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Abstract. The promise of agent-based systems is leading towards the development of
autonomous, heterogeneous agents, designed by a variety of research/industrial groups
and distributed over a variety of platforms and environments. Teamwork among these
heterogeneous agents is critical in realizing the full potential of these systems and scaling up
to the demands of large-scale applications. Indeed, to succeed in highly uncertain, complex
applications, the agent teams must be both robust and flexible. Unfortunately, development
of such agent teams is currently extremely difficult. This paper focuses on significantly
accelerating the process of building such teams using a simplified, abstract framework called
team-oriented programming (TOP). In TOP, a programmer specifies an agent organization
hierarchy and the team tasks for the organization to perform, but abstracts away from
the large number of coordination plans potentially necessary to ensure robust and flexible
team operation. We support TOP through a distributed, domain-independent teamwork
layer that integrates core teamwork coordination and communication capabilities. We have
recently used TOP to integrate a diverse team of heterogeneous distributed agents in
performing a complex task. We outline the current state of our TOP implementation and
the outstanding issues in developing such a framework.

1 Introduction

Agent-based systems currently operate in complex, dynamic environments, including user inter-
faces [14], robotic space missions, virtual training environments [17], and information extraction
on the Internet [23]. These agents are often autonomous, heterogeneous, and distributed over a
variety of platforms and environments. Yet, when novel, complex tasks arise, users may desire
such diverse agents to work together to accomplish the task. Such reuse of existing agents is
preferable to the building of a monolithic application from scratch, as it promises to significantly
reduce software development effort while preserving modularity.

Indeed, agents working together in teams can tackle user-defined tasks more complex than
those they can perform as individuals. However, constructing such teams remains a difficult
challenge. In particular, current approaches to designing agent teams lack the general-purpose
teamwork models that would enable agents to autonomously reason about the communication
and coordination required in teamwork. The absence of such teamwork models makes team con-
struction highly labor-intensive. In particular, to enable agents to autonomously reason about
coordination, human developers must provide them with large numbers of domain-specific co-
ordination and communication plans. These domain-specific plans are not reusable, so we must
develop new ones for each new domain. Furthermore, the resulting teams often suffer from a
lack of robustness and flexibility. In real-world domains, teams face a variety of uncertainties,
such as a team member’s unanticipated failure in fulfilling responsibilities, members’ divergent
beliefs about their environment, and unexpectedly noisy or faulty communication. Without a
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teamwork model, it is difficult to anticipate and pre-plan for the vast number of coordination
failures possible due to such uncertainties.

This paper focuses on minimizing the complexity of building robust and flexible teams via
a domain-independent infrastructure to support team-oriented programming (TOP). In our pro-
posed view of TOP, a “team-oriented programmer” has a set of (possibly heterogeneous) agents
available. One builds a team to accomplish a task, not by building large numbers of coordination
plans, but rather by representing only the domain-specific knowledge about team plans, as well
as the organization hierarchy of the existing agents that are intended to execute the team plans.
The TOP infrastructure then automatically ensures agents’ coordinated commitment to team
plans, maintenance of coherent group beliefs, appropriate tasking of individuals, and reorganiza-
tion when teammates are unable to perform their assigned tasks. We can reuse this infrastructure
even as we change the agents, the tasks, or even the overall problem domain. Section 2 describes
our proposed view of TOP in more detail.

We have recently completed an initial implementation of a TOP infrastructure (there could
be multiple realizations of our view of TOP). Our software system, TEAMCORE, integrates a
general-purpose teamwork model and provides core teamwork capabilities to individual agents
by wrapping them with TEAMCORE, as described in Section 3. Here, we call the individual
TEAMCORE “wrapper” a TEAMCORE agent. A TEAMCORE agent is a purely social agent, in
that it has only core teamwork capabilities; e.g., it does not possess sensing or action capabilities
in the domain of interest. We can take an existing agent that does have domain-level action
capabilities and make it team-ready through an interface with a TEAMCORE agent. Agents
made team-ready can rapidly assemble themselves into a team in any given domain. Unlike
past approaches, such as the Open Agent Architecture (OAA) [11], which provides a centralized
blackboard facilitator to integrate a set of agents, TEAMCORE is a fundamentally distributed
team-oriented system. Furthermore, unlike OAA, TEAMCORE allows direct tasking at the team
level via team-oriented programming.

We have applied our current TOP infrastructure toward a concrete problem, the evacuation
of civilians stranded in a hostile area. In this target scenario, we wish to build a system to enable
a set of helicopters to fly in a coordinated formation to a landing zone, pick up stranded civilians,
and then fly back to a safe area. The system should enable a human commander to interactively
provide the helicopters with locations of the landing zone, the safe area, and other key points in
the evacuation route. Furthermore, the system needs to plan routes to avoid known obstacles,
to dynamically obtain information about enemy threats, and to change routes when needed.
Furthermore, by suitable substitution, we wish to be able to quickly reconfigure the team for
other tasks (e.g., to monitor enemy activity on a battlefield).

In this evacuation scenario, TOP has been able to successfully integrate at least eleven differ-
ent agents into a team. Four of these agents are escort helicopter pilots, and four are transport
helicopter pilots, while the rest include a diverse set of agents created by different developers:
a multi-modal user interface agent (Quickset) [4], a route-planning agent, and an information-
gathering agent (Ariadne) [9]. Quickset is itself a collection of agents, but our framework treats
it as a single agent. These agents are written in four different computer languages, run on two
different operating systems, and distributed geographically, yet TOP enables teamwork among
these agents communicating over the Internet.

