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Abstract�

Teamwork is a critical capability in multi�agent environments� Many such en�
vironments mandate that the agents and agent�teams must be persistent i�e�� exist
over long periods of time� Agents in such persistent teams are bound together by
their long�term common interests and goals�

This paper focuses on �exible teamwork in such persistent teams� Unfortunately�
while previous work has investigated �exible teamwork� persistent teams remain
unexplored� For �exible teamwork� one promising approach that has emerged is
model�based� i�e�� providing agents with general models of teamwork that explicitly
specify their commitments in teamwork� Such models enable agents to autonomously
reason about coordination� Unfortunately� for persistent teams� such models may
lead to coordination and communication actions that while locally optimal� are
highly problematic for the team�s long�term goals� We present a decision�theoretic
technique based on Markov decision processes to enable persistent teams to over�
come such limitations of the model�based approach� In particular� agents reason
about expected team utilities of future team states that are projected to result from
actions recommended by the teamwork model� as well as lower�cost �or higher�cost�
variations on these actions� To accomodate real�time constraints� this reasoning is
done in an any�time fashion� Implemented examples from an analytic search tree
and some real�world domains are presented�

Keywords�Multi�agent systems� Teamwork� Persistence� Markov decision processes

�� Introduction

Teamwork is critical in many multi�agent environments� such as� inter�
active simulations for training and education����� RoboCup robotic and
synthetic soccer����� interactive entertainment����� multi�robot deep sea
or space exploration or reconnaissance� and internet�based informa�
tion integration	 An increasingly important requirement in many of
these domains is that of persistent teams� i	e	� teams that persist over
long periods of time	 For instance� consider virtual environments for
training����	 Here� the Advanced Concepts Technology Demonstration
battle
eld simulation exercise �henceforth� referred to as ACTD� jointly
conducted in the US and Europe in October �

�� lasted for multiple
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days	 Participating teams of synthetic pilots were required to persist for
at least a single mission execution� which lasted several hours	 Ideally�
a pilot team should have persisted through not one� but multiple such
missions� without requiring a human�in�the�loop to debug behaviors
between missions	 The RoboCup soccer tournament also requires player
teams �robotic or synthetic� to persist for at least a full game����	 Teams
of robotic vehicles for deep sea or space exploration or reconnaissance
have similar requirements for persistence	 For instance� future robotic
missions to Mars will require teams of robots to persist for multiple
years� continually working together� to accomplish long�term mission
goals	 Indeed� we expect the need for team persistence to continually
grow� as increasingly complex large�scale applications make periodic
human intervention extremely di�cult� costly and tedious	

While such persistence is a matter of degree �team longevity in
di�erent domains may vary�� a persistent team contrasts with a team
working together to accomplish a speci
c temporary joint goal� e	g	�
the interaction of personal software agents to set up a meeting among
their users���� or cooperative negotiations between two software�agents
aboard �future�generation� aircraft to avoid a collision����	 Indeed� truly
persistent teams of the future would require us to address a range of
novel issues for teams	 Clearly� one key issue is robust team perfor�
mance over extended time periods �without requiring a human�in�the�
loop�	 Another key issue is a team�s organizational adaptation with
experience in a given environment� for instance� by changing tasks
assigned to di�erent individuals or subteams��� ���	 Such an organiza�
tional change would not be meaningful in a non�persistent team� since
it may not persist to accumulate experience as a team	 Persistent teams
also involve more abstract issues� such as establishing a team identity�
which encompasses certain �organizational culture� and�or standard�
operating�procedures �that may evolve over time�	 An interesting issue
then is to maintain this team idenity and the features it encompasses
over time� particularly in the face of team adaptations and changing
team membership	 Establishment and maintenance of a team identity
are irrelevant for a non�persistent team	

We hypothesize that the key challenges in persistent teams arise
from re�ective persistence	 That is� persistence in itself is not par�
ticularly signi
cant� indeed� team members could together just wait
�executing �no ops�� for extended periods	 Instead� the key issue of
interest is a team�s re�ection and reasoning about its persistence� caus�
ing appropriate modi
cations in the team�s behaviors	 Such re�ection
could be done o��line by a human team designer� planning for all of
the contigencies ahead of time	 However� such o��line re�ection may
be problematic in domains with increasing complexity and scale� given
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the increased complexity of o��line design����	 Instead� for improved
�exibility in such domains� the team itself would need to re�ect upon
both its past persistence �e	g	� for team adaptation and reorganization
from experience� and future persistence �e	g	� for appropriate resource
allocation�	

In this paper� we certainly do not intend to address the entire range
of novel issues brought forth by persistent teams� as mentioned above	
Instead� we take an initial step� focusing on one key issue� re�ective
future persistence for improved resource allocation	 That is� teamwork
actions in a persistent team� including coordination� communication
or task�allocation actions� must be driven by the team�s long�term
common interests and goals	 Thus� a persistent team must not ex�
haust all its resources in coordinating for its current joint goal� if
those resources are better preserved for the team�s longer�term goals	
Analogously� however� a persistent team may need to expend more than
the necessary resources on its current joint activity� to better serve the
team�s longer term goals	 One example of the latter phenomenon is
team reorganization in anticipation of future tasks� as seen in Section
�	

Unfortunately� while previous work has recognized the importance
of persistence in individual agents����� it has so far failed to explore the
issues in persistent teams	 Nonetheless� foundational issues in �exible
teamwork in general are being investigated	 One promising approach
that has emerged focuses on providing agents with explicit models of
teamwork���� ��� �
�	 These models are based on previous theories
of teamwork���� �
� ���	 They enable agents to autonomously rea�
son about coordination and communication in teamwork� providing
improved �exibility	 Such reasoning is driven by the model�s explicit
speci
cation of team members� ideal behaviors in teamwork	 However�
teamwork theories and models are not explicitly motivated by persis�
tence	 Thus� as illustrated in Section �� they may specify coordination
actions that while locally optimal� consume enough of team resources
to jeopardize the team�s longer term goals	

This paper focuses on enabling persistent teams to overcome such
limitations in teamwork models	 In particular� in the complex� dy�
namic domains of interest� it is not possible to optimally plan all
coordination activities in advance	 Therefore� team members dynam�
ically re�ect upon future persistence when coordinating	 Essentially�
members compute the long�term expected utility of the future im�
pact of the coordination action suggested by a teamwork model	 They
also compute such utilities for variations of the suggested action� that
tradeo� teamwork quality for resource consumption	 Team members
then select coordination or communication actions that maximize long�
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term expected team utility	 Given dynamic domains� team members
dynamically change their actions with new information	 Of course� one
key challenge here is e�cient operationalization of the above idea	 To
this end� we propose a state�space formalism to model possible fu�
ture team states and actions	 A complete search of this state space
is however impractical� since �i� a persistent team implies a search
extending to all possible future team states� and �ii� hostile situations
such as battle
elds prohibit agents from prolonged deliberation with
no action	 Therefore� an any�time��� search method is employed� based
on bounded�lookahead search	

