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2 David V. Pynadath et al.teamwork model, it is di�cult to anticipate and pre-plan for the vast number of coordinationfailures possible due to such uncertainties.This paper focuses on minimizing the complexity of building robust and 
exible teams viaa domain-independent infrastructure to support team-oriented programming (TOP). In our pro-posed view of TOP, a \team-oriented programmer" has a set of (possibly heterogeneous) agentsavailable. One builds a team to accomplish a task, not by building large numbers of coordinationplans, but rather by representing only the domain-speci�c knowledge about team plans, as wellas the organization hierarchy of the existing agents that are intended to execute the team plans.The TOP infrastructure then automatically ensures agents' coordinated commitment to teamplans, maintenance of coherent group beliefs, appropriate tasking of individuals, and reorganiza-tion when teammates are unable to perform their assigned tasks. We can reuse this infrastructureeven as we change the agents, the tasks, or even the overall problem domain. Section 2 describesour proposed view of TOP in more detail.We have recently completed an initial implementation of a TOP infrastructure (there couldbe multiple realizations of our view of TOP). Our software system, TEAMCORE, integrates ageneral-purpose teamwork model and provides core teamwork capabilities to individual agentsby wrapping them with TEAMCORE, as described in Section 3. Here, we call the individualTEAMCORE \wrapper" a TEAMCORE agent. A TEAMCORE agent is a purely social agent, inthat it has only core teamwork capabilities, e.g., it does not possess sensing or action capabilitiesin the domain of interest. We can take an existing agent that does have domain-level actioncapabilities and make it team-ready through an interface with a TEAMCORE agent. Agentsmade team-ready can rapidly assemble themselves into a team in any given domain. Unlikepast approaches, such as the Open Agent Architecture (OAA) [11], which provides a centralizedblackboard facilitator to integrate a set of agents, TEAMCORE is a fundamentally distributedteam-oriented system. Furthermore, unlike OAA, TEAMCORE allows direct tasking at the teamlevel via team-oriented programming.We have applied our current TOP infrastructure toward a concrete problem, the evacuationof civilians stranded in a hostile area. In this target scenario, we wish to build a system to enablea set of helicopters to 
y in a coordinated formation to a landing zone, pick up stranded civilians,and then 
y back to a safe area. The system should enable a human commander to interactivelyprovide the helicopters with locations of the landing zone, the safe area, and other key points inthe evacuation route. Furthermore, the system needs to plan routes to avoid known obstacles,to dynamically obtain information about enemy threats, and to change routes when needed.Furthermore, by suitable substitution, we wish to be able to quickly recon�gure the team forother tasks (e.g., to monitor enemy activity on a battle�eld).In this evacuation scenario, TOP has been able to successfully integrate at least eleven di�er-ent agents into a team. Four of these agents are escort helicopter pilots, and four are transporthelicopter pilots, while the rest include a diverse set of agents created by di�erent developers:a multi-modal user interface agent (Quickset) [4], a route-planning agent, and an information-gathering agent (Ariadne) [9]. Quickset is itself a collection of agents, but our framework treatsit as a single agent. These agents are written in four di�erent computer languages, run on twodi�erent operating systems, and distributed geographically, yet TOP enables teamwork amongthese agents communicating over the Internet.2 Team-Oriented ProgrammingIn our general framework, the team-oriented programmer must develop a system where agentsact as a team in performing a joint task. The programmer has a pool of agents available | suchagents may be developed by di�erent designers, based on di�erent underlying agent architec-tures, implemented in di�erent languages, and running on di�erent operating systems. Following



Toward Team-Oriented Programming 3the software engineering trend of reuse, we would like to reuse these agent systems withoutmodi�cation in implementing the team.2.1 Agent Capability DescriptionsWe assume that each agent that is a potential team member has a functional interface describingits capabilities. An agent's set of capabilities is an abstraction, so there are no details on how anagent would go about performing a task. The capability description for an agent may specify:(i) the set of tasks that the agent can perform; (ii) the input parameters for the task request, aswell as constraints on these parameters; (iv) outputs from performing the requested task, as wellas constraints on the output. Figure 1 provides a partial capability description for some of theagents in the evacuation scenario.
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(goal monitor-distanceFig. 1. A partial description of capabilities for some of the agents in the Evacuation scenario.Figure 1 shows that the route-planning agent has the capability to perform the Plan-Routetask, where the task request message must provide the start and destination points as inputparameters. There is a constraint that the points, restricted to a particular geographical window,must be speci�ed in terms of latitude-longitude coordinates. The output is a planned route, interms of a list of points, again speci�ed in latitudes and longitudes. In contrast, a helicopterpilot agent can perform several tasks. One of the tasks is coordinate 
ight, i.e., following anotheraircraft. The parameters here include the distance, angle, and altitude at which to follow theaircraft. The constraints on the input specify the units of those parameters. There is no outputin this case. The helicopter pilot agent can also perform the task of monitoring, by observingfeatures of its own vehicle, the terrain, or other agents in the environment. For a helicopter pilotagent to monitor the status of another helicopter, the parameters must identify the speci�c vehiclein the environment, the attribute to be monitored (status), and the request for noti�cation whenthere is a change in status. The output is either that the speci�ed vehicle's status is \normal" or\destroyed".Thus, the tasks may have varied types. They may involve achievement goals, as in the route-planning example above, or maintenance goals, as in the case of a helicopter pilot's coordinated



