model of when such
communications will be sent, and use this model to dis-
ambiguate the recognized plans. Here, Teamcore currently

uses rote-learning successfully; but, other techniques will
be investigated in the future.

The second adaptation technique is to have the Teamcore
team actively adapt its own behavior to make monitoring
less ambiguous. Based on the feedback of the monitoring
system, the team of proxies changes its model of communi-
cation costs and benefits, so as to ensure that that the proxies
communicate at specific points during execution at which
ambiguity interferes with the monitoring tasks. For ex-
ample, when monitoring the evacuation-rehearsal scenario,
the human operators often complained that they are unable
to distinguish two important states–the state in which the
team was flying towards (or from) the landing zone, and the
state where the team is carrying out its landing zone opera-
tions. When the monitoring system provided this feedback,
the proxy team communicated when jointly-selecting the
landing-zone maneuvers plan, and the ambiguity in recog-
nized plans was greatly reduced.

; ��� ��<�� � */�+��:
	�# �>��C ��) 4 ������� �7)-#���� ��)-#�45#��&��*

When executing or monitoring team activities, proxies
must also inform the domain agents they represent. How-
ever, agents can differ in the amount of information they
need in order to successfully carry out their team responsi-
bilities. In the evacuation scenario, the Teamcore proxies
sent messages to their domain agents as mandated by the
team plans’ requirements for tasks and monitoring condi-
tions, without considering communication costs incurred by
these messages. More complex agents (including humans)
would rather sacrifice some of these messages rather than
incur high communication costs. For instance, in our hu-
man collaboration scenario, if the system delays a meeting,
it can notify the attendees of this delay by sending messages
to their PDAs. However, wireless message services usually
charge a fee, so some users may prefer not knowing about
small delays. The Teamcore proxies should weigh the value
of the message (to the user, as well as to the overall team
plan) against the cost of sending the message to the user.

In addition, heterogeneous agents may have multiple
channels of communication, each with different character-
istics. In the evacuation scenario, the agents communicated
through a single KQML interface. However, with the human
agents in our collaboration scenario, the Teamcore proxy can
pop up a dialog on the user’s screen, send an email message
to a PDA (if the user has one), or send email to a third party
who could tell the user in person. The dialog box has very
little cost, but it is an unreliable means of informing the user,
who may not be at the terminal when the message arrives.
On the other hand, having a third party tell the user in person
may be completely reliable, but there is a high cost.

We can model a communication channel’s reliabilitywith
a probability distribution over the amount of time it takes

for the message to reach the user through that channel. For
simplicity, our initial implementation represents this time
with an exponential random variable, so that the probability
of the message’s arriving within time

�
is 1 �����

���
, for some

reliability parameter 	 . We model the cost of the channel
and the values of the various messages as fixed values.

Whenever the Teamcore proxy decides to send a message
to the user, it first pops up a dialog box on the screen with
the message. If the user does not explicitly acknowledge the
dialog, the proxy considers using alternate channels. It eval-
uates the expected benefit of using such an alternate channel
by computing the increase in the likelihood of the message
reaching the user, based on the comparative reliabilities of
any channels used so far and those under consideration. If
the product of this increased likelihood and the value of this
message exceeds the channel’s cost, the proxy sends the
message through the new channel.

We have implemented a simple reinforcement learning
algorithm to evaluate the communication channel parame-
ters for individual users. For each channel used for a given
message, the dialog box on the screen (which is always used
during the proxy’s learning phase) allows the user to pro-
vide feedback about whether the proxy’s use of the channel
was appropriate and whether the channel transmitted the
message to the user in time. Feedback on the former (lat-
ter) increments or decrements the channel’s cost (reliability)
parameter as appropriate.

4 Evaluation

For evaluation, we begin with the evaluation of individ-
ual adaptation capabilities, followed by the evaluation of
Teamcore’s basis on a principled teamwork model, and then
of the integrated system. We begin with an evaluation of the
adjustable autonomy component of the Teamcore proxies
(Section 3.1). Here, we used actual meeting data recorded
in users’ meeting-scheduling programs, totaling 58 meet-
ings. Five different data sets were constructed out of these,
each by randomly picking 36 meetings for training data, and
22 for test data (random sub-sampling holdout). Figure 3
shows the accuracy of the adjustable autonomy prediction
plotted against the number of examples used to train the
agent (out of the 36 training examples), for the five different
data sets. For each data set, we observe that the autonomy
learning accuracy increases, usually up to 91%. However,
even using more than 36 examples did not improve the ac-
curacy further. In particular, for meetings rated to be of
“middle importance”, a human’s autonomy response some
occasions appeared inconsistent, possibly due to actual in-
consistency, possibly due to our limited attribute set.