The paper demonstrates the above approach in three domains� and
analyzes situations involving persistent teams where this approach will
dominate a pure teamwork�model�driven approach	 While a general
analysis is provided� the paper focuses in particular on the STEAM
model of teamwork���� ���	 STEAM is chosen since it is a state�of�the�
art teamwork model� that has been successfully deployed in several real�
world domains	 For instance� teams of synthetic attack�helicopter pilots
based on STEAM successfully participated in the ACTD simulation ex�
ercise mentioned above����	 STEAM�based soccer�players participated
in the RoboCup�
� and RoboCup�
� tournaments� winning the third
place prize in RoboCup�
� and coming in fourth in RoboCup�
� in over
�� teams that participated in both tournaments���� ���	 Nonetheless�
our investigation has broader applicability	 STEAM itself is based on
the joint intentions theory����� and is also in�uenced by the Shared�
Plans theory����	 Thus� lessons learned here are applicable to other
teamwork models based on such theories� such as the joint responsibility
model���� which is also based on joint intentions	

The rest of this paper is organized as follows� Section � provides
background on STEAM	 Section � discusses the implications of the
use of the teamwork model in persistent teams	 Section � discusses
STEAM�L that uses a representation of Markov decision processes
�MDP� and 
nds approximate solutions to the MDP by value iteration
using any�time lookahead search	 Section � presents experimental re�
sults from STEAM�L from one arti
cial domain and two real domains	
Section � discusses related work	 Finally� Section � summarizes and
presents issues for future work	

�� Background� STEAM

There are two key aspects of STEAM that are relevant for persistent
teams	 First� it provides an implemented framework for team develop�
ment	 Second� it provides an explicit� general teamwork model for team�
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work reasoning during execution	 The team development framework is
based on two separate hierarchies� each with key constraints�

� Team organization hierarchy and roles� In STEAM� a team may
have a �at or a hierarchical organization �where a team may be
recursively composed of subteams�	 Thus� for instance� a company
of attack helicopter pilots �� helicopters� may be composed of two
teams� which in turn consist of individuals	 A critical feature of
this organization hierarchy is that it may be based on particular
roles	 Roles are of two types�

Persistent roles� These are long�term assignments of roles to
the individuals or subteams in the organization	 For instance�
in the synthetic attack�helicopter domain� a team may be
designated as the scouting team� or an individual may be
designated the commander	 This assignment typically will not
change in the short term	

Task�speci�c roles� These are shorter�term assignments of roles�
based on the current task and situation	 For instance� in for�
mation �ying in the attack�helicopter domain� the assignment
of the leader of the formation is determined based on the type
of formation	 For instance� a particular helicopter H� may
be the leader when �ying into the battle
eld� but another
helicopter H� may be the leader of the formation when �ying
out of the battle
eld	

The assignment of roles to individuals or subteams is based on
their capabilities	 However� this assignment may not be provided
ahead of time� so that individuals may need to volunteer or be
requested to 
ll in the roles	 Furthermore� if an individual�s or
subteam�s capability degrades during performance� roles may be
reassigned �as discussed in more detail later in this section�	

� Team activity hierarchy� STEAM relies on an explicit represen�
tation of team activities in the form of team operators or reac�
tive team plans	 For a concrete example� consider the operator
�reactive�plan� hierarchy shown in Figure � for synthetic helicopter
pilots developed in STEAM	 This operator hierarchy is similar to
normal reactive�plan hierarchies in architectures such as RAPS�
��
PRS����� or Soar����	 STEAM is itself currently realized as an
enhanced version of Soar����	 However� the key novelty here is
the team operators �reactive team plans� in this hierarchy	 Thus�
operators shown in brackets� i	e	� ��� such as �Engage� are team op�
erators �others are individual operators� which express an agent�s
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own activities�	 At any time� only one path through this hierarchy
is active in a pilot agent	

As with individual operators� team operators also consist of� �i�
precondition rules to help activate an operator� �ii� application
rules to apply active operators� and �iii� termination rules to ter�
minate active operators	 However� while an individual operator
applies to an agent�s private state �an agent�s private beliefs�� a
team operator applies to an agent�s team state	 A team state is
the agent�s �abstract� model of the team�s mutual beliefs about
the world� e	g	� the team�s currently mutually believed strategy	
There is of course no shared memory� and thus each team member
maintains its own copy of the team state� and any subteam states
for subteams it participates in	

High
level

Low
level
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Mask

Unmask
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EXECUTE−MISSION
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Figure 	� Attack helicopter domain	 Portion of team operator �reactive�plan�
hierarchy� Operators enclosed in 
 � are team operators� others are individual
operators�

The key here is that there is an organization hierarchy independent
of the task hierarchy� with an implicit expectation that the organiza�
tion will be persistent	 This paper will focus on making explicit the
implications of this previously implicit expectations of persistence	�

The mapping between the two hierarchies mentioned above is cen�
tered on roles	 In particular� suppose a team is executing a team opera�
tor� with several suboperators	 Then� the role of a subteam or individual
in that team may constrain the suboperators it can execute in service
of the team operator	 Thus� if a team � is executing a team operator
�OP�� then the assignment of a role �i to a member � of �� constrains
� to a certain subset �i of the suboperators of �OP�	 Furthermore� roles
may have speci
c coordination relationships among them	 For instance�

� Note that STEAM does not prohibit two agents from di�erent parts of the
organization to form a non�persistent team� if this is required�
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the execution of operators for one role may be dependent on operators
for another role	 The concept of roles has been discussed before in the
multi�agent literature��
�	 The key in STEAM is the instantiation of
this concept as part of the team organization hierarcy� with its use as
a constraint on the selection of the sub�operators of a team operator�
and its use in expressing coordination relationships	

The second� and perhaps the more important contribution of STEAM
is that it provides an explicit� general�purpose teamwork model� which
encode domain�independent directives or actions that explicitly out�
line team members� responsibilities and commitments in teamwork	
In essence� it attempts to provide agents with commonsense knowl�
edge of teamwork� that would enable them to autonomously reason
about coordination and communication in teamwork	 Thus� it aims to
substantially reduce the e�ort in encoding agent teams� and improve
teamwork �exibility	 STEAM uses the joint intentions theory���� �� as
the basic building block of teamwork� but it is also strongly in�uenced
by the SharedPlans theory���� ���� and constraints realized in practical
applications	

Each agent runs the STEAM teamwork model separately and no
shared memory is assumed	 The tie between the teamwork model run�
ning in each agent and the previously discussed team operators is
as follows� when executing �sub�team operators� each agent brings to
bear all of STEAM�s teamwork reasoning� which facilitates its com�
munication and coordination with its teammates	 Currently� STEAM�s
teamwork knowledge could be categorized into three classes of domain�
independent teamwork actions	 The 
rst class is coherence preserving or
CP actions	 These require that team members communicate with others
to ensure coherent initiation and termination of team operators	 Thus�
for instance� if an agent privately discovers that the currently selected
team operator is either achieved� or unachievable� or irrelevant� then it
must not just terminate the team operator on its own	 Instead� it must
communicate this unachievability information about the team operator
to its teammates� so that teammates do not waste their resources� and
that the team as a whole coherently terminates the team operator	 The
second class of monitor and repair or MR actions detect if a team task
is unachievable due to unexpected member �individual or subteam�
failure	 It then leads the team into reorganization � via reassignment
of roles � to overcome this failure	 As an example of STEAM�s applica�
tion� consider the synthetic attack�helicopter pilot team in a situation
where the pilot team is �ying in formation	 If one of the helicopter pilots
sees some unanticipated enemy vehicles on their �ight route� STEAM�s
CP actions require that this pilot inform its teammates about the en�
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emy units �since it makes the relevant team operator unachievable�� so
that the team reacts coherently to the enemy	