2 Team-Oriented Programming

In our general framework, the team-oriented programmer must develop a system where agents
act as a team in performing a joint task. The programmer has a pool of agents available — such
agents may be developed by different designers, based on different underlying agent architec-
tures, implemented in different languages, and running on different operating systems. Following
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the software engineering trend of reuse, we would like to reuse these agent systems without
modification in implementing the team.

2.1 Agent Capability Descriptions

We assume that each agent that is a potential team member has a functional interface describing
its capabilities. An agent’s set of capabilities is an abstraction, so there are no details on how an
agent would go about performing a task. The capability description for an agent may specify:
(1) the set of tasks that the agent can perform; (ii) the input parameters for the task request, as
well as constraints on these parameters; (iv) outputs from performing the requested task, as well
as constraints on the output. Figure 1 provides a partial capability description for some of the
agents in the evacuation scenario.

(Ariadne
(goal provide-safety-info
) ) —_— ) (input (North-west-point (unit latitude-longitude))
input (Start-point (unit latitude-longitude) ) o ;
(inp ((End-pit))int (L(Jnitl atitudelong?tu de))))) (South-east-point (unit |atitude-longitude)))
(ouput (List-of-points (list-of (unit latitude-longitude))))) (output (List-of-hazards (list-of (unit latitude-longitude)))))
)

(Route-Planner
(god plan-route

(Helicopter (QuickSet
(goal fly-coordinated (goal provide-nav-plan
(input (Distance (unit meters)) (output (Start-point (unit latitude-longitude))
(Anglr_s (unit_degrees)) (End-point (unit latitude-longitude))))
.(Relail\'/ealtltude (unit feet))) (goal provide-labeled-points
(goal monitor-helicopter (output (List-of-points (list-of (unit latitude-longitude))))
(input (Vehicle (type helicopter))) . .
(output (Status (type helicopter-status)))) (goal provide-number-of-units .
] ) (output (number-of-transport (unit number))
(goal monitor-ground-unit ) (number-of-escorts (unit number))))
(input (GUnit (type ground-unit))) )

(output (Status (type ground-unit-status))))
(goa monitor-location

(input (Vehicle (type helicopter)))

(output (Location (unit latitude-longitude))))

(goa monitor-distance
(input (Vehicle (type helicopter)))
(output (Distance (unit meters))))

Fig. 1. A partial description of capabilities for some of the agents in the Evacuation scenario.

Figure 1 shows that the route-planning agent has the capability to perform the Plan-Route
task, where the task request message must provide the start and destination points as input
parameters. There is a constraint that the points, restricted to a particular geographical window,
must be specified in terms of latitude-longitude coordinates. The output is a planned route, in
terms of a list of points, again specified in latitudes and longitudes. In contrast, a helicopter
pilot agent can perform several tasks. One of the tasks i1s coordinate flight, i.e., following another
aircraft. The parameters here include the distance, angle, and altitude at which to follow the
aircraft. The constraints on the input specify the units of those parameters. There is no output
in this case. The helicopter pilot agent can also perform the task of monitoring, by observing
features of its own vehicle, the terrain, or other agents in the environment. For a helicopter pilot
agent to monitor the status of another helicopter, the parameters must identify the specific vehicle
in the environment, the attribute to be monitored (status), and the request for notification when
there is a change in status. The output is either that the specified vehicle’s status is “normal” or
“destroyed”.

Thus, the tasks may have varied types. They may involve achievement goals, as in the route-
planning example above, or maintenance goals, as in the case of a helicopter pilot’s coordinated
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flight. The tasks may not necessarily provide outputs. Furthermore, tasks may initiate an activ-
ity, as in the examples above, or tasks may also terminate activities. For instance, a task may
request that an agent terminate an earlier task sent to it. Tasks may also extend beyond active
achievement of goals to include passive observation of conditions that potentially affect team
execution, as in the monitoring tasks as discussed above.

While the capability description above outlines key features and the relevant syntax, there is
clearly a need for a common ontology or a translation mechanism to provide clear semantics for
this description. This issue is outside the scope of this paper.

2.2 The Team-Oriented Program

Given a pool of agents and descriptions of their capabilities, the team-oriented programmer’s
job 1s to implement only the problem-specific aspects of the system. We believe that we can
specify these problem-specific aspects at the “team level”, a level of abstraction requiring that
the programmer specify only:

— the team organization hierarchy for achieving the team goals
— the team goals and the team procedures for achieving them, including;:
e models of initiation conditions, when the team should propose the goal
e models of conditions for achievement, irrelevance, and unachievability, when the team
should terminate the goal
— coordination constraints among the agents executing the team’s joint activities

Team Oriented Program

execuited by
Team Readiness Layer

\L T \L T \L T 'g(;(n;r;urrigatii;?ing

000 Domain level agents

Fig. 2. An abstract view of team-oriented programming.