4 David V. Pynadath et al.
ight. The tasks may not necessarily provide outputs. Furthermore, tasks may initiate an activ-ity, as in the examples above, or tasks may also terminate activities. For instance, a task mayrequest that an agent terminate an earlier task sent to it. Tasks may also extend beyond activeachievement of goals to include passive observation of conditions that potentially a�ect teamexecution, as in the monitoring tasks as discussed above.While the capability description above outlines key features and the relevant syntax, there isclearly a need for a common ontology or a translation mechanism to provide clear semantics forthis description. This issue is outside the scope of this paper.2.2 The Team-Oriented ProgramGiven a pool of agents and descriptions of their capabilities, the team-oriented programmer'sjob is to implement only the problem-speci�c aspects of the system. We believe that we canspecify these problem-speci�c aspects at the \team level", a level of abstraction requiring thatthe programmer specify only:{ the team organization hierarchy for achieving the team goals{ the team goals and the team procedures for achieving them, including:� models of initiation conditions, when the team should propose the goal� models of conditions for achievement, irrelevance, and unachievability, when the teamshould terminate the goal{ coordination constraints among the agents executing the team's joint activities
o o o

Team Readiness Layer

Domain level agents

Communication

executed by
Team Oriented Program

tasks & monitoringFig. 2. An abstract view of team-oriented programming.This team-oriented program is to be executed via a TOP infrastructure, which consists ofa \team-readiness" layer. Figure 2 illustrates our view of the TOP infrastructure that enforcesteam behavior. The \team-readiness" layer provides an interface for agents written in di�erentlanguages. It ensures coherent execution of team plans by providing task instructions to thedomain-level agents at the appropriate times (where the task instructions may initiate tasks,terminate tasks already requested, or specify attributes to monitor). This team-readiness layerhides the details of the coordination behavior, low-level tasking, and 
exible re-planning, allowingthe programmer to consider only the details at the level of abstraction of the team speci�cation.We can implement this abstract speci�cation of the TOP infrastructure in several ways, and wemake no assumptions about its internal structure (e.g., whether it consists of a set of distributedagents, or a single controller).In the team-oriented program, the organization hierarchy is speci�ed using roles that may be�lled by individual agents or groups of individual agents. For an example of such a hierarchy,



Toward Team-Oriented Programming 5we continue with our example of the evacuation scenario. Figure 3 illustrates a portion of theorganization hierarchy of the agents involved with this scenario. Each leaf node corresponds toan individual role, while the internal nodes correspond to subteams of these agents. At eachof these nodes, we have a description of the required capabilities of the corresponding agent orsubteam. For instance, the \Orders-Obtainer" role requires an ability to acquire knowledge ofthe mission parameters. The labels in italics specify the domain-level agent currently �lling thecorresponding role within the organization.We currently implement the team goals and procedures aspect of the team-oriented programvia reactive team plans. While these reactive team plans are much like situated plans or reactiveplans for individual agents [5], the key di�erence is that they explicitly express joint activitiesof the relevant team. These reactive team plans ensure that all TEAMCORE agents know theoverall team procedure. This team procedure may execute a team activity, plan a team activ-ity, collaboratively design an artifact, collaboratively schedule, or collaboratively monitor anddiagnose. Having common knowledge of team procedures is akin to providing the team with theknowledge of \standard operating procedures" in a military setting.
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Fig. 3. Partial organizational hierarchy of agents in evacuation team.The reactive team plans in the team program require that the programmer specify the ini-tiation conditions, termination conditions, and team-level actions to be executed as part of theplan. Once the programmer speci�es the initiation conditions, the TOP infrastructure ensuresthat the team will synchronize itself appropriately in executing the plan. Thus, the programmerneed not program such synchronization actions. For instance, there is no need to specify how themembers of the top-level team, Big-Team, must synchronize themselves to start jointly achievingProcess-Orders. The infrastructure ensures such synchronization with respect to both time ofplan execution and the identity of the plan, so all members will choose the same plan out of aset of multiple candidates.The programmer must also explicitly specify the termination conditions, the conditions un-der which a reactive team plan is achieved, irrelevant or unachievable. Such explicit speci�cationwithin the team program ensures that all team members have access to this knowledge, so thatthe team can terminate the goal coherently. Once again, the programmer does not have to specifythe procedure for coherent reactive plan termination. Instead, the TOP architecture can use theconditions of achievement, irrelevance, and unachievability as the basis for automatically gener-ating the communication necessary to jointly terminate a team plan. These explicit termination