STEAM requires the third set of selectivity�in�communication or SC
actions because attaining coherence via CP actions for each team opera�
tor can sometimes cause excessive communication	 Improved execution
strategies� that aim at attaining coherence without always invoking
CP actions� can reduce such communication overheads	 To this end�
STEAM relies on decision�theoretic communication selectivity	 The key
idea is to explicitly reason about the costs and bene
ts of di�erent
techniques for attaining mutual beliefs during the execution of CP or
MR actions	 For instance� in some cases� if there is high likelihood
that the relevant information can be obtained by other teammates via
observation �even if with a slight delay�� then costly communication
can be avoided	 In contrast� communication becomes essential if there
is low likelihood that teammates can obtain the relevant information
independently� and if there is a high cost to not making this information
available to the teammates	 The key here is safe and e�cient execution
of a decision to attain mutual belief	

STEAM�s teamwork model has also been currently encoded in the
Soar integrated architecture� in the form of ��� rules����	 These rules�
with documentation� traces and pointers to their usage are available at
�www�isi�edu�teamcore�tambe�steam�steam�html�	

�� Implications for Persistent Teams

STEAM�s CP and MR actions are focused on optimally performing
its currently active team operators	 In fact� STEAM uses decision�
theoretic techniques in its SC actions to optimize execution costs of
CP actions	 Unfortunately for a persistent team� STEAM does not
reason about the longer�term impact of its optimal execution of the
suggested CP and MR actions	 For instance� to execute a CP actions�
a helicopter pilot P� may need to �y its helicopter to the location of
other helicopters to communicate information regarding enemy vehi�
cles	 Since such direct communication avoids breaking radio silence� it
may optimally ful
ll the helicopter team�s current joint goal of scouting
for enemy vehicles	 However� from a long�term perspective � where the
helicopter team must next attack the enemy vehicles � P��s locally
optimal actions may consume precious time� so that the enemy vehi�
cles move out of range� and can no longer be attacked	 Furthermore�
when executing CP actions STEAM does not consider the possibility
of achieving partial coherence in a team� given the resource cost of
attaining full coherence	 For instance� coherence may be attained in
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only a portion of a team �say ��� of the team members�� rather than
the entire team	

Thus� a key issue for a persistent team is that the resources allocated
�or not allocated� in CP or MR actions may be highly detrimental
for its longer�term joint goals	 The following examples provide further
illustration of such problems�

�	 In the ACTD simulation �see Section ��� when a helicopter�pilot
team reaches its simulated battle
eld� it typically establishes a
joint intention to plan attacking positions	 Once such positions are
planned� helicopters �y to those positions	 At this point� agents
establish a joint intention to engage the enemy	 In one simulation
run� when the helicopters reached the battle
eld� the enemy began
advancing towards them	 Unfortunately� the CP action to estab�
lish a joint intention to plan attacking positions took a signi
cant
amount of time � some helicopters were not ready	 Thus� before
the agents could ready themselves to engage the enemy� the enemy
was close enough to be able to shoot down some of the helicopters	

�	 In the RoboCup soccer simulation domain� three or more out of
�� soccer players act as defenders� to defend their goal from the
opponents	 Initially� the defenders establish a joint intention to
look out for an attack by the opponents	 The players have very
limited vision� and thus� not all can simultaneously see an attack	
If any one defender spots an attack� it must inform others that
their current joint intention is achieved �CP action�� so they can all
jointly block the attack	 However� since defenders can be positioned
far apart� and since a player�s shouting has limited range� signi
cant
time would be consumed if a player was to move to inform others	
Meanwhile� the attacking player can bypass the defenders� thus
defeating the defender�s next joint goal of blocking the attackers	

�	 In the ACTD simulation� the helicopter team is typically divided
into two subteams	 One scout subteam� consisting of two helicopters�
is 
rst sent forward to scout the battle position� while the second
attack subteam remains hidden from the enemy	 Upon completion
of scouting� the two subteams together attack the enemy	 In one
run� one helicopter in the scout subteam crashed	 Since this did
not cause the relevant joint intention to be unachievable �one scout
helicopter was still �ying�� noMR action was executed to reorganize
the subteams	 However� human experts suggested reorganization	
In particular� given a threat to the remaining scout helicopter in
the battle position� they suggested that one helicopter from the
attack subteam should join the scout subteam	
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In the 
rst two cases� a key problem is that STEAM would insist on
pursuing CP actions to reach a coherent team state� even though these
actions consume a signi
cant amount of time �resource�	 Furthermore�
STEAM does not reason about the long�term impact of the resources
consumed by these CP actions	 Indeed� this resource consumption is
highly problematic for the team�s longer�term goals	 In the third ex�
ample� STEAM does not execute an MR action� since the current team
operator is still achievable� and� once again� STEAM does not reason
about the long�term impact of this decision � that without an MR
action in its present state� there is a threat to its team member in the
future	

�� Reasoning about Persistence

To overcome the limitations of STEAM presented in Section �� we
have developed an approach called STEAM�L �short for STEAM with
lookahead�	 STEAM�L uses a decision�theoretic approach� enabling a
persistent team to re�ect upon its future� and maximize long�term
expected team utility	 Just as with STEAM� each team member runs
STEAM�L separately �again no shared memory is assumed� � thus�
each member computes the expected utility of the future impact of
the coordination action suggested by the teamwork model �STEAM�	
STEAM�L also computes expected utility of variants of the suggested
coordination action� where the variants may tradeo� team coherence
for resource consumption	 Thus� for instance� variants of a CP action
may inform only a certain percentage of team members rather than all
of the team	 While this variant may lead to a lower�quality team state
in the short term �due to reduced coherence�� resources saved lead the
team to a better state in the long term	 Such a CP variant is an illus�
tration of STEAM�L�s introduction of �exibility in the commitments in
teamwork	 Thus� while STEAM�s original decision�theoretic reasoning
�SC actions� does not change the basic commitments of individual
joint actions � it only attempts to minimize the execution costs for
embedded CP actions � STEAM�L�s reasoning can sometimes change
the nature of these commitments	

In the following� Section �	� discusses the representation adopted in
STEAM�L� while Section �	� discusses STEAM�L�s search algorithm	

�	�	 State space and Markov decision process

For e�cient operationalization of the lookahead reasoning in STEAM�
L� we have cast it as a Markov decision process �MDP����� in the