This team-oriented program is to be executed via a TOP infrastructure, which consists of
a “team-readiness” layer. Figure 2 illustrates our view of the TOP infrastructure that enforces
team behavior. The “team-readiness” layer provides an interface for agents written in different
languages. It ensures coherent execution of team plans by providing task instructions to the
domain-level agents at the appropriate times (where the task instructions may initiate tasks,
terminate tasks already requested, or specify attributes to monitor). This team-readiness layer
hides the details of the coordination behavior, low-level tasking, and flexible re-planning, allowing
the programmer to consider only the details at the level of abstraction of the team specification.
We can implement this abstract specification of the TOP infrastructure in several ways, and we
make no assumptions about its internal structure (e.g., whether it consists of a set of distributed
agents, or a single controller).

In the team-oriented program, the organization hierarchy is specified using roles that may be
filled by individual agents or groups of individual agents. For an example of such a hierarchy,
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we continue with our example of the evacuation scenario. Figure 3 illustrates a portion of the
organization hierarchy of the agents involved with this scenario. Each leaf node corresponds to
an individual role, while the internal nodes correspond to subteams of these agents. At each
of these nodes, we have a description of the required capabilities of the corresponding agent or
subteam. For instance, the “Orders-Obtainer” role requires an ability to acquire knowledge of
the mission parameters. The labels in italics specify the domain-level agent currently filling the
corresponding role within the organization.

We currently implement the team goals and procedures aspect of the team-oriented program
via reactive team plans. While these reactive team plans are much like situated plans or reactive
plans for individual agents [5], the key difference is that they explicitly express joint activities
of the relevant team. These reactive team plans ensure that all TEAMCORE agents know the
overall team procedure. This team procedure may execute a team activity, plan a team activ-
ity, collaboratively design an artifact, collaboratively schedule, or collaboratively monitor and
diagnose. Having common knowledge of team procedures is akin to providing the team with the
knowledge of “standard operating procedures” in a military setting.

Big-Team
(Big-Team)
Orders-Obtainer Route-Planner Flight Team Safety-Obtainer
(Quickset) (Route Planner) /\( Ariadne)
Transports Escorts

A ransport) m@r t)

Divisions Lead-Section  Follow-Section

A

Transport helos Escort helos

Fig. 3. Partial organizational hierarchy of agents in evacuation team.

The reactive team plans in the team program require that the programmer specify the ini-
tiation conditions, termination conditions, and team-level actions to be executed as part of the
plan. Once the programmer specifies the initiation conditions, the TOP infrastructure ensures
that the team will synchronize itself appropriately in executing the plan. Thus, the programmer
need not program such synchronization actions. For instance, there 1s no need to specify how the
members of the top-level team, Big-Team, must synchronize themselves to start jointly achieving
Process-Orders. The infrastructure ensures such synchronization with respect to both time of
plan execution and the identity of the plan, so all members will choose the same plan out of a
set of multiple candidates.

The programmer must also explicitly specify the termination conditions, the conditions un-
der which a reactive team plan is achieved, irrelevant or unachievable. Such explicit specification
within the team program ensures that all team members have access to this knowledge, so that
the team can terminate the goal coherently. Once again, the programmer does not have to specify
the procedure for coherent reactive plan termination. Instead, the TOP architecture can use the
conditions of achievement, irrelevance, and unachievability as the basis for automatically gener-
ating the communication necessary to jointly terminate a team plan. These explicit termination
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conditions also support the automatic generation of monitoring requests. If certain agents have
the capability to observe conditions that reflect any termination condition of a team goal, then
the TOP architecture can automatically task them to report on any change in that condition.

Figure 4 shows some of the team goals and procedures for the evacuation domain. Each nodes
corresponds to a goal (in bold), as well as the agent or team (in parentheses) responsible for its
achievement. The team programmer has the option of specifying particular agents or subteams,
taken from the organization hierarchy, to perform a given goal. On the other hand, the team
programmer may specify the performing agents using only abstract role labels (as in Figure 4),
in which case the TOP infrastructure assigns agents/subteams from the organization hierarchy
to the appropriate roles. For instance, it could assign Quickset the role of “Orders-Obtainer” by
noting that Quickset can achieve the Obtain-Orders goal. The links of Figure 4 correspond
to decomposition and abstraction relationships between goals and subgoals. In this particular
program, the agents of Big-Team jointly perform the top-level goal of Evacuate.

Evacuate

(Big-Team)
Process-Orders Process-Routes Execute-Mission Landing-Maneuvers
(Big-Team) (Big-Team) (Big-l/eam) (Big-Team)
Obtain-Orders Plan-Routes Fly-Flight-Plan ~ Mask-Observe Pickup

(Orders-Obtainer) (Route-Planner) % (Escort) (Transport)

Fly-Control-Route
(Big-Team)

Fig. 4. Partial reactive plan hierarchy for evacuation scenario.

With respect to the actions of the reactive team plans, the high-level team-plans, such as
Evacuate in Figure 4, typically have few actions. Instead, these plans decompose into a se-
quence of subgoals. For instance, Evacuate decomposes into a sequence of subgoals beginning
with Process-Orders, where the agents of Big-Team must interpret orders provided by a hu-
man commander. The team achieves Process-Orders by having the agent or subteam labeled
“Orders-Obtainer” achieve the Obtain-Orders goal. The programmer does not specify the ac-
tions of the Obtain-Orders plan, instead assuming that the Orders-Obtainer agent/subteam
knows how to achieve the Obtain-Orders goal. This level of abstraction allows the team-oriented
programmer to ignore the inner workings of the member agents, thus simplifying the specifica-
tion task while also allowing for the reuse of team-oriented programs with different collections of
agents. The abstraction also allows the programmer to omit explicit tasking of the domain-level
agents. Instead, the TOP architecture will generate the appropriate tasking messages at run-time
by examining the current parameters of the Obtain-Orders goal and the capability specification
of the current Orders-Obtainer.