6 David V. Pynadath et al.conditions also support the automatic generation of monitoring requests. If certain agents havethe capability to observe conditions that re
ect any termination condition of a team goal, thenthe TOP architecture can automatically task them to report on any change in that condition.Figure 4 shows some of the team goals and procedures for the evacuation domain. Each nodescorresponds to a goal (in bold), as well as the agent or team (in parentheses) responsible for itsachievement. The team programmer has the option of specifying particular agents or subteams,taken from the organization hierarchy, to perform a given goal. On the other hand, the teamprogrammer may specify the performing agents using only abstract role labels (as in Figure 4),in which case the TOP infrastructure assigns agents/subteams from the organization hierarchyto the appropriate roles. For instance, it could assign Quickset the role of \Orders-Obtainer" bynoting that Quickset can achieve the Obtain-Orders goal. The links of Figure 4 correspondto decomposition and abstraction relationships between goals and subgoals. In this particularprogram, the agents of Big-Team jointly perform the top-level goal of Evacuate.
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(Transport)Fig. 4. Partial reactive plan hierarchy for evacuation scenario.With respect to the actions of the reactive team plans, the high-level team-plans, such asEvacuate in Figure 4, typically have few actions. Instead, these plans decompose into a se-quence of subgoals. For instance, Evacuate decomposes into a sequence of subgoals beginningwith Process-Orders, where the agents of Big-Team must interpret orders provided by a hu-man commander. The team achieves Process-Orders by having the agent or subteam labeled\Orders-Obtainer" achieve the Obtain-Orders goal. The programmer does not specify the ac-tions of the Obtain-Orders plan, instead assuming that the Orders-Obtainer agent/subteamknows how to achieve theObtain-Orders goal. This level of abstraction allows the team-orientedprogrammer to ignore the inner workings of the member agents, thus simplifying the speci�ca-tion task while also allowing for the reuse of team-oriented programs with di�erent collections ofagents. The abstraction also allows the programmer to omit explicit tasking of the domain-levelagents. Instead, the TOP architecture will generate the appropriate tasking messages at run-timeby examining the current parameters of the Obtain-Orders goal and the capability speci�cationof the current Orders-Obtainer.The programmer must also specify any coordination constraints in the execution of teamgoals. In the example program, the goal Landing-Maneuvers leads to two parallel subgoals:Mask-Observe performed by the Escort subteam and Pickup performed by the Transportsubteam. The programmer must represent the domain-speci�c constraint that the Transportsubteam cannot perform Pickup until the the Escort subteam has reached its masking loca-tions and begun observing. Again, once the programmer has speci�ed the high-level constraint,the TOP infrastructure handles the generation of any communication necessary for the propersynchronization.