FINAL�tex� ���������� ������ p��




Persistent Teams ��

state space of team�s future states	 Given that the lookahead reasoning
involves uncertain actions and outcomes� it 
ts the MDP framework
very well� allowing us to leverage the extensive research in MDPs	
More speci
cally� a state in this state�space is an agent�s model of
the team�s overall state	 It includes both the team�s mutual belief and
the private beliefs of team members	 However� not all private beliefs of
other members need be modeled� but only those relevant to initiation
and termination of the relevant team operators	 At a state� an agent
simulates the execution one of the available operators �by the team��
which corresponds to the actions in the MDP	 Since agents may spend
resources when taking actions� for instance 
ring a missile during a
combat� there are costs associated with actions	 Furthermore� due to
uncertainty in the real world� the outcomes of executing team operators
�agents� actions in our MDP� are not predictable� and agents can only
estimate the likelihood of particular outcomes	 Thus� an action may
lead the current state to one of the possible future states �outcomes�	
We assume that agents� selection of a particular action depends only
on the current state	 Therefore� the overall lookahead search can be
naturally cast as a MDP� in which the MDP�s states are the team�s
future states� state transitions correspond to the team�s current and
future executable operators or actions� and transition probabilities are
the probabilities of going from one state to another after an action	

To di�erentiate two types of sources of costs� we adopt a decision
tree ���� representation in this research� although an MDP is a more
compact representation of the decision tree	 There are two types of
nodes that need to be modeled	 The 
rst type� called action nodes� are
where agents can apply actions	 The second type are outcome nodes�
where agents wait for the outcome of their actions	 The outcome nodes
are transient� meaning that they do not correspond to stable states	
They are introduced merely for the clarity of representation	 Figure �
illustrates a simple state space� where square and circle nodes represent
action and outcome nodes� respectively	 Each action node may have
multiple possible actions	 Since agents may expend resources when
taking actions� there is a resource cost associated with an edge outgoing
from an action node	 The number on an outgoing edge from an outcome
node is the probability that an outcome occurs	 As seen in the 
gure�
action nodes are followed by outcome nodes� and vice versa	 Associated
with a frontier node in the tree is the 
nal situation cost	

State spaces are in general graphs	 In this research� we concentrate
on state spaces whose structures are trees for two reasons	 First� a
state�space tree is still very general� as it can used to represent a
state�space graph with duplicate nodes����	 Second� tree structures are
conceptually simpler to address� at least in this initial step to address
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persistent teams	 This representation may be modi
ed for e�ciency�
but that remains an issue for future work	
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OUTCOME NODE

.........
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Figure �� Decision tree search�

The actions in this search are of two types	 The 
rst type are all
teamwork�related actions suggested by STEAM� speci
cally CP actions
and MR actions	 STEAM�L focuses on agents� decisions with respect
to CP and MR actions� and it explores their variations in its lookahead
search	 For instance� a CP action may require full coherence for a team
operator such as �Engage�	 In STEAM� this requires the entire team to
commit to �Engage�� without regard to the time it takes to ensure the
entire team�s commitment	 A variation of this CP action may suggest
partial coherence	 Partial coherence may choose to obtain commitments
within a 
xed time limit	 Such a partial coherence action may be
estimated to obtain commitments from ��� of the team within the

xed time limit� with high likelihood ��	��	 Another variation of the CP
action may suggest no coherence	 With no coherence� any commitments
may be those that arise implicitly	 Other such variations can also be
considered in the lookahead search in STEAM�L	 These variations on
CP and MR actions enable a STEAM�L agent to reason about the
coordination for the entire team �or subteam� executing the relevant
team operator �e	g	� �Engage��	 That is� the search is not focused on its
own individual coordination	
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Figure � depicts the search in progress	 Three variations of the CP
actions are shown	 Starting from the state S�� the partial coherence
action is shown with �	� probability to reach state S�� while with �	�
probability to reach state S�	 State S� in this case obtains commitments
from a lower percentage of the team than state S�� so that S� has a
higher situation cost than S�	 No�coherence is shown to achieve di�erent
results than partial coherence	 Full coherence is the third option	 It has
a very high probability of obtaining commitments from the entire team
��	

�� which has no situation cost associated with it	 These numerical
estimates of likelihood focus on just the teamwork actions �as discussed
below� we do not consider variations of domain�speci
c operators�	
These estimates are based on heuristics that re�ect our prior expe�
rience	 Fortunately� since these actions are domain�independent� the
relevant likelihood estimates may not necessarily be re�engineered for
each new domain	 Furthermore� they need not be extremely accurate	
Indeed� as we illustrate in later sections� the lookahead may be tolerant
of errors	
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Figure 
� STEAM�L�s decision tree search in the attack�helicopter domain�
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The second type of actions in STEAM�L�s lookahead search are
domain�speci
c actions� such as the �Engage� operator� or the �replan�

ring�position� operator	 In principle� variations of these actions could
also be explored in the lookahead search� but that will be outside the
scope of this paper	 Thus� as shown in Figure �� these actions �such as
�replan�
ring�position�� are assumed to achieve the desired result with
the probability of �	�	 Furthermore� given the hierarchy of domain�
speci
c operators provided� STEAM�L does not simulate the e�ect
of every low�level action	 Instead� it searches over abstract high�level
operators	

STEAM�L�s lookahead search process is separate from the actual
execution of both the team operators and STEAM�s CP�MR actions�
the lookahead is truly attempting to lookahead prior to the execution	
Thus� to realize STEAM�L� new lookahead search code had to be added
to STEAM	 This lookahead search is well�informed about teamwork ac�
tions� and thus will automatically insert the relevant teamwork�related
CP and MR actions in the search� e	g	� full�coherence� partial�coherence
and no�coherence shown in Figure � occur prior to the �replan�
ring�
position�	 However� at present� the expected chain of execution of the
domain�speci
c operators has to be pre�de
ned by hand for STEAM�
L�s lookahead search� e	g	� the team operator �replan�
ring�position� is
typically followed by an individual operator for get�to�
ring�position�
and so on	 In the future� providing abstract models of the operators
�e	g	� abstracted preconditions� may enable STEAM�L to automatically
infer the expected execution path of the domain�speci
c operators as
well	

�	�	 Value iteration using any�time lookahead search

In the search tree of Figure �� an agent selects among the multiple
possible actions at a state by computing expected utilities of di�erent
actions� and selecting an action that maximizes projected long�term
team utility	 This long�term utility re�ects an agent�s view of its team�s
future states� combining the cost of the resources consumed and the
rewards obtained in the future states that the agent team may reach	
In terms of the search tree mentioned earlier� the expected utility of a
node �state� is determined by static node cost evaluation of the search
frontier and node cost backup rules� which are discussed below	