The programmer must also specify any coordination constraints in the execution of team
goals. In the example program, the goal Landing-Maneuvers leads to two parallel subgoals:
Mask-Observe performed by the Escort subteam and Pickup performed by the Transport
subteam. The programmer must represent the domain-specific constraint that the Transport
subteam cannot perform Pickup until the the Escort subteam has reached its masking loca-
tions and begun observing. Again, once the programmer has specified the high-level constraint,
the TOP infrastructure handles the generation of any communication necessary for the proper
synchronization.
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3 TOP Implementation: TEAMCORE

Our current TEAMCORE system supports many of the features required by our Team-Oriented
Programming framework. The team-readiness layer in the implemented system consists of dis-
tributed TEAMCORE wrapper agents based on the Soar [13] integrated agent architecture. We
can categorize each TEAMCORE wrapper agent’s teamwork expertise as containing a domain-
specific and a domain-independent component, the latter forming the central part of TEAM-
CORE. The domain-specific part consists of the organization hierarchy and the reactive team
plans, i.e., team operators in Soar.

Common knowledge of team operators does not protect the team members from incomplete
or incorrect beliefs, from unexpected failures and successes, from unexpected communication
failures, and so on. The domain-independent component of TEAMCORE must surmount such
uncertainties of dynamic complex domains and adapt to the current environment. The heart of the
domain-independent component is teamwork reasoning based on a general model of teamwork.

3.1 STEAM Component of TEAMCORE

Our previous work on STEAM [18] provides a significant component of TEAMCORE’s general-
purpose teamwork model. This model encodes domain-independent axioms and theorems that
explicitly outline team members’ responsibilities and commitments in teamwork. In essence, it
attempts to provide agents with the common- knowledge of teamwork that would enable them
to autonomously reason about coordination and communication. STEAM uses joint intentions
theory [10] as the basic building block of teamwork, but SharedPlans theory [6] has also strongly
influenced it, as have the constraints of real-world application domains. STEAM builds on our
experience in building agent teams for a variety of domains [16]. When working to achieve a
team operator, agents bring to bear all of the reasoning power of the general STEAM teamwork
model, facilitating their communication and coordination.

Currently, we can divide STEAM’s teamwork knowledge into three classes of domain-inde-
pendent axioms. The first class consists of coherence preserving (CP) axioms that require team
members to communicate with others to ensure coherent initiation and termination of team goals.
For instance, if an agent privately discovers that the currently selected team goal is unachievable,
then it must not unilaterally terminate the goal. Instead, it must communicate this unachievabil-
ity information to its teammates, so that they do not waste their resources and that the team as a
whole coherently terminates the team goal. As an example of STEAM’s application, consider the
helicopter team flying in formation. If one of the helicopter pilots observes unanticipated enemy
vehicles on their flight route, STEAM’s CP axioms require that this pilot inform its teammates
about the enemy units (since it makes the relevant team operator unachievable), so that the team
reacts coherently to the enemy.

Monitor and repair (MR) axioms detect whether a team task is unachievable due to unex-
pected member (individual or subteam) failure. When such a failure occurs, the axioms then
lead the team into reorganization — via reassignment of roles — to overcome this failure. For
example, if a helicopter crashes, then the MR axioms would allow the team members to observe
that their current flight goal is unachievable. The axioms would also trigger the reorganization of
the flight team, perhaps also changing low-level formation plans, to allow the team to continue
pursuing its overall mission.

STEAM requires selectivity-in-communication (SC) axioms, because attaining perfect coher-
ence in teamwork can sometimes require excessive communication. STEAM avoids the potentially
detrimental side effects of such communication through decision-theoretic communication selec-
tivity. The key 1dea is to explicitly reason about the costs and benefits of different techniques for
attaining mutual beliefs. For instance, in some cases, if there is a high likelihood that an agent’s
teammates can obtain the relevant information via their own observation (even if with a slight
delay), then it should avoid costly communication. In contrast, communication becomes essential
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if there i1s a low likelihood that teammates can obtain the relevant information independently,
and 1f there is a high cost to not making this information available to the teammates.

3.2 TEAMCORE Extensions to STEAM

The TEAMCORE system extends the original STEAM model to support the following features
desired for full TOP functionality:

— Teamwork knowledge encapsulated within wrapper agents to support heterogeneous domain-
level agents

— KQML point-to-point and multicast communication

— Automatic generation of task requests to domain-level agents

— Automatic generation of monitoring requests to domain-level agents

— TOP Interface: a GUI to facilitate the specification of the organization and team plans

In the original STEAM implementation, the teamwork knowledge resided directly in the domain-
level agent’s knowledge base. TEAMCORE places this knowledge in a separate wrapper agent,
so that we no longer rely on an ability to modify code in the domain-level agent. We do require
that the domain-level agent provide a communication interface, so that the wrapper agent can
submit the necessary task requests. The TEAMCORE system supports the use of KQML for all
inter-agent communication. The wrapper agents have automatic procedures for sending/receiving
the KQML messages appropriate for tasking the domain-level agent in service to the current
team goals. Figure 5 represents the agent and communication structure of the TEAMCORE
implementation, using an example from the evacuation domain. For simplicity, we illustrate only
point-to-point communication among the TEAMCORE agents, but we have also added multicast
capabilities to allow the TEAMCORE agents to broadcast messages to the other TEAMCORE
members of a relevant team. In addition, this illustration depicts only three helicopter agents,
but the current implementation includes up to sizteen such agents.