Toward Team-Oriented Programming 73 TOP Implementation: TEAMCOREOur current TEAMCORE system supports many of the features required by our Team-OrientedProgramming framework. The team-readiness layer in the implemented system consists of dis-tributed TEAMCORE wrapper agents based on the Soar [13] integrated agent architecture. Wecan categorize each TEAMCORE wrapper agent's teamwork expertise as containing a domain-speci�c and a domain-independent component, the latter forming the central part of TEAM-CORE. The domain-speci�c part consists of the organization hierarchy and the reactive teamplans, i.e., team operators in Soar.Common knowledge of team operators does not protect the team members from incompleteor incorrect beliefs, from unexpected failures and successes, from unexpected communicationfailures, and so on. The domain-independent component of TEAMCORE must surmount suchuncertainties of dynamic complex domains and adapt to the current environment. The heart of thedomain-independent component is teamwork reasoning based on a general model of teamwork.3.1 STEAM Component of TEAMCOREOur previous work on STEAM [18] provides a signi�cant component of TEAMCORE's general-purpose teamwork model. This model encodes domain-independent axioms and theorems thatexplicitly outline team members' responsibilities and commitments in teamwork. In essence, itattempts to provide agents with the common- knowledge of teamwork that would enable themto autonomously reason about coordination and communication. STEAM uses joint intentionstheory [10] as the basic building block of teamwork, but SharedPlans theory [6] has also stronglyin
uenced it, as have the constraints of real-world application domains. STEAM builds on ourexperience in building agent teams for a variety of domains [16]. When working to achieve ateam operator, agents bring to bear all of the reasoning power of the general STEAM teamworkmodel, facilitating their communication and coordination.Currently, we can divide STEAM's teamwork knowledge into three classes of domain-inde-pendent axioms. The �rst class consists of coherence preserving (CP) axioms that require teammembers to communicate with others to ensure coherent initiation and termination of team goals.For instance, if an agent privately discovers that the currently selected team goal is unachievable,then it must not unilaterally terminate the goal. Instead, it must communicate this unachievabil-ity information to its teammates, so that they do not waste their resources and that the team as awhole coherently terminates the team goal. As an example of STEAM's application, consider thehelicopter team 
ying in formation. If one of the helicopter pilots observes unanticipated enemyvehicles on their 
ight route, STEAM's CP axioms require that this pilot inform its teammatesabout the enemy units (since it makes the relevant team operator unachievable), so that the teamreacts coherently to the enemy.Monitor and repair (MR) axioms detect whether a team task is unachievable due to unex-pected member (individual or subteam) failure. When such a failure occurs, the axioms thenlead the team into reorganization | via reassignment of roles | to overcome this failure. Forexample, if a helicopter crashes, then the MR axioms would allow the team members to observethat their current 
ight goal is unachievable. The axioms would also trigger the reorganization ofthe 
ight team, perhaps also changing low-level formation plans, to allow the team to continuepursuing its overall mission.STEAM requires selectivity-in-communication (SC) axioms, because attaining perfect coher-ence in teamwork can sometimes require excessive communication. STEAM avoids the potentiallydetrimental side e�ects of such communication through decision-theoretic communication selec-tivity. The key idea is to explicitly reason about the costs and bene�ts of di�erent techniques forattaining mutual beliefs. For instance, in some cases, if there is a high likelihood that an agent'steammates can obtain the relevant information via their own observation (even if with a slightdelay), then it should avoid costly communication. In contrast, communication becomes essential



8 David V. Pynadath et al.if there is a low likelihood that teammates can obtain the relevant information independently,and if there is a high cost to not making this information available to the teammates.3.2 TEAMCORE Extensions to STEAMThe TEAMCORE system extends the original STEAM model to support the following featuresdesired for full TOP functionality:{ Teamwork knowledge encapsulated within wrapper agents to support heterogeneous domain-level agents{ KQML point-to-point and multicast communication{ Automatic generation of task requests to domain-level agents{ Automatic generation of monitoring requests to domain-level agents{ TOP Interface: a GUI to facilitate the speci�cation of the organization and team plansIn the original STEAM implementation, the teamwork knowledge resided directly in the domain-level agent's knowledge base. TEAMCORE places this knowledge in a separate wrapper agent,so that we no longer rely on an ability to modify code in the domain-level agent. We do requirethat the domain-level agent provide a communication interface, so that the wrapper agent cansubmit the necessary task requests. The TEAMCORE system supports the use of KQML for allinter-agent communication. The wrapper agents have automatic procedures for sending/receivingthe KQML messages appropriate for tasking the domain-level agent in service to the currentteam goals. Figure 5 represents the agent and communication structure of the TEAMCOREimplementation, using an example from the evacuation domain. For simplicity, we illustrate onlypoint-to-point communication among the TEAMCORE agents, but we have also added multicastcapabilities to allow the TEAMCORE agents to broadcast messages to the other TEAMCOREmembers of a relevant team. In addition, this illustration depicts only three helicopter agents,but the current implementation includes up to sixteen such agents.
KQML KQML

TEAMCORE agents

Domain level agents

Tasking & Monitoring

KQML

Team Oriented Program

executed by

QuickSet Route Planner Ariadne Helicopters

KQML KQML KQML KQMLFig. 5. Agent structure and communication 
ow in TEAMCORE implementation of evacuation scenario.Although the STEAM rules provide each TEAMCORE agent with an automatic procedurefor communicating its private beliefs when appropriate, they do not provide a procedure forcommunicating beliefs between the TEAMCORE agent and the domain-level agents it may wrap.However, it is the domain-level agent, and not the TEAMCORE agent itself, that has access tomost observations relevant to the achievement, irrelevance, and unachievability of the team plans(e.g., the helicopter pilot agent can observe that another helicopter has crashed). On the otherhand, knowledge of the current team plans most often resides only in the TEAMCORE agent,so the domain-level agent may not know what observations are relevant (e.g., a helicopter pilotagent may not know which other helicopters are members of its team).We have extended the TEAMCORE agents' domain-independent knowledge to include thegeneration of appropriate monitoring requests that prompt the domain-level agent about which