We can also evaluate the benefit of the Teamcores’ run-
time plan modification capabilities (see Section 3.2). Fig-
ure 4 shows the results of varying Ariadne’s response times

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

pre
dict

ion
acc

ura
cy

number of training examples

"dataset1"
"dataset2"
"dataset3"
"dataset4"
"dataset5"

Figure 3. Adaptation of Teamcore autonomy.

on the time of the overall mission execution. In the evacua-
tion plan, Ariadne provides information about missile loca-
tions along a particular route. If there are missiles present,
the Teamcores instruct the helicopters to fly at a higher al-
titude to be out of range. The team could save itself the
time involved with querying Ariadne by simply having the
helicopters always fly at the higher safe altitude. However,
the helicopters fly slower at the higher altitude, so the query
is sometimes worthwhile, depending on the Ariadne’s re-
sponse time. In Figure 4, we can see that when Ariadne’s
response time exceeds 15s, the cost of the query outweighs
the value of the information. In such cases, the Teamcores
with the decision-theoretic flexibility skip the query to save
in overall execution cost (here, equivalent to time, according
to the designer-specified utility function).

Figure 4. Adapting to variable agent performance.

We have also conducted experiments in adaptive moni-
toring. Figures 5 presents the results from experiments run
in the evacuation scenario with and without the two moni-
toring adaptation techniques. The X axis notes the observed
joint-selections/terminations as the task is executed. Each
such observation corresponds to an exchange of messages
among the proxies in which they jointly select or terminate
a team plan. As execution progresses, we move from left
to right along the X axis. The Y axis notes the number of

recognized plans based on the current observations, i.e., a
higher value means greater ambiguity (worse).

Figure 5 shows the results of learning a predictive model
of the communications. We see that without learning, a rela-
tively high level of ambiguity exist which is slowly reduced
as more observations are made, and past states are ruled out.
However, the system cannot make any predictions about
future states of the agents, other than that they are possi-
ble. When the learning technique is applied on-line, some
learned experience is immediately useful, and ambiguity is
reduced somewhat. However, some exchanges are encoun-
tered late during task execution, thus they cannot be used to
reduce the ambiguity while learning. The third line corre-
sponds to the results when the model has been fully learned.
As can be seen, it shows significantly reduced ambiguity in
the recognized plans.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 P

os
si

bl
e

R
ec

og
ni

ze
d

Pl
an

s

Received Communication Messages

No Learning
On-Line Learning

After Learning

Figure 5. Adaptive monitoring: predictive communi-
cation model.

Figure 6 shows the proxy team’s adaptation of its com-
munication behaviors significantly reduces the ambiguity
in recognized plans, to provide better monitoring. The
line marked “Prior to Behavior Adaptation” shows the re-
sults of using a fully-learned model of communications to
disambiguate recognized plans. The user has decided to
disambiguate between the fly-flight-plan and the landing-
zone-maneuvers plans, by causing the agents to explic-
itly communicate about the joint-selection of the landing-
zone-maneuvers plan. This corresponds to an additional
exchange of messages among the agents (observation 24).
This additional observation has an effect much earlier along
task execution, greatly reducing the ambiguity beginning
with observation 16.

We have also conducted preliminary experiments to eval-
uate the suitabilityof our models of the reliabilityand cost of
different communication channels. The results on cost are
shown in Figure 7 (the results on reliability are similar and
not shown). Here, the users received a series of hypothetical
messages and then provided the feedback required for the

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 P

os
si

bl
e

R
ec

og
ni

ze
d

Pl
an

s

Received Communication Messages

Prior to Behavior Adaption
After Behavior Adaption

Figure 6. Adaptive monitoring: adpating behavior.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20
co

m
m

un
ica

tio
n

co
st

example-number

"screen-cost"
"PDA-cost"

"Project-Assistant-cost"

Figure 7. Learning costs of communication channels.

reinforcement learning. Most of the parameters converged
monotonically to an equilibrium value, while the cost of the
user’s screen remained very low. Although it is difficult
to gauge the accuracy of the final values of the model, the
system appeared to make the correct decisions about which
communication channels to use and when to use them.

We may also attempt to evaluate the benefits of Team-
core proxy’s in-built teamwork capabilities. One key alter-
native to such an in-built teamwork model is reproducing all
of Teamcore’s capabilities via domain-specific coordination
plans. In such a domain-specific implementation, about 10
separate domain-specific coordination plans would be re-
quired for each of the 40 team plans in Teamcore[11]. That
is, 100s of domain-specific coordination plans could poten-
tially be required to reproduce Teamcore’s capabilities to
coordinate among each other, just for this domain. In con-
trast, with Teamcore, no coordination plans were written for
inter-Teamcore communication. Instead, such communica-
tions occurred automatically from the specifications of team
plans. Thus, it would appear that Teamcores have signifi-
cantly alleviated the coding effort for coordination plans.

While evaluation of the resulting integrated teams is more
difficult, it is useful to observe that Teamcore-based system
for evacuation rehearsal has often been demonstrated outside
our laboratory. Also, the system for human collaboration is
being constructed for actual use at our institute.