Team Oriented Program

KQML KQML KQM
> > > TEAMCORE agents
cani 0 ke LT ke LT ke LT rasing  woniong
—,
ﬂﬂﬂﬂl ‘ ‘ ‘ Domain level agents
Q[J;ckée} Route Planner Ariadne Helicopters

Fig.5. Agent structure and communication flow in TEAMCORE implementation of evacuation scenario.

Although the STEAM rules provide each TEAMCORE agent with an automatic procedure
for communicating its private beliefs when appropriate, they do not provide a procedure for
communicating beliefs between the TEAMCORE agent and the domain-level agents it may wrap.
However, it 1s the domain-level agent, and not the TEAMCORE agent itself, that has access to
most observations relevant to the achievement, irrelevance, and unachievability of the team plans
(e.g., the helicopter pilot agent can observe that another helicopter has crashed). On the other
hand, knowledge of the current team plans most often resides only in the TEAMCORE agent,
so the domain-level agent may not know what observations are relevant (e.g., a helicopter pilot
agent may not know which other helicopters are members of its team).

We have extended the TEAMCORE agents’ domain-independent knowledge to include the
generation of appropriate monitoring requests that prompt the domain-level agent about which
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possible events are currently relevant. For each team goal, STEAM already requires that the
TEAMCORE agents maintain models of the conditions under which the goal becomes achieved,
irrelevant, or unachievable. The TEAMCORE agent’s model of the wrapped domain-level agent
includes a capability specification describing the conditions that it can observe, so this model
of monitoring capabilities forms the basis for our automatic procedure for generating monitor-
ing requests. The capability specification also specifies how to translate monitoring responses
into private beliefs of the TEAMCORE agent, who may ultimately communicate them to other
TEAMCORE agents according to the standard STEAM procedures.

We have also created a TOP Interface (TOPI) to facilitate the programmer’s effort in speci-
fying the team organization and plans. Figure 6 shows a sample screenshot in programming the
evacuation scenario, where the three panes correspond to the plans, organization, and domain-
level agents, from left to right. The programmer can specify roles and role requirements in the
middle organizational pane, and then assign team-ready (i.e., wrapped) domain-level agents from
the rightmost pane to these roles. In Figure 6, the programmer had attempted to assign the agent
“RPlan” from the rightmost pane to the “Obtain orders” role in the middle pane. TOPI notices
the capability mismatch and notifies the programmer with the crossed-out icon. The user has
highlighted the mismatched role and a new agent “teamquickset” as part of the process of making
the correct assignment. In addition, one can then assign roles from the organization to operators
created in the leftmost pane. TOPI uses the specifications and assignments to generate a Soar
file used by the wrapper agents in running the scenario.

Tz No Name
File Edit Debug Help
ECNREERID R EEN TR EE
@ CJ Team FPlan | ® O3 Crganization | @ T Available Agents
@ (O Evacuate [Big Team] ] 8% Big Team : & RPlan
@ O Obtain orders & Cbtain orders [RPlan] & teamguickset
O Determine number of heles [Obtain orders] £ Obtain safety info & wolf1o1
O Determine routes [Plan routel & Plan route & wolflo2
@ (O Prepare to execute mission ] ﬁ% Flight team & welf1o3
B Check route safety [Obtain orders] ] ﬁ% Escort & wolflo4
@ (O Execute mission [Big Team] B Helo 1 [wolf101] & wolf1os
@ O Fly flight plan 5 Helo 2 [wolf102] & knight1o
O Travelling overwatch ] 8% Transport & knight11
1 Fly control routes T Helon & knight12
@ O Llanding zone maneuvers [Flight team] & Helo 2 [knight11] & knight13
01 Escort oparations [Escort] & Helo3 & knight14
O Transport operations [Transport] : & knight15
@ O Wait at point [Flight team] & knight1g
O Formation landing [Transport] & knight17
& knight1g
I\l\r'ell:l:lme to Topi...

Fig. 6. Screenshot of sample organization and operator specification using TOPI.

3.3 Evacuation Scenario

We have applied TEAMCORE to the problem of evacuating civilians from a threatened location.
The team programmer had the following agents (with capabilities as in Figure 1) available:
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Quickset: (developed by P. Cohen et al., Oregon Graduate Institute) C+-+-based agents running
on an NT platform (and connected through an OAA blackboard) enable a human operator
to use speech and gesture to provide the command to evacuate, as well as the locations of
the evacuation site and other meaningful route landmarks.

Route planner: (developed by Sycara et al., Carnegie-Mellon University) A C++-based route
planner running on a UNIX platform can take the route landmarks, as well as a map of the
region, and produce a more detailed route that avoids known obstacles (e.g., no-fly zones).

Ariadne: (developed by Minton et al., USC Information Sciences Institute) A LISP-based wrap-
per running on a UNIX platform can query a database on more dynamic obstacles (e.g., enemy
missile launchers).