Toward Team-Oriented Programming 9possible events are currently relevant. For each team goal, STEAM already requires that theTEAMCORE agents maintain models of the conditions under which the goal becomes achieved,irrelevant, or unachievable. The TEAMCORE agent's model of the wrapped domain-level agentincludes a capability speci�cation describing the conditions that it can observe, so this modelof monitoring capabilities forms the basis for our automatic procedure for generating monitor-ing requests. The capability speci�cation also speci�es how to translate monitoring responsesinto private beliefs of the TEAMCORE agent, who may ultimately communicate them to otherTEAMCORE agents according to the standard STEAM procedures.We have also created a TOP Interface (TOPI) to facilitate the programmer's e�ort in speci-fying the team organization and plans. Figure 6 shows a sample screenshot in programming theevacuation scenario, where the three panes correspond to the plans, organization, and domain-level agents, from left to right. The programmer can specify roles and role requirements in themiddle organizational pane, and then assign team-ready (i.e., wrapped) domain-level agents fromthe rightmost pane to these roles. In Figure 6, the programmer had attempted to assign the agent\RPlan" from the rightmost pane to the \Obtain orders" role in the middle pane. TOPI noticesthe capability mismatch and noti�es the programmer with the crossed-out icon. The user hashighlighted the mismatched role and a new agent \teamquickset" as part of the process of makingthe correct assignment. In addition, one can then assign roles from the organization to operatorscreated in the leftmost pane. TOPI uses the speci�cations and assignments to generate a Soar�le used by the wrapper agents in running the scenario.
Fig. 6. Screenshot of sample organization and operator speci�cation using TOPI.3.3 Evacuation ScenarioWe have applied TEAMCORE to the problem of evacuating civilians from a threatened location.The team programmer had the following agents (with capabilities as in Figure 1) available:



10 David V. Pynadath et al.Quickset: (developed by P. Cohen et al., Oregon Graduate Institute) C++-based agents runningon an NT platform (and connected through an OAA blackboard) enable a human operatorto use speech and gesture to provide the command to evacuate, as well as the locations ofthe evacuation site and other meaningful route landmarks.Route planner: (developed by Sycara et al., Carnegie-Mellon University) A C++-based routeplanner running on a UNIX platform can take the route landmarks, as well as a map of theregion, and produce a more detailed route that avoids known obstacles (e.g., no-
y zones).Ariadne: (developed by Minton et al., USC Information Sciences Institute) A LISP-based wrap-per running on a UNIX platform can query a database on more dynamic obstacles (e.g., enemymissile launchers).Helicopter pilots: Soar-based pilot agents running on a UNIX platform can 
y helicopters(within a ModSAF simulation environment) along a speci�ed route and land at speci�ed des-tinations. These agents are di�erent from the pilots used with STEAM, which had teamworkcapabilities explicitly programmed in. The pilot agents used in the work presented here hadno such social capabilities.We developed only the helicopter agents ourselves, while the other agents provided a �xed spec-i�cation of possible communication and task capabilities. None of the agents had pre-existingsocial capabilities, so we created the TEAMCORE wrapper agents are responsible for all of theteamwork behavior. All of the wrapper agents share the same domain-independent knowledgeof the TEAMCORE teamwork models. The wrapper agents also have knowledge of the domain-speci�c team plans, corresponding to the goal hierarchy representing the problem domain, as inFigure 4, as well as the associated functional models.The domain-independent component of the wrapper agents invokes all of STEAM's capabili-ties. The domain-speci�c team program contains a hierarchy of 18 joint goals (Figure 4 representspart of this hierarchy). However, only three of these require explicit communication to form jointcommitments; STEAM can exercise selectivity in the explicit commitment for the other goals byassuming common knowledge of the execution sequence. Termination of these goals does requireexplicit communication, since the agents have di�ering beliefs (based on di�erent domain-levelobservations) about achievement, irrelevance, and unachievability.3.4 Evaluation of Evacuation ScenarioThe TEAMCORE wrapper agents must generate the correct task and monitoring requests, sincethis is what ultimately drives the domain-level agents' behavior to successfully accomplish theirtasks, within their given environments, both e�ciently and accurately. The TEAMCORE-basedteams have so far successfully met the initial challenge in their evacuation domains.However, we are also interested in the e�ort involved in encoding and modifying agents'teamwork capabilities | comparing the e�ort with TEAMCORE against the alternatives. Thekey alternative is reproducing all of TEAMCORE's capabilities by providing the domain-levelagents with special-case coordination plans. However, we would then require an ability to modifythe code of the domain-level agents. In addition, we would also have to re-code the coordinationplans in each language used by the domain-level agents.A better alternative would use domain-speci�c wrapper agents, but each of the 18 team op-erators in TEAMCORE would still require separate domain-speci�c communication plans forcoordination | two plans each to signal commitments (request and con�rm) and one to signaltermination of commitments. That is already a total of 54 (18� 3) coordination plans. Further-more, to reproduce TEAMCORE's selective communication, additional special cases would benecessitated | in the extreme case, each combination of values for communication costs andrewards could require a separate special case operator (54� total combinations, already morethan a hundred). Furthermore, we may require separate operators depending on whether thecommunication occurs throughout the entire team or only a subteam. Of course, it would appear