Even though the number of team�s future possible states is generally
huge� agents must compute expected utilities e�ciently in an anytime
fashion� and have a decision on next action ready quickly to respond
to unexpected events	 To this end� STEAM�L carries out an iterative�
deepening lookahead search ����	 STEAM�L is always activated at a
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state where a decision on the next CP or MR action needs to be made	
When a decision needs to be made� the decision from the last iteration
of lookahead search will be used	 The algorithm runs in iterations with
each subsequent iteration searching to a deeper depth than the previous
iteration	 The 
rst iteration runs to depth one or a depth that is deter�
mined by an estimate on the total time available for lookahead search	
Each iteration of the algorithm runs a state�space search algorithm�
such as best�
rst search or depth�
rst search	 In our experiments� we
use depth�
rst search due to its small space requirement	 When the
search reaches the frontier� it applies a static node evaluation to com�
pute the node cost f�n� of node n	 The costs of the frontier nodes are
then rolled back up to the root	 For internal node n� its node cost is
backed up from the costs of its children n�� n�� � � � � nb as follows�

f�n� �

�
minff�n��� f�n��� � � � � f�nb�g� if n is an action node�P

b

i�� pif�ni�� if n is an outcome node	
���

The algorithm terminates whenever it is required to provide a deci�
sion on the next action� which is a move from the current state toward
the best child state� the one with the smallest expected cost in the most
recent iteration	

The static node evaluation or static node cost f�n� of a node n is a
function of the node�s resource cost r�n� and situation cost s�n�� i	e	�
f�n� � F �r�n�� s�n��� where F ��� is a function	 The resource cost r�n�
is the total cost of consumed resources� such as time used and operators
applied� in order to reach the current node n� and the situation cost
assesses the situation quality of the node� such as the inability of one
or more team members to participate in a joint activity at that node	
STEAM�L computes expected utility of future states� where expected
utility is computed as the minimum expected backup cost� using the
backup rules of ���	

For an example of STEAM�L�s computation� consider the example in
Figure �	 With the 
rst iteration� STEAM�L expands states S� through
S�	 Here� it returns full�coherence as the best action at state S�� since
it is one that maximizes expected utility� i	e	� it is the action with
the smallest expected cost	 In the next iteration� STEAM�L expands
the next frontier� considering the domain�speci
c action �replan�
ring�
position�� and considering the situation costs of the nodes along that
frontier	 In the third iteration� further actions will be explored	 As the
search horizon deepens� full�coherence may no longer be returned as
the action at S� that maximizes the expected utility	 Indeed� as seen
in the 
gure� full�coherence appears to lead to a much higher situation
cost	
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The iterative process of lookahead search corresponds to the value
iteration method for solving 
nite horizon MDP problem ����	 Start�
ing with lookahead depth one in iteration one� the process continues
to extend its lookahead horizon until it reaches the depth of a goal
node	 In this process� a lookahead of depth k populates values at a
search horizon k steps back to the initial starting state	 In essence� the
iterative lookahead search is an approximation method for computing
the optimal long�term expected team utility� which determines action
selection	 The approximation comes from two factors	 First� goal states
and their horizons �their depths in the search tree� are unknown a
priori	 Second� due to time pressure and unknown goal depth� iterative
lookahead search progressively extends its search horizon� and assumes
that the quality of heuristic evaluations at a search frontier improves
with the search frontier approaching goal states	 Given the informa�
tion within the current lookahead horizon� the action taken based on
Equation ��� is optimal	 This is because this equation follows Bellman�s
principle of optimality for stochastic dynamic programming ���� which
ensures that the action determined by the value at the root node is
optimal within the current search horizon	

While both STEAM and STEAM�L share the same theoretical foun�
dations in their teamwork model� they have two main di�erences	 First�
STEAM�L conducts a lookahead search� while STEAM�s response is
compiled in based on an examination of the direct outcomes from
an action	 The signi
cant advantage of looking ahead is that it can
discover a trap within the lookahead horizon� so that agents can avoid
a path leading to the trap	 Indeed in a scenario where a disastrous
situation is just a few steps away from a favorable action� the original
STEAM can fail	 One such case is the helicopter�pilot team joint attack
example discussed in Section �	 Second� given the resource costs of
STEAM�s teamwork actions� STEAM�L explores lower�cost �but locally
suboptimal� variations of those actions	 STEAM�L thus adds to the
coordination options available to the agents� e	g	� partial coherence
rather than full coherence� thus introducing additional �exibility in
teamwork	

Unfortunately� STEAM�L�s lookahead and additional coordination
actions could also lead to an increased possibility for disagreement
among agents� beliefs on the right teamwork coordination action to
apply	� In particular� while such disagreements are a possibility in
STEAM����� the increased �exibility in STEAM�L could potentially
exacerbate the situation	 Such disagreements could arise because each
agent� with its own STEAM�L reasoning� could come to a di�erent

� We thank the reviewers of the AAMAS special issue for raising this concern�
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conclusion about coordination	 For instance� one agent may believe
that partial coherence is the right action at a given time� while another
believes that no coherence is a better action	

In practice� such disagreements may not be as problematic for several
reasons	 First� the disagreements are not expected be common	 Indeed�
our earlier practical experience with STEAM� and current experience
with STEAM�L indicates that agents do not frequently reach widely
varying conclusions about the right coordination action to follow	 This
is because agents� estimates of likelihoods and situation costs do not
vary widely� at least in homogeneous teams� where STEAM�L is being
applied	 Second� small variations in estimates may not cause di�erences
in agents� conclusions� as shown in Section �	�	 Third� by convention�
agents may agree to adopt the team coordination action proposed by
one of the agents� e	g	� either a designated leader� or whoever has made
the decision 
rst	 However� if disagreements do occur and conventions
turn out to be impractical� agents may need to negotiate	 Here� we have
been investigating negotiation techniques such as argumentation�����
which would be applicable in such situations	 Indeed� agents may even
deliberately search di�erent parts of the space� so that they divide up
the search e�ort� and search more e�ectively	

�� Experimental Results

The main goal of our experimental study is to investigate the e�ec�
tiveness of STEAM�L�s lookahead search for team persistence with
resources being taken into account	 To this end� we compare STEAM�
L and STEAM head to head on three domains� an arti
cial search
tree model as well as two real domains� helicopter teams and soccer�
player teams	 On the search tree model� we examine the probabilities
that STEAM�L wins against STEAM� in terms of the total amount of
resources both algorithms consume and the quality of the 
nal states
they can reach	 On the real domains� we compare the performance of
the algorithms on examples such as those in Section �	

Another purpose of our experimental study is to examine how re�
source cost and situation cost will e�ect STEAM�L�s performance	 In
this study� we use a linear combination of these two costs to compute
static node evaluation	 Speci
cally� the static node cost f�n� of a fron�
tier node n is computed as f�n� � r�n� � w � s�n�� where r�n� and
s�n� are the resource cost and situation cost of n� and w is a weight
on situation cost� a parameter of STEAM�L which can be tuned for a
good performance	
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�	�	 Artificial search tree

The arti
cial search tree that we will use in our experiments is a varia�
tion of an incremental random tree ����	 The motivations to use such a
search tree are that it is easy to generate and reproduce so that results
can be easily veri
ed� it is easy to manipulate so that di�erent features
of state space can be examined closely� and most importantly the results
from the domain help us to better understand the phenomena in real
domains	 In addition� the use of arti
cial trees can assist us to examine
some of the important features that may be di�cult to measure in
a real domain� as we will see from our experiments presented in this
section	