Helicopter pilots: Soar-based pilot agents running on a UNIX platform can fly helicopters
(within a ModSATF simulation environment) along a specified route and land at specified des-
tinations. These agents are different from the pilots used with STEAM, which had teamwork
capabilities explicitly programmed in. The pilot agents used in the work presented here had
no such social capabilities.

We developed only the helicopter agents ourselves; while the other agents provided a fixed spec-
ification of possible communication and task capabilities. None of the agents had pre-existing
social capabilities, so we created the TEAMCORE wrapper agents are responsible for all of the
teamwork behavior. All of the wrapper agents share the same domain-independent knowledge
of the TEAMCORE teamwork models. The wrapper agents also have knowledge of the domain-
specific team plans, corresponding to the goal hierarchy representing the problem domain, as in
Figure 4, as well as the associated functional models.

The domain-independent component of the wrapper agents invokes all of STEAM’s capabili-
ties. The domain-specific team program contains a hierarchy of 18 joint goals (Figure 4 represents
part of this hierarchy). However, only three of these require explicit communication to form joint
commitments; STEAM can exercise selectivity in the explicit commitment for the other goals by
assuming common knowledge of the execution sequence. Termination of these goals does require
explicit communication, since the agents have differing beliefs (based on different domain-level
observations) about achievement, irrelevance, and unachievability.

3.4 Evaluation of Evacuation Scenario

The TEAMCORE wrapper agents must generate the correct task and monitoring requests, since
this is what ultimately drives the domain-level agents’ behavior to successfully accomplish their
tasks, within their given environments, both efficiently and accurately. The TEAMCORE-based
teams have so far successfully met the initial challenge in their evacuation domains.

However, we are also interested in the effort involved in encoding and modifying agents’
teamwork capabilities — comparing the effort with TEAMCORE against the alternatives. The
key alternative is reproducing all of TEAMCORE’s capabilities by providing the domain-level
agents with special-case coordination plans. However, we would then require an ability to modify
the code of the domain-level agents. In addition, we would also have to re-code the coordination
plans in each language used by the domain-level agents.

A better alternative would use domain-specific wrapper agents, but each of the 18 team op-
erators in TEAMCORE would still require separate domain-specific communication plans for
coordination — two plans each to signal commitments (request and confirm) and one to signal
termination of commitments. That is already a total of 54 (18 x 3) coordination plans. Further-
more, to reproduce TEAMCORE’s selective communication, additional special cases would be
necessitated — in the extreme case, each combination of values for communication costs and
rewards could require a separate special case operator (54x total combinations, already more
than a hundred). Furthermore, we may require separate operators depending on whether the
communication occurs throughout the entire team or only a subteam. Of course, it would appear
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that all such special cases could be economized in our initial implementation by discovering gen-
eralizations, but TEAMCORE already encodes such generalizations to avoid the many special
cases.

The TEAMCORE specification has greatly facilitated modifications to the team as well.
For instance, the route planner was the last addition to the team. The pre-existing team would
successfully execute straight-line routes in response to the human commander’s orders. We wanted
to add the route planner to specify routes around potential obstacles. We first constructed a
TEAMCORE wrapper agent to make the route planner team-ready. However, there was no
additional coding effort necessary to add the general-purpose teamwork model of TEAMCORE,
nor the domain-specific team program, since we had previously coded both for the existing
wrapper agents. To extend the organizational hierarchy, we simply added the route planner as
a member of Big-Team. We then added the Process-Routes branch of the goal hierarchy to
allow for route planning. This branch involves very simple goals where the TEAMCORE agent
submits a request for planning a particular route, waits for the reply by the route planner, and
then communicates the new route to the other team members. The TEAMCORE teamwork
model already supported most of this communication. Thus, the bulk of the coding effort for
adding the route planner came in the specification of its message formats and task constraints.

3.5 Research Issues for the Current Implementation

The TEAMCORE system marks a significant stepping stone along the path to our ultimate goal
of team-oriented programming. Previous research into the integration of heterogeneous research
has focused on the problem of syntactic/semantic interoperability among agents [3]. However,
our work in solving the problems addressed by TEAMCORE has unearthed novel challenges
in guaranteeing flexible team behavior. We feel that these issues are themselves an interesting
contribution, so this section describes them in the hope that, having brought these issues to light,
we can make further reductions in team programming effort with future versions of TEAMCORE.

One key issue 1s the proper generation of monitoring and tasking requests from the TEAM-
CORE layer to the domain-level agents. Our current TEAMCORE implementation includes a
partially automated mechanism for generating such requests, but it fails to fully address many
of the issues involved in generating correct behavior. For example, the current implementation
generates a monitoring request for all agents capable of monitoring a condition, even though
this can lead to multiple agents monitoring for the same event. Although such redundancy can
provide robustness in certain situations, it can also waste agent resources in others. We must
explore such issues more fully in order to design a correct mechanism for monitoring and tasking.

The lack of general capability descriptions i1s another obstacle to the current TEAMCORE
system’s achievement of full TOP functionality, as described in Section 2.1. Once we implement
the full capability language described in Section 2, then we could use specifications of plan
requirements and agent capabilities to create the team membership and structure at run time.
Of course, this raises a new issue in how best to match agent capabilities to plan requirements.