Toward Team-Oriented Programming 11that all such special cases could be economized in our initial implementation by discovering gen-eralizations, but TEAMCORE already encodes such generalizations to avoid the many specialcases.The TEAMCORE speci�cation has greatly facilitated modi�cations to the team as well.For instance, the route planner was the last addition to the team. The pre-existing team wouldsuccessfully execute straight-line routes in response to the human commander's orders. We wantedto add the route planner to specify routes around potential obstacles. We �rst constructed aTEAMCORE wrapper agent to make the route planner team-ready. However, there was noadditional coding e�ort necessary to add the general-purpose teamwork model of TEAMCORE,nor the domain-speci�c team program, since we had previously coded both for the existingwrapper agents. To extend the organizational hierarchy, we simply added the route planner asa member of Big-Team. We then added the Process-Routes branch of the goal hierarchy toallow for route planning. This branch involves very simple goals where the TEAMCORE agentsubmits a request for planning a particular route, waits for the reply by the route planner, andthen communicates the new route to the other team members. The TEAMCORE teamworkmodel already supported most of this communication. Thus, the bulk of the coding e�ort foradding the route planner came in the speci�cation of its message formats and task constraints.3.5 Research Issues for the Current ImplementationThe TEAMCORE system marks a signi�cant stepping stone along the path to our ultimate goalof team-oriented programming. Previous research into the integration of heterogeneous researchhas focused on the problem of syntactic/semantic interoperability among agents [3]. However,our work in solving the problems addressed by TEAMCORE has unearthed novel challengesin guaranteeing 
exible team behavior. We feel that these issues are themselves an interestingcontribution, so this section describes them in the hope that, having brought these issues to light,we can make further reductions in team programming e�ort with future versions of TEAMCORE.One key issue is the proper generation of monitoring and tasking requests from the TEAM-CORE layer to the domain-level agents. Our current TEAMCORE implementation includes apartially automated mechanism for generating such requests, but it fails to fully address manyof the issues involved in generating correct behavior. For example, the current implementationgenerates a monitoring request for all agents capable of monitoring a condition, even thoughthis can lead to multiple agents monitoring for the same event. Although such redundancy canprovide robustness in certain situations, it can also waste agent resources in others. We mustexplore such issues more fully in order to design a correct mechanism for monitoring and tasking.The lack of general capability descriptions is another obstacle to the current TEAMCOREsystem's achievement of full TOP functionality, as described in Section 2.1. Once we implementthe full capability language described in Section 2, then we could use speci�cations of planrequirements and agent capabilities to create the team membership and structure at run time.Of course, this raises a new issue in how best to match agent capabilities to plan requirements.The current TEAMCORE implementation also assumes that there are agents currently avail-able that meet each plan's exact requirements, but it is sometimes the case that no agent meetsthe exact requirements. However, there might be agents that can perform \capability transfor-mation" to mediate an inexact match. For instance, in the evacuation scenario, Quickset andthe route planner represent points as latitude-longitude pairs, whereas the helicopter pilot agentsrepresent points in a di�erent coordinate system, x-y-cell. In this case, we changed the pilot codeto translate latitude-longitude coordinates into the x-y-cell format, but we may not always havethe ability to change the domain-level agents' code. In addition, mismatches may require morecomplex translations. For instance, the original route planner code provided routes for tanks,which require planning at a much �ner granularity than helicopters. A route with points lessthan 10m apart may be suitable for tanks, but it produces undesirably jerky 
ight patterns inhelicopters. In this case, the designers of the route planner modi�ed its behavior to provide fewer