One important property of situation costs in real world problems is
their dependence	 Two situation costs have some degree of dependence
if their corresponding action nodes share common edges on the paths
from the starting node to them	 This is because the actions corre�
sponding to the common edges have the same e�ects on the future
states or nodes	 The degree of dependence depends on the number of
edges these nodes share in common	 We use the following method to
introduce dependence in the situation costs in our arti
cial search tree	
We 
rst assign random numbers� drawn from the same distribution� to
nodes	 We then compute the situation cost s�n� of a node n as the sum
of the random number of the node and the situation cost of its parent
node	 We use the same scheme to derive resource costs	 Speci
cally�
we assign random numbers to the edges in the tree� and compute the
resource cost r�n� of a node n as the sum of the numbers on the edges
on the path from the root to the node	 In our experiments� random edge
costs are uniformly chosen from a set of f��M� ��M� � � � � ����Mg� and
random numbers on nodes are similarly chosen from another set of
f��M� ��M� � � � � �� ��Mg� where M � ��� � �	

Incremental random trees �the basis of our arti
cial search trees�
appear to be good models for evaluating the performance of lookahead
search	 The incremental nature of the situation and resource costs in
incremental trees re�ects the property that heuristic estimates of future
goal states become more accurate when the current states are closer to
the goal states	 In the soccer game case� for instance� the estimate
whether a player controlling the ball can score is more accurate when
the player brings the ball closer to the goal	

We experimentally compared STEAM�L against STEAM on arti
�
cial search trees described above	 Figure � shows the results on random
tree with uniform branching factor � and depth ��	 Notice that a tree
with depth �� is equivalent to a task that requires �� actions� where the
other �� levels of nodes are outcome nodes	 The horizontal axes are the
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Figure �� STEAM�L vs� STEAM on trees with branching factor 
 � depth ���

weight w on situation cost in a static evaluation f�n� � r�n� � ws�n��
and the vertical axes are the percentage of instances on which STEAM�
L outperforms STEAM	 We considered di�erent lookahead depths in
our experiments	 The results are averaged over ��� instances	

Figure ��a� shows that by taking resource costs into account and
looking deeper� STEAM�L spends less total resources than STEAM
with a large percentage	 It also shows that when the weight on situation
cost w increases� the percentage that STEAM�L wins on total amount
of resources used drops	 This is because although with a large w�
STEAM�L tends to take an action with a good �or small� situation cost�
the 
nal state may carry a large resource cost	 Figure ��b� shows that
when w is small� increasing w can signi
cantly increase the possibility
that STEAM�L wins in terms of 
nal situation cost	 However� when w
is large enough� such as larger than � in Figure ��b�� increasing w does
not help STEAM�L signi
cantly	

Figure � also means that by carefully adjusting the parameter w�
STEAM�L can outperform STEAM in both resource costs and situation
cost if STEAM�L searches deep enough	 For the arti
cial search trees
considered in Figure �� for instance� a good value of w is around � and
�	 When � � w � �� STEAM�L outperforms STEAM more than ���
on the total amount of resources used and more than ��� on the 
nal
situation evaluation	
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In lookahead reasoning� the exact resource and situation costs of
future states are not known� and must be estimated based on some
domain heuristics	 The accuracy of the heuristic estimates will have
impact on the accuracy of the decision of next move	 The impact of
errors in these estimates can be directly examined on our arti
cial
search tree model� which is di�cult in a real domain since it is often
di�cult to estimate the accuracy of our domain heuristics	 To investi�
gate the impact of such errors� we add a random noise to resource and
situation costs in the lookahead search	 We then examine how noise
in the estimates can cause a change in the decision on the next action
the agent team will take	 In other words� we examine the robustness
of lookahead reasoning under inaccurate heuristic estimates of resource
and situation costs	 Speci
cally� we examine the probability that the
decision on the next action will be the same in terms of the ratio of
noise to the original heuristic estimates	

To accomplish this in an arti
cial search tree� we introduce another
set of random numbers and add them to the resource and situation
costs� and run the same lookahead search algorithm on this noise�
e�ected tree	 We then compare the decision on the next action based
on this noise�e�ected tree to the decision on the same search tree with�
out the noise	 We obtain an experimental probability that lookahead
search reaches an identical decision by averaging the results from ���
instances	 In these experiments� we used two sets of arti
cial search
trees	 The trees of the 
rst set are the same as those used in the
previous experiments	 The ones of the second set are the same as those
in the 
rst set� but with additional random numbers being added to
the resource and situation costs	 The random numbers represent noise
and can take positive or negative values	 In our experiments� we took
these random numbers uniformly from f�r��r��� � � � � �� � � � � r� �� rg�
where r �� � � ��M and M � ��� � �	 Recall that � � ��M is the
maximum value used for the resource and situation costs	 Then� the
ratio between r and � � ��M can be considered as the noise to signal
ratio	 Denote this ratio as �	

Figure � shows the results of our experiments� averaged over ���
instances	 These results show that lookahead reasoning is fairly robust
in the presence of inaccuracy in heuristic estimates	 Figure ��a� shows
the probability that the lookahead search makes the same decision in
terms of the noise to signal ratio � on search trees with branching factor
� and depth ��	 The lookahead depth is 
xed at �	 The 
gure shows
that lookahead search is fairly robust	 Even if when there is ���� noise�
lookahead search is still able to make a correct decision on the next
action more than ��� of the time	 In contrast� a random decision is
only about ��� correct	 Figure ��b� shows the robustness of lookahead
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Figure �� Robustness of lookahead search� measured as percentage of correct moves
under noise�

search in terms of the branching factor of a search tree with lookahead
depth at � and noise ratio at ���	 Although the probability of correct
decision drops when the branching factor increases� it is more than
twice of that for a random decision	 For instances� on a binary tree�
the percentage of correct actions of random decision is ��� and that of
lookahead search is more than 
��� and on a tree with branching factor
�� the percentage of correctness of random decision is ��� and that of
lookahead search is more than ���	 Overall� these results indicate that
lookahead reasoning may not su�er signi
cantly even in the presence
of some inaccuracy in heuristic estimates	

�	�	 Applications

STEAM�L has been successfully applied to key examples where STEAM
earlier faced problems in the helicopter�pilot and soccer player teams	
STEAM�L was provided the expected plan �i	e	� the expected future
sequence of team operators�� estimates of resource costs for these team
operators and related teamwork �CP and MR� actions� likelihoods of
expected outcomes� and situation costs of expected outcomes	 An out�
come involving a loss of coherence was rated poorer than one without
such a loss	 Outcomes where a goal was scored �in RoboCup� and where
enemy would engage the helicopters from close range �in the helicopter
domain� were rated very poorly	 We have discussed the issue of obtain�
ing likelihood estimates for teamwork related actions earlier in Section
�	�	 For situation costs� the estimates used in our experiments are based
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on domain heuristics	 While these estimates may be imprecise� the
results would appear to be quite tolerant of errors in the heuristic
estimates	 This is con
rmed in part by our experimental analysis of
noise �in cost estimates� in arti
cial search trees in Section �	�� and in
part� our analysis of the search trees in the real domain� which tend to
be more structured �as discussed in Section �	��	