5 Related Work

In terms of related work, Jennings’s seminal work on
GRATE*[4] integration architecture is similar to Teamcore,
in that distributed proxies, each containing a cooperation
module integrate heterogeneous agents. One major dif-
ference is that GRATE* proxies do not adapt to individ-
ual agents, a critical capability if architectures are to in-
tegrate an increasingly heterogeneous, complex agent set.
Also, GRATE* cooperation module is arguably weaker than
Teamcore’s Steam, e.g., Steam enables role substitution in
repairing team activity, which is not available in GRATE*.

The Open Agent Architecture (OAA) [6] is an important
well known agent integration architecture. OAA (and this
family of architectures) provide centralized facilitators to
enable agents to locate each other, and a blackboard archi-
tecture to communicate with each other, but not teamwork
capabilities, or adaptation, as in Teamcore. Also, Team-
core’s distributed approach avoids a centralized processing
bottleneck, and a central point of failure.

Two other related systems are the RETSINA[10] and
IMPACT[9] multi-agent frameworks. While the goals of
these frameworks are somewhat similar to ours, their devel-
opment appears complementary to Teamcore. For instance,
RETSINA is based on three types of agents: (i) interface
agents; (ii) task agents; and (iii) information agents. Mid-
dle agents allow these various agents to locate each other.
Thus, as Section 2 discusses, Karma can use RETSINA
middle agents for locating relevant agents, while adaptive,
infrastructural teamwork in our Teamcores may enable the
different RETSINA agents to work flexibly in teams.

Tidhar [14] used the term team-oriented programming
to describe an implemented framework specifying team be-
haviors based on team plans, coupled with organizational
structures. While Tidhar’s work has influenced ours, Tid-
har does not address the issue of integrating heterogeneous
agents, or architectures for integrating such agents or their
adaptation.

6 Conclusion

With software agents, smart hardware devices and di-
verse information appliances coming into wide-spread use,
integration architectures that allow such diverse systems to
work together are becoming increasingly important. The
need to identify key design principles underlying such ar-
chitectures is therefore critical. This paper investigates some
of these principles through an integrated, adaptive architec-
ture, Teamcore, which is evaluated in two different domains,
using a diverse set of software and hardware devices. A
key lesson learned from our work is that despite the hetero-
geneity of agents integrated, sound principles of multi-agent
interactions—in our case a principled teamwork model—
can serve as a foundation of integration architectures. Such

principled foundations can enable rapid development of ro-
bust integrated systems. Another key novel lesson is adap-
tive capabilities are critical in the integration architecture to
adapt to the requirements of heterogeneous agents. Adapta-
tion is necessary in different ways, which we demonstrate in
four areas: (i) adaptive autonomy; (ii) adaptive execution;
(iii) adaptive monitoring; and (iv) adaptive information de-
livery. There are several avenues for future work, including
enhancing the learning mechanisms for quicker and more
accurate adaptation.

Acknowledgements

This research was supported by DARPA Award no. F30602-
98-2-0108. The effort is being managed by AFRL/Rome research
site. We thank Phil Cohen, Katia Sycara and Steve Minton for
contributing agents used in the work described here.

References

[1] J. Blythe. Planning with external events. In Proc. of the
Internat’l Joint Conf. on Artif. Intell., pages 94–101, 1994.

[2] J. Hendler and R. Metzeger. Putting it all together – the
control of agent-based systems program. IEEE Intelligent
Systems and their applications, 14, March 1999.

[3] M. N. Huhns and M. P. Singh. All agents are not created
equal. IEEE Internet Computing, 2:94–96, 1998.

[4] N. Jennings. Controlling cooperative problem solving in in-
dustrial multi-agent systems using joint intentions. Artificial
Intelligence, 75, 1995.

[5] N. Jennings. Agent-based computing: Promise and perils. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI-99), August 1999.

[6] D. L. Martin, A. J. Cheyer, and D. B. Moran. The open
agent architecture: A framework for building distributed
software systems. Applied Artificial Intelligence, 13(1-2):92–
128, 1999.

[7] J. R. Quinlan. C4.5: Programs for machine learning. Morgan
Kaufmann, San Mateo, CA, 1993.

[8] S. Rogers, C. Fiechter, and P. Langley. An adaptive interac-
tive agent for route advice. In Third International Conference
on Autonomous Agents, Seattle,WA, 1999.

[9] T. Rogers, R. Ross, and V. Subrahmanian. Impact: A sys-
tem for building agent applications. Journal of Intelligent
Information Systems, October 1999.

[10] K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng.
Distributed intelligent agents. IEEE Expert, 11:36–46, 1996.

[11] M. Tambe. Towards flexible teamwork. Journal of Artificial
Intelligence Research (JAIR), 7:83–124, 1997.

[12] M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem, G. Kaminka,
S. Marsella, and I. Muslea. Building agent teams using an
explicit teamwork model and learning. Artificial Intelligence,
110:215–240, 1999.

[13] M. Tambe, D. Pynadath, and N. Chauvat. Building dynamic
agent organizations in cyberspace. IEEE Internet Computing,
4(2):65–73, 2000.

[14] G. Tidhar. Team-oriented programming: Social structures.
Technical Report 47, Australian Artificial Intelligence Insti-
tute, 1993.