The current TEAMCORE implementation also assumes that there are agents currently avail-
able that meet each plan’s exact requirements, but it is sometimes the case that no agent meets
the exact requirements. However, there might be agents that can perform “capability transfor-
mation” to mediate an inexact match. For instance, in the evacuation scenario, Quickset and
the route planner represent points as latitude-longitude pairs, whereas the helicopter pilot agents
represent points in a different coordinate system, z-y-cell. In this case, we changed the pilot code
to translate latitude-longitude coordinates into the z-y-cell format, but we may not always have
the ability to change the domain-level agents’ code. In addition, mismatches may require more
complex translations. For instance, the original route planner code provided routes for tanks,
which require planning at a much finer granularity than helicopters. A route with points less
than 10m apart may be suitable for tanks, but it produces undesirably jerky flight patterns in
helicopters. In this case, the designers of the route planner modified its behavior to provide fewer
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intermediate points. However, in general, we cannot correct all of the possible mismatches that
may occur. A more flexible approach would recognize the mismatch at run time and invoke a
translator agent capable of the appropriate mediation.

There are also limitations in the flexibility of the TEAMCORE wrapper agents in dealing with
the domain-level agents. In our evacuation scenario, all of the domain-level agents had the same
lack of social capabilities, so we could re-use the same coordination code in all of the wrapper
agents. In general, we may have to tailor the wrapper agents to account for the domain-level
agent’s social capabilities. For example, we may need to reduce TEAMCORE communication
if the domain-level agent can perform some of the communication itself. We could potentially
include an agent’s social capabilities within its overall capability specification.

4 Related Work

Many of the issues that need to be addressed in a Team-Oriented Programming environment, as
we have discussed 1it, have been raised in various designs and implementations of teamwork, and
have been influential in shaping our ideas. However, as outlined below, TEAMCORE is unique in
synthesizing many of these ideas and realizing them via a distributed set of agents that integrate
a heterogeneous set of existing agents.

Tidhar [21,22] has used the term team-oriented programming to describe a conceptual frame-
work for specifying team behaviors based on mutual beliefs and joint plans, coupled with orga-
nizational structures. This framework forms the basis of an implementation based on the dMars
agent architecture [19]. A joint plan is executed by a team, consisting of potentially more than
one agent, each of which i1s committed to the achievement of the joint goal associated with that
plan. The organizational hierarchy ensures that only appropriate agents (e.g., team leaders) fill
specific roles offering certain authority or privilege. Tidhar describes how one can (automati-
cally) unfold team plans into plans for individual agents containing communicative acts that
ensure rudimentary coordination. His framework also addressed the issue of team selection (i.e.,
automatically deciding on an appropriate collection of agents to act as a team for performing a
given task) [20] — team selection matches the “skills” required for executing a team plan (i.e.,
actions and goals to be performed) against agents that have those skills (i.e., contain plans that
address those actions and goals).

While many of the features of Tidhar et al.’s conceptual and implemented frameworks are
important in the context of TEAMCORE, the critical issue of agent reuse, particularly involving
heterogeneous (non-dMars) agents, is not given much attention. As seen in Section 3.2, reusing
existing agents by wrapping them requires, at the very least, the addition of tasking and monitor-
ing capabilities, as well as a communication infrastructure (such as KQML in TEAMCORE), to
the teamwork layer. Furthermore, the flexibility of team reorganization on failure and decision-
theoretic communication selectivity available through the STEAM component of TEAMCORE
does not seem to be part of the abstract team-layer of SWARMM — i.e., the programmer must
supply such reasoning about the team itself, whereas TEAMCORE already provides it through
the infrastructure.

Other implementations of model-based teamwork reasoning relevant to the current work in-
clude Jennings et al.’s work on GRATE* [8] and Rich and Sidner’s COLLAGEN [14]. GRATE*
implements a model of cooperation based on the joint intentions framework, similarly used by
STEAM. Each agent has its own cooperation level module, which handles the process of negoti-
ating involvement in a joint task and maintaining information about its own and other agents’
involvement in joint goals. COLLAGEN models dialogue between a user and an agent — a form
of joint activity — based on the SharedPlans [6] model of joint action. Both these models of col-
laboration have been compared to that implemented in STEAM in [18]; in particular, STEAM
allows teamwork to a deeper level than the single joint goal/plan allowed in GRATE* and also
provides capabilities for monitoring role-performance and role substitution in repairing team ac-
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tivity, which is not available from other systems. The TEAMCORE system has inherited these
features of teamwork by incorporating STEAM into its teamwork model.

Regarding the specific issue of agent reuse, both GRATE* and COLLAGEN have a fairly clean
separation of the teamwork layer from the individual problem-solving layer of an agent—e.g., in
GRATE*, the addition of the cooperation and communication layers to a problem-solving agent
could be seen as analogous to making the agent “team-ready” (in the way we have used it above).
However, these systems have not explicitly focused on team-oriented programming as outlined
in this article. COLLAGEN in particular targets wrapping a single agent for collaboration with
a human user, so that the issue of programming a team of agents is not particularly relevant. In
this context GRATE* is more similar to the TEAMCORE effort, but the more complex nature of
the teams and team tasks in TEAMCORE has led us to explicitly focus on TOP and to explore
several novel issues (such as the automatic generation of monitoring conditions) that are not

addressed in GRATE*.