The following discusses results of STEAM�L�s application to the
illustrative problems from Section �	

�	 STEAM�L does a 
ve�step lookahead� to recognize the problem
in full synchronization �establishing the 
rst team operator�� and
instead selects partial synchronization in the helicopter team in
limited time	 Basically� upon seeing the enemy� the helicopter�team
estimates the total time available before it can engage the enemy	
STEAM�L�s 
ve�step lookahead search indicates that full synchro�
nization for the two team operators established� as suggested by
STEAM� consumes signi
cant amount of time �resource cost�� and
leads to su�ciently high likelihood of actual loss of some helicopters
to enemy 
re �very high situation cost�	 Partial synchronization has
lower cost� since it consumes lower amount of time �resource cost�
and leads only to a possible loss of coherence of one�two helicopters
�which may not participate in further team activities�	

�	 STEAM�L�s four�step lookahead search shows that if a defender
who spots the attack just shouts once to inform others� without
moving towards others� that would maximize expected utility	 Es�
sentially� by shouting once� this defender makes it highly likely
that at least one other defender will hear it �but not necessarily
all defenders�	 This increases the likelihood of blocking the attack
�given at least two defenders�� not shouting and acting alone would
decrease that likelihood	 Yet� shouting� unlike moving does not con�
sume the key team resource of time �shouting costs milliseconds�
while moving costs seconds�	

�	 STEAM�L�s three step lookahead enables a helicopter from the
attack subteam to join the scout subteam� since lookahead search
discovers the threat to the single helicopter in the scout subteam	
One key assumption made here is that initial allocation of tasks
to subteams is assumed to be appropriate	 Thus� any signi
cant
change in the number of members in a team leads agents to reason
about possible member reorganization �rather than waiting until
the relevant team operator is unachievable�	

STEAM�L is not yet in a mature state� unlike STEAM	 In particular�
STEAM�based helicopter teams have been 
elded in several large�scale
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synthetic exercises mentioned in Section �	 While in general this par�
ticipation has been successful� key problems have emerged	 Teamwork
�exibility provided by STEAM�L in the helicopter teams can address
these problems	 With respect to RoboCup� we now realize that the
strategy followed by the players 
elded in RoboCup�
� was identical
to the outcome from STEAM�L	 The success of the team provides a
limited validation to STEAM�L�s reasoning	 However� in RoboCup�
�
this strategy was pre�compiled� rather than performing the entire search
in real�time	 Experience�based learning from STEAM�L�s reasoning
to pre�compile a response appears appropriate in situations involving
signi
cant time pressure� such as RoboCup� and remains an issue for
future work	

�	�	 Analysis of Results

In real domains� in key problematic examples� such as those in Section
�� STEAM�L takes actions that are better than those recommended
by STEAM	 These results match those on random trees in Figure �	
Yet� in a majority of the cases� in our real domains� STEAM�L selects
the same CP or MR action as one recommended by STEAM	 This is a
surprising discrepancy� STEAM�L almost always di�ers from STEAM
in random trees� but not as much in the real�world domains �although
it does di�er as discussed in Section �	��	

The reason is an important regularity in the expected utility of team
states in real�world domains	 Consider 
rst situations with insigni
�
cant resource �time� constraints� e	g	� a helicopter team when there is
no enemy nearby	 Here� a CP action can lead a team to a coherent
state	 STEAM�L�s lookahead search on such a coherent state does not
degrade its expected utility	 Informally� there are no hidden negatives
that STEAM�L discovers in the future of this coherent state	 A non�
CP action� however� will lead the team to a non�coherent state� which
has a lower expected utility	 STEAM�L�s lookahead search on such a
state leads to further degradation in the expected utility� as STEAM�L
may discover further negatives of non�coherence in its lookahead	 Thus�
STEAM�L�s lookahead only con
rms the appropriateness of STEAM�s
selection of a CP action	 Such regularity in the expected utility is absent
in random trees	

In situations with signi
cant time constraints �e	g	� when enemy ve�
hicles move close to a helicopter team�� another regularity is observed�
so that STEAM�L�s choice di�ers signi
cantly from STEAM	 Here�
while a CP action leads to a coherent state� it takes up too much of the
available time	 STEAM�L�s lookahead now discovers signi
cant nega�
tives or traps in the future of this coherent state� e	g	� a future state is
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seen in which some team pilots are possibly shot down	 Thus� lookahead
leads to a drastic reduction in the expected utility of coherent states
under resource constraints	 Such situations are a trap for STEAM� as
it does not look beyond the next action	 Thus� STEAM�L chooses in
such cases to select a variation of a CP action� while STEAM rigidly
follows a CP action	

The above analysis does not imply that the results on arti
cial trees
are not useful	 Instead� those results help us understand where STEAM�
L�s lookahead search would be most e�ective � in state space where
resources are scarce and situation costs vary dramatically	 Indeed� the
lookahead search in STEAM�L would appear very e�ective to detect
possible dramatic situation changes	 Thus� it would appear bene
cial to
invoke STEAM�L�s lookahead selectively� only in such cases	 Further�
more� the results on arti
cial trees indicate that in such circumstances
�where STEAM�L�s lookahead will make a di�erence�� the lookahead
may be tolerant of errors in heuristic estimates of costs and likelihoods	

�� Related Work

Multi�agent collaboration� coordination and teamwork in general have
been explored extensively in the multi�agent literature	 We have dis�
cussed some of this work in Section �	 More relevant to the work
discussed in this article are issues of persistence	 Focusing 
rst on exist�
ing work on teamwork theories���� �
� ��� and implemented teamwork
models���� ��� �
�� as Section � mentions� they have not explicitly taken
persistence issues �as outlined in this article� into account	 Thus� for
instance� they do not include reasoning about the long�term implica�
tions of coordination actions that appear locally optimal� but are highly
suboptimal in the long term	

Thus� persistent teams present an important challenge for formal�
ization in teamwork theories	 Indeed� STEAM�L has a key theoretical
implication for the notion of commitments in teamwork	 In joint inten�
tions work���� all commitments are formalized as hard commitments�
to be dropped only when they are achieved� unachievable or irrele�
vant	 Commitments are yet to be formalized in SharedPlans����� and
in ��
�� commitments can be dropped for sel
sh reasons �which appears
inappropriate for teamwork� at least in general�	 STEAM�L presents a
novel approach to introduce signi
cant �exibility in such commitments�
important in increasingly uncertain environments	 In particular� team
members may not necessarily ful
ll their commitments �for instance
to inform others�� if doing so harms the longer�term interests of the
team	 Thus� the �exibility in commitments is motivated not by sel
sh
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interests� but by team interests themselves	 To formalize such �exible
commitments� one suggestion is to add STEAM�L�s lookahead compu�
tation to the �relativizing clause� in the joint intentions framework�����

However� this suggested modi
cation by itself is insu�cient	 In partic�
ular� the decision in STEAM�L is not a just binary one  ful
lling
the commitment or not	 Instead� STEAM�L admits the possibility of
partial coherence� where there may be di�erent likelihoods associated
with di�erent degrees of coherence within a team	

STEAM�L is also related to distributed coordination frameworks�
particularly� the Generalized Partial Global Planning�GPGP� frame�
work ��� that is concerned about generating longer term coordination
schedules	 This rich body of work has a long history� evolving from
earlier work� such as partial global planning �PGP� ���	 It is di�cult
to discuss this work in depth in brief� but we will highlight some key
aspects relevant to this paper	 GPGP is based on the TAEMS �Task
Analysis� Environmental Modeling and Simulation�� a task modeling
framework� which has been reported to be used in multiple domains	
In TAEMS� tasks are hierarchically represented �tasks decomposed into
subtasks�� with leaf�level nodes representing problem�solving methods	
Subtasks of a task may represent alternative ways of accomplishing the
task� and may be related to each other via interactions like enablement
or facilitation �e	g	� one subtask S� enables another subtask S��	 There
is a quality associated with each task� with a quality accumulation
function based on the quality of the subtasks	 Given a group of co�
ordinating agents� each may have a subjective view of a high�level
task� since each may see only a portion of the task �and there may be
many such high�level tasks being executed in parallel�	 Each agent must
locally select and schedule its portion of the subtasks and methods�
to meet the criteria speci
ed in terms of quality� cost� duration etc	
Obviously� given that each agent is only responsible for a portion of the
task� it must coordinate with others	 Here� GPGP de
nes a set of �at
least� 
ve modularized� extendible� domain�independent coordination
modules that enables the di�erent agents to discover the coordination
relationships with each other� and to enforce these relationships	 For
instance� to handle the enablement relationship among subtasks �e	g	�
S� enables S��� GPGP de
nes a hard�task relationship module	 This
module sends a commitment from an agent with the enabler subtask �S�
in S� enables S�� to another agent �with the S� subtask�� to perform
S� by a deadline	 Other such mechanisms are de
ned� and together
they place constraints �commitments� on an agent�s local scheduler�

� This suggestion was made by a reviewer for our paper 

��� which was an earlier
version of the current article�
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so that shedules may attempt to honor commitments� while also using
commitments made by other agents	

In general� the STEAM framework and GPGP appear to have com�
plementary strengths� and indeed� a hybrid architecture could poten�
tially outperform either one of these	 For instance� TAEMS and GPGP
do not explicity address joint goals and joint commitments which are
central in STEAM	 For instance� the notion that a team of agents is
jointly commited to the joint goal of Engage� is not the same as one
agent in the team enabling another one to engage� or all agents per�
forming di�erent subtasks of engage which enable each other	 Instead�
with joint commitment in STEAM� the team of agents jointly take
on the responsibility to engage the enemy� to monitor the progress of
engagement� to inform each other about such progress� to change roles
if an agent can not do its part� and so on	 While the local schedul�
ing in GPGP is similar to the lookahead in STEAM�L� there are key
di�erences� �i� STEAM�L�s MDP process ususally reasons about the
set of joint goals �team operators� of the team� rather than individual
agent�s own subtasks� �ii� the results of STEAM�L�s reasoning process
relate to coordination to be adopted in the entire team� and not among
two individuals� �iii� the MDP process itself appears di�erent than
the scheduler used in GPGP	 Howver� this MDP based process is not
as evolved as the multi�criteria scheduling work in GPGP� and could
possibly make use of such work if appropriately extended to handle
joint goals and commitments	

Finally� while persistent agents and teams remain uninvestigated in
general� one exception is Horvitz�s work on continual computation����	
He provides theoretical models for how persistent agents should expend
idle time� particularly for solving future problems� given probability
distributions of expected problems and their expected costs	 He also
models the issue of expending a fraction of the current problem�solving
time for future problems	 STEAM�L complements Horvitz�s exploration
in two ways	 First� STEAM�L focuses on coordination and communica�
tion in agent teams rather than individual behaviors	 Second� Horvitz�s
work concerns allocating computational resources to a set of immediate
next problems� while our work focuses on selecting the next team action
using information collected from a search into future team states	

Markov decision process �MDP� is one of the main problem represen�
tations for problem solving involving uncertainty� especially decision�
theoretical planning� in AI ���	 Our approach of reasoning into multi�
agents� future states using iterative lookahead search is in fact an
approximation method for solving MDP	 Speci
cally� it is a value it�
eration method to 
nd the optimal action within a given computation
resource	 Our approach falls into the category of real�time dynamic pro�
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gramming ���� which extends real�time heuristic search ���� to domains
with unpredictable actions	

�� Summary	 Discussion	 Future Work

Recent progress in theories of teamwork���� ��� �
�� as well as im�
plemented models of teamwork inspired by such theories���� �
� ����
have led to an improved understanding of teamwork� and to complex
teamwork applications	 In our own previous work� we have applied
STEAM����� a state�of�the�art teamwork model� in several real�world�
synthetic domains	 This paper takes a step beyond the state�of�the�
art� by investigating an important novel phenomenon in teamwork�
that of persistent teams	 Although persistent teams remain unexplored�
they are an important requirement in many multi�agent applications	
In addition to identifying persistent teams� contributions of this pa�
per include the presentation of� �i� key issue of resource allocation for
coordination in teamwork� given long�term goals of persistent teams�
�ii� a decision�theoretic formalization of this resource allocation prob�
lem� �iii� STEAM�L as a speci
c decision�theoretic approach� based
on augmentation of STEAM with a representation of Markov decision
process and anytime lookahead search� �iv� application and analysis of
STEAM�L in di�erent domains	 STEAM�L leads to improved �exibility
in the commitments in teamwork� motivated by long�term team inter�
ests	 Given that STEAM is rooted in the joint intentions theory�����
and also borrows from SharedPlans����� the results bear upon other
teamwork models based on such theories	

Several issues for future work have been mentioned earlier� such
as experience�based compilation of STEAM�L�s reasoning via methods
such as explanation�based learning���� for time�critical situations� se�
lective application of STEAM�L�s reasoning to avoid unnecessary com�
putation� and formalization of commitments in the context of persistent
teams	

Another major challenge is understanding the interaction between
agent persistence and team persistence	 Here it is useful to consider a
categorization of teams along two dimensions� persistence of teams and
persistence of members	 We can thus consider at least four team types	
First� in a persistent team consisting of persistent members �PTPM�
there is no change in team membership	 Second� in a persistent team
consisting of non�persistent members �PTNM�� team membership may
change over time	 Third� in a NTPM� agents temporarily form a team
for a speci
c objective	 An NTNM is a non�persistent team with non�
persistent members	 This paper has focused on PTPM� but discussed
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one issue �reorganization� of PTNM	 Analyzing these di�erent team
types is an interesting area of further research	
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