12 David V. Pynadath et al.intermediate points. However, in general, we cannot correct all of the possible mismatches thatmay occur. A more 
exible approach would recognize the mismatch at run time and invoke atranslator agent capable of the appropriate mediation.There are also limitations in the 
exibility of the TEAMCORE wrapper agents in dealing withthe domain-level agents. In our evacuation scenario, all of the domain-level agents had the samelack of social capabilities, so we could re-use the same coordination code in all of the wrapperagents. In general, we may have to tailor the wrapper agents to account for the domain-levelagent's social capabilities. For example, we may need to reduce TEAMCORE communicationif the domain-level agent can perform some of the communication itself. We could potentiallyinclude an agent's social capabilities within its overall capability speci�cation.4 Related WorkMany of the issues that need to be addressed in a Team-Oriented Programming environment, aswe have discussed it, have been raised in various designs and implementations of teamwork, andhave been in
uential in shaping our ideas. However, as outlined below, TEAMCORE is unique insynthesizing many of these ideas and realizing them via a distributed set of agents that integratea heterogeneous set of existing agents.Tidhar [21, 22] has used the term team-oriented programming to describe a conceptual frame-work for specifying team behaviors based on mutual beliefs and joint plans, coupled with orga-nizational structures. This framework forms the basis of an implementation based on the dMarsagent architecture [19]. A joint plan is executed by a team, consisting of potentially more thanone agent, each of which is committed to the achievement of the joint goal associated with thatplan. The organizational hierarchy ensures that only appropriate agents (e.g., team leaders) �llspeci�c roles o�ering certain authority or privilege. Tidhar describes how one can (automati-cally) unfold team plans into plans for individual agents containing communicative acts thatensure rudimentary coordination. His framework also addressed the issue of team selection (i.e.,automatically deciding on an appropriate collection of agents to act as a team for performing agiven task) [20] | team selection matches the \skills" required for executing a team plan (i.e.,actions and goals to be performed) against agents that have those skills (i.e., contain plans thataddress those actions and goals).While many of the features of Tidhar et al.'s conceptual and implemented frameworks areimportant in the context of TEAMCORE, the critical issue of agent reuse, particularly involvingheterogeneous (non-dMars) agents, is not given much attention. As seen in Section 3.2, reusingexisting agents by wrapping them requires, at the very least, the addition of tasking and monitor-ing capabilities, as well as a communication infrastructure (such as KQML in TEAMCORE), tothe teamwork layer. Furthermore, the 
exibility of team reorganization on failure and decision-theoretic communication selectivity available through the STEAM component of TEAMCOREdoes not seem to be part of the abstract team-layer of SWARMM | i.e., the programmer mustsupply such reasoning about the team itself, whereas TEAMCORE already provides it throughthe infrastructure.Other implementations of model-based teamwork reasoning relevant to the current work in-clude Jennings et al.'s work on GRATE* [8] and Rich and Sidner's COLLAGEN [14]. GRATE*implements a model of cooperation based on the joint intentions framework, similarly used bySTEAM. Each agent has its own cooperation level module, which handles the process of negoti-ating involvement in a joint task and maintaining information about its own and other agents'involvement in joint goals. COLLAGEN models dialogue between a user and an agent | a formof joint activity | based on the SharedPlans [6] model of joint action. Both these models of col-laboration have been compared to that implemented in STEAM in [18]; in particular, STEAMallows teamwork to a deeper level than the single joint goal/plan allowed in GRATE*, and alsoprovides capabilities for monitoring role-performance and role substitution in repairing team ac-



Toward Team-Oriented Programming 13tivity, which is not available from other systems. The TEAMCORE system has inherited thesefeatures of teamwork by incorporating STEAM into its teamwork model.Regarding the speci�c issue of agent reuse, both GRATE* and COLLAGEN have a fairly cleanseparation of the teamwork layer from the individual problem-solving layer of an agent|e.g., inGRATE*, the addition of the cooperation and communication layers to a problem-solving agentcould be seen as analogous to making the agent \team-ready" (in the way we have used it above).However, these systems have not explicitly focused on team-oriented programming as outlinedin this article. COLLAGEN in particular targets wrapping a single agent for collaboration witha human user, so that the issue of programming a team of agents is not particularly relevant. Inthis context GRATE* is more similar to the TEAMCORE e�ort, but the more complex nature ofthe teams and team tasks in TEAMCORE has led us to explicitly focus on TOP and to exploreseveral novel issues (such as the automatic generation of monitoring conditions) that are notaddressed in GRATE*.More recent work by Jennings and his coworkers has led to the ADEPT architecture formodeling business processes [7]. ADEPT allows a more 
exible, hierarchical team organization.ADEPT consists of multiple agencies, each containing a responsible agent , which handles com-munication and interaction with other agencies (via their corresponding responsible agencies),along with a number of sub-agencies. The \capabilities" (i.e., services o�ered) of each agency aremaintained by the various responsible agencies, avoiding the use of a central facilitator or broker.A task is \contracted out" (after a negotiation period) to an agency which has the capabilities toperform that task. The resulting \social contract" may involve parameters such as the maximumallowable duration before a result is required. As with GRATE*, ADEPT provides a fairly cleaninterface between the individual task-achieving agents and the social level. However, the ADEPTframework does not seem to address the issue of agent reuse directly: although the architectureitself allows for the potential of incorporating heterogeneous agents, it does not seem to be aspeci�c concern of the project. Also, ADEPT does not provide an explicit model of teamwork,such as that based on joint plans/intentions (the basis of collaboration seems more closely relatedto Castelfranchi's notion of social commitment [2]).Singh [15] has recently proposed an abstract framework for coordinating heterogeneous agents.Singh's model represents planned activity via �nite-state automata (abstracting away the internalworkings of the agents), where transitions represent external actions or events. The coordinationservice maintains knowledge of individual agents' actions as well as the overall joint plan and,upon receiving a request to perform an action, informs the appropriate agents as to whether anintended action should be executed, delayed, or omitted so as to �t with the joint activity of otheragents. Singh's model does not address many of the issues of teamwork; however, it provides apotentially useful tool which could be used to augment the joint plan framework of TEAMCOREwith a language for specifying 
exible, coordinated interactions at an abstract level. Another keypoint of contrast seems to be that TEAMCORE is an implemented system, with the teamworklayer realized via a distributed set of TEAMCORE agents.Code reuse is, of course, an important issue in software engineering. Such reuse is beingfacilitated on an increasingly larger scale, with automated support for the process. Meyer's notionof design by contract [12] involves the use of a functional abstraction of software modules (in theform of preconditions and postconditions speci�ed in a common language) to safely allow theincorporation of third-party software|such an abstraction can be seen as analogous to de�ningagents' capabilities. The CHAIMS system [1] uses megaprograms to perform operations acrosslarge heterogeneous multi-site software systems|such megaprograms reuse existing software bywrapping them with a small program that manages their execution and handles communicationwith the central megaprogram, which uses those modules for computation by remotely invokingtheir execution. While such concerns are obviously related to our focus on agent reuse, thecomponents are not assumed to behave autonomously, and tasks and organizations do not changedynamically. Hence, many of the issues of concern to us do not arise. Furthermore, by exploiting