More recent work by Jennings and his coworkers has led to the ADEPT architecture for
modeling business processes [7]. ADEPT allows a more flexible, hierarchical team organization.
ADEPT consists of multiple agencies, each containing a responsible agent, which handles com-
munication and interaction with other agencies (via their corresponding responsible agencies),
along with a number of sub-agencies. The “capabilities” (i.e., services offered) of each agency are
maintained by the various responsible agencies, avoiding the use of a central facilitator or broker.
A task is “contracted out” (after a negotiation period) to an agency which has the capabilities to
perform that task. The resulting “social contract” may involve parameters such as the maximum
allowable duration before a result is required. As with GRATE*, ADEPT provides a fairly clean
interface between the individual task-achieving agents and the social level. However, the ADEPT
framework does not seem to address the issue of agent reuse directly: although the architecture
itself allows for the potential of incorporating heterogeneous agents, it does not seem to be a
specific concern of the project. Also, ADEPT does not provide an explicit model of teamwork,
such as that based on joint plans/intentions (the basis of collaboration seems more closely related
to Castelfranchi’s notion of social commitment [2]).

Singh [15] has recently proposed an abstract framework for coordinating heterogeneous agents.
Singh’s model represents planned activity via finite-state automata (abstracting away the internal
workings of the agents), where transitions represent external actions or events. The coordination
service maintains knowledge of individual agents’ actions as well as the overall joint plan and,
upon receiving a request to perform an action, informs the appropriate agents as to whether an
intended action should be executed, delayed, or omitted so as to fit with the joint activity of other
agents. Singh’s model does not address many of the issues of teamwork; however, it provides a
potentially useful tool which could be used to augment the joint plan framework of TEAMCORE
with a language for specifying flexible, coordinated interactions at an abstract level. Another key
point of contrast seems to be that TEAMCORE is an implemented system, with the teamwork
layer realized via a distributed set of TEAMCORE agents.

Code reuse is, of course, an important issue in software engineering. Such reuse is being
facilitated on an increasingly larger scale, with automated support for the process. Meyer’s notion
of design by contract [12] involves the use of a functional abstraction of software modules (in the
form of preconditions and postconditions specified in a common language) to safely allow the
incorporation of third-party software—such an abstraction can be seen as analogous to defining
agents’ capabilities. The CHAIMS system [1] uses megaprograms to perform operations across
large heterogeneous multi-site software systems—such megaprograms reuse existing software by
wrapping them with a small program that manages their execution and handles communication
with the central megaprogram, which uses those modules for computation by remotely invoking
their execution. While such concerns are obviously related to our focus on agent reuse, the
components are not assumed to behave autonomously, and tasks and organizations do not change
dynamically. Hence, many of the issues of concern to us do not arise. Furthermore, by exploiting
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notions of teamwork, we are able to provide many of the same coordination and communication
services automatically.

5 Conclusion and Future Work

Our team-oriented programming (TOP) effort is motivated by the need for rapid development
of agent teams from existing, heterogeneous, distributed sets of agents. To this end, we are
developing TEAMCORE, a reusable, domain-independent infrastructure to support TOP. The
TEAMCORE wrapper agents form a distributed team-readiness layer for augmenting domain-
level agents with the following social capabilities:

Coherent commitment and termination of joint goals

— Team reorganization in response to member failure

— Selective communication

— Incorporation of heterogeneous agents

KQML communication infrastructure

— Automatic generation of tasking and monitoring requests

We believe that the distributed TEAMCORE agents represent a significant advance toward
TOP. Indeed, the availability of these agents greatly simplified our efforts to render the various
evacuation agents team-ready, and enable them to function coherently towards the joint goal of
evacuation. We completely reused the social capabilities listed above, so that our only remaining
task was to specify the team program. We successfully generated a correct team program using
the goal hierarchy of Figure 4 and the organization hierarchy of Figure 3.

Our initial success in developing a team-oriented program for the evacuation scenario and its
(at least current) ease of modification indicates the utility of our TOP framework. More rigorous
experiments are clearly necessary to validate these claims, including possible comparisons with
teams developed using other techniques in terms of programming effort.

The actual implementation of the TOP framework via the TEAMCORE wrapper agents has
also led to identification of several key research issues. Some of these issues have been identified in
Section 3.5. There are however other novel issues on our agenda as well. One key issue we are in-
vestigating involves greater flexibility in the structure of the wrapper agents in the team-readiness
layer. In our current implementation, there is a one-to-one correspondence between TEAMCORE
wrappers and domain-level agents. However, there is no reason why a single TEAMCORE agent
could not wrap more than one domain-level agents, since it can easily maintain multiple goal
structures. Such consolidation reduces team communication, since a single agent would now
commit, modify, and terminate joint goals on behalf of multiple domain-level agents. However,
the increased centralization can cause greater computational loads, while also rendering failure
of a TEAMCORE agent more catastrophic. A more thorough analysis of these tradeoffs should
support an automatic procedure for generating optimal structures of TEAMCORE agents.

Another key area of investigation is the role of machine learning in TEAMCORE. In par-
ticular, learning from team failures will enable TEAMCORE agents to correct any missing or
incorrectly specified coordination constraints, or modify the existing organization hierarchy to
more appropriately match the task at hand. Again, the key is that this learning occurs at the
team-level interactions, rather than on improving the skills of the individuals.
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