14 David V. Pynadath et al.notions of teamwork, we are able to provide many of the same coordination and communicationservices automatically.5 Conclusion and Future WorkOur team-oriented programming (TOP) e�ort is motivated by the need for rapid developmentof agent teams from existing, heterogeneous, distributed sets of agents. To this end, we aredeveloping TEAMCORE, a reusable, domain-independent infrastructure to support TOP. TheTEAMCORE wrapper agents form a distributed team-readiness layer for augmenting domain-level agents with the following social capabilities:{ Coherent commitment and termination of joint goals{ Team reorganization in response to member failure{ Selective communication{ Incorporation of heterogeneous agents{ KQML communication infrastructure{ Automatic generation of tasking and monitoring requestsWe believe that the distributed TEAMCORE agents represent a signi�cant advance towardTOP. Indeed, the availability of these agents greatly simpli�ed our e�orts to render the variousevacuation agents team-ready, and enable them to function coherently towards the joint goal ofevacuation. We completely reused the social capabilities listed above, so that our only remainingtask was to specify the team program. We successfully generated a correct team program usingthe goal hierarchy of Figure 4 and the organization hierarchy of Figure 3.Our initial success in developing a team-oriented program for the evacuation scenario and its(at least current) ease of modi�cation indicates the utility of our TOP framework. More rigorousexperiments are clearly necessary to validate these claims, including possible comparisons withteams developed using other techniques in terms of programming e�ort.The actual implementation of the TOP framework via the TEAMCORE wrapper agents hasalso led to identi�cation of several key research issues. Some of these issues have been identi�ed inSection 3.5. There are however other novel issues on our agenda as well. One key issue we are in-vestigating involves greater 
exibility in the structure of the wrapper agents in the team-readinesslayer. In our current implementation, there is a one-to-one correspondence between TEAMCOREwrappers and domain-level agents. However, there is no reason why a single TEAMCORE agentcould not wrap more than one domain-level agents, since it can easily maintain multiple goalstructures. Such consolidation reduces team communication, since a single agent would nowcommit, modify, and terminate joint goals on behalf of multiple domain-level agents. However,the increased centralization can cause greater computational loads, while also rendering failureof a TEAMCORE agent more catastrophic. A more thorough analysis of these tradeo�s shouldsupport an automatic procedure for generating optimal structures of TEAMCORE agents.Another key area of investigation is the role of machine learning in TEAMCORE. In par-ticular, learning from team failures will enable TEAMCORE agents to correct any missing orincorrectly speci�ed coordination constraints, or modify the existing organization hierarchy tomore appropriately match the task at hand. Again, the key is that this learning occurs at theteam-level interactions, rather than on improving the skills of the individuals.AcknowledgmentsThis research was supported by DARPA award No F30602-98-2-0108, under the Control of AgentBased Systems program. The e�ort is being managed by ARFL/Rome Research Site. We thankPhil Cohen, Katia Sycara and Steve Minton for collaboration on the TEAMCORE project, and